1
|
Yadav MS, Pandey VK, Jaiswal MK, Singh SK, Sharma A, Singh M, Tiwari VK. Late-Stage Functionalization Strategies of 1,2,3-Triazoles: A Post-Click Approach in Organic Synthesis. J Org Chem 2025; 90:5731-5762. [PMID: 40251004 DOI: 10.1021/acs.joc.5c00125] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/20/2025]
Abstract
The 1,2,3-triazole scaffolds are an important class of biologically privileged heterocyclic compounds with several key applications in chemistry, biology, medicine, agriculture, and material science. The "postclick" functionalization of 1,2,3-triazoles may emerge as a promising tactic for the construction of molecular architectures of therapeutics and is considered to be a growing area of investigation. This interest extends beyond the regioselective Cu(I)-catalyzed azide-alkyne cycloaddition (CuAAC) method that involves the trapping of Cu(I)-triazole with suitable precursors. In this Perspective, we highlight the growing impact of postclick strategies in organic synthesis required for the late-stage functionalization of 1,2,3-triazoles with a hope that this emerging concept may provide ample opportunities in modern organic synthesis of notable applications in medicinal chemistry, biology, and materials science.
Collapse
Affiliation(s)
- Mangal S Yadav
- Department of Chemistry, Institute of Science, Banaras Hindu University, Varanasi, Uttar Pradesh 221005, India
| | - Vinay K Pandey
- Department of Chemistry, Institute of Science, Banaras Hindu University, Varanasi, Uttar Pradesh 221005, India
| | - Manoj K Jaiswal
- Department of Chemistry, Institute of Science, Banaras Hindu University, Varanasi, Uttar Pradesh 221005, India
| | - Sumit K Singh
- Department of Chemistry, Institute of Science, Banaras Hindu University, Varanasi, Uttar Pradesh 221005, India
| | - Anindra Sharma
- Department of Chemistry, Institute of Science, Banaras Hindu University, Varanasi, Uttar Pradesh 221005, India
- Department of Chemistry, A.P.S.M. College, Barauni, Begusarai, Bihar 851112, India
| | - Mayank Singh
- Department of Chemistry, Institute of Science, Banaras Hindu University, Varanasi, Uttar Pradesh 221005, India
| | - Vinod K Tiwari
- Department of Chemistry, Institute of Science, Banaras Hindu University, Varanasi, Uttar Pradesh 221005, India
| |
Collapse
|
2
|
Bakkiyaraj M, Anbarasan P. Catalytic Enantioselective [4+1]-Annulation of Carboxylic Acids with Cyclopropenes. Org Lett 2025; 27:1638-1643. [PMID: 39939118 DOI: 10.1021/acs.orglett.4c04827] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/14/2025]
Abstract
An efficient asymmetric synthesis of 3-vinylphthalides has been accomplished through rhodium-catalyzed [4+1]-annulation of arylcarboxylic acids with cyclopropenes involving C-H bond functionalization. The method exhibited excellent compatibility for various functional groups and offered diverse substituted 3-vinylphthalides in excellent yield and enantioselectivity. Synthetic application and control experiments were also performed to demonstrate the utility and understand the reaction pathway.
Collapse
Affiliation(s)
- Marimuthu Bakkiyaraj
- Department of Chemistry, Indian Institute of Technology Madras, Chennai-600036, India
| | - Pazhamalai Anbarasan
- Department of Chemistry, Indian Institute of Technology Madras, Chennai-600036, India
| |
Collapse
|
3
|
Tian X, Xuan T, Gao J, Zhang X, Liu T, Luo F, Pang R, Shao P, Yang YF, Wang Y. Catalytic enantioselective nitrone cycloadditions enabling collective syntheses of indole alkaloids. Nat Commun 2024; 15:6429. [PMID: 39080291 PMCID: PMC11289135 DOI: 10.1038/s41467-024-50509-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Accepted: 07/15/2024] [Indexed: 08/02/2024] Open
Abstract
Tetrahydro-β-carboline skeletons are prominent and ubiquitous in an extraordinary range of indole alkaloid natural products and pharmaceutical compounds. Powerful synthetic approaches for stereoselective synthesis of tetrahydro-β-carboline skeletons have immense impacts and have attracted enormous attention. Here, we outline a general chiral phosphoric acid catalyzed asymmetric 1,3-dipolar cycloaddition of 3,4-dihydro-β-carboline-2-oxide type nitrone that enables access to three types of chiral tetrahydro-β-carbolines bearing continuous multi-chiral centers and quaternary chiral centers. The method displays different endo/exo selectivity from traditional nitrone chemistry. The distinct power of this strategy has been illustrated by application to collective and enantiodivergent total syntheses of 40 tetrahydro-β-carboline-type indole alkaloid natural products with divergent stereochemistry and varied architectures.
Collapse
Affiliation(s)
- Xiaochen Tian
- Molecular Synthesis Center & Key Laboratory of Marine Drugs, Chinese Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, Qingdao, China
- Laboratory for Marine Drugs and Bioproducts, Qingdao Marine Science and Technology Center, Qingdao, China
| | - Tengfei Xuan
- Molecular Synthesis Center & Key Laboratory of Marine Drugs, Chinese Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, Qingdao, China
- Laboratory for Marine Drugs and Bioproducts, Qingdao Marine Science and Technology Center, Qingdao, China
| | - Jingkun Gao
- State Key Laboratory Breeding Base of Green Chemistry-Synthesis Technology, Key Laboratory of Green Chemistry-Synthesis Technology of Zhejiang Province, College of Chemical Engineering, Zhejiang University of Technology, Hangzhou, Zhejiang, China
| | - Xinyu Zhang
- Molecular Synthesis Center & Key Laboratory of Marine Drugs, Chinese Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, Qingdao, China
| | - Tao Liu
- Molecular Synthesis Center & Key Laboratory of Marine Drugs, Chinese Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, Qingdao, China
| | - Fengbiao Luo
- Molecular Synthesis Center & Key Laboratory of Marine Drugs, Chinese Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, Qingdao, China
| | - Ruochen Pang
- Molecular Synthesis Center & Key Laboratory of Marine Drugs, Chinese Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, Qingdao, China
| | - Pengcheng Shao
- Molecular Synthesis Center & Key Laboratory of Marine Drugs, Chinese Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, Qingdao, China
| | - Yun-Fang Yang
- State Key Laboratory Breeding Base of Green Chemistry-Synthesis Technology, Key Laboratory of Green Chemistry-Synthesis Technology of Zhejiang Province, College of Chemical Engineering, Zhejiang University of Technology, Hangzhou, Zhejiang, China.
| | - Yang Wang
- Molecular Synthesis Center & Key Laboratory of Marine Drugs, Chinese Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, Qingdao, China.
- Laboratory for Marine Drugs and Bioproducts, Qingdao Marine Science and Technology Center, Qingdao, China.
| |
Collapse
|
4
|
Das D, Kamilya C, Ghorai P. Hydrazine Hydrate in Asymmetric Synthesis: A Bifunctional Squaramide Catalytic Approach toward Fused Pyrazolines. Org Lett 2023; 25:6993-6998. [PMID: 37728280 DOI: 10.1021/acs.orglett.3c02529] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/21/2023]
Abstract
A unified strategy has been developed to utilize hydrazine hydrate in asymmetric organic synthesis by overcoming the rapid background reaction with dienone. The H-bond donor ability of the cinchona-alkaloid-derived squaramide catalyst unlocks this previously deemed infeasibility. The dissymmetric hydrazine addition to symmetrical dienones tolerates various substitutions, resulting in the formation of optically pure fused pyrazoline derivatives under mild reaction conditions. Furthermore, the scalability of this methodology and a successful demonstration of postsynthetic transformations have been accomplished.
Collapse
Affiliation(s)
- Dipankar Das
- Department of Chemistry, Indian Institute of Science Education and Research (IISER) Bhopal, Bhopal By-pass Road, Bhauri, Bhopal 462066, India
| | - Chandan Kamilya
- Department of Chemistry, Indian Institute of Science Education and Research (IISER) Bhopal, Bhopal By-pass Road, Bhauri, Bhopal 462066, India
| | - Prasanta Ghorai
- Department of Chemistry, Indian Institute of Science Education and Research (IISER) Bhopal, Bhopal By-pass Road, Bhauri, Bhopal 462066, India
| |
Collapse
|
5
|
Rupa K, Yadagiri D, Bagavathi R, Anbarasan P. Synthesis of Dihydro-3,1-benzoxazine Derivatives from 1,3-Amino Alcohols and N-Sulfonyl-1,2,3-triazole. Org Lett 2023; 25:3375-3379. [PMID: 37155197 DOI: 10.1021/acs.orglett.3c00851] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/10/2023]
Abstract
An efficient rhodium-catalyzed synthesis of dihydro-3,1-benzoxazine derivatives has been accomplished from aniline-derived 1,3-amino alcohols and N-sulfonyl-1,2,3-triazole. The developed reaction demonstrates the new reactivity of azavinyl carbenes and allows access to diverse substituted dihydro-3,1-benzoxazines in good yields. Importantly, the reaction was readily extended to diols and could be used for selective protection of amino alcohols with N-sulfonyl-1,2,3-triazole as the protecting reagent.
Collapse
Affiliation(s)
- Kavuri Rupa
- Department of Chemistry, Indian Institute of Technology Madras, Chennai 600036, India
| | - Dongari Yadagiri
- Department of Chemistry, Indian Institute of Technology Madras, Chennai 600036, India
| | - Ratnam Bagavathi
- Department of Chemistry, Indian Institute of Technology Madras, Chennai 600036, India
| | - Pazhamalai Anbarasan
- Department of Chemistry, Indian Institute of Technology Madras, Chennai 600036, India
| |
Collapse
|
6
|
Efficient synthesis of 3-aminocarbazoles from N-sulfonyl-1,2,3-triazoles and 2-alkenylindole. J CHEM SCI 2022. [DOI: 10.1007/s12039-022-02111-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
7
|
Sahoo J, Panda J, Sahoo G. Unravelling the Development of Non-Covalent Organocatalysis in India. Synlett 2022. [DOI: 10.1055/s-0042-1751370] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
Abstract
AbstractThis review is devoted to underpinning the contributions of Indian researchers towards asymmetric organocatalysis. More specifically, a comprehensive compilation of reactions mediated by a wide range of non-covalent catalysis is illustrated. A detailed overview of vividly catalogued asymmetric organic transformations promoted by hydrogen bonding and Brønsted acid catalysis, alongside an assortment of catalysts is provided. Although asymmetric organocatalysis has etched itself in history, we aim to showcase the scientific metamorphosis of Indian research from baby steps to large strides within this field. 1 Introduction2 Non-Covalent Catalysis and Its Various Activation Modes3 Hydrogen-Bonding Catalysis3.1 Urea- and Thiourea-Derived Organocatalysts3.1.1 Thiourea-Derived Organocatalysts3.1.2 Urea-Derived Organocatalysts3.2 Squaramide-Derived Organocatalysts3.2.1 Michael Reactions3.2.2 C-Alkylation Reactions3.2.3 Mannich Reactions3.2.4 [3+2] Cycloaddition Reactions3.3 Cinchona-Alkaloid-Derived Organocatalysts3.3.1 Michael Reactions3.3.2 Aldol Reactions3.3.3 Friedel–Crafts Reactions3.3.4 Vinylogous Alkylation of 4-Methylcoumarins3.3.5 C-Sulfenylation Reactions3.3.6 Peroxyhemiacetalisation of Isochromans3.3.7 Diels–Alder Reactions3.3.8 Cycloaddition Reactions3.3.9 Morita–Baylis–Hilman Reactions4 Brønsted Acid Derived Organocatalysts4.1 Chiral Phosphoric Acid Catalysis4.1.1 Diels–Alder Reactions4.1.2 Addition of Ketimines4.1.3 Annulation of Acyclic Enecarbamates5 Conclusion
Collapse
|
8
|
Akter M, Rupa K, Anbarasan P. 1,2,3-Triazole and Its Analogues: New Surrogates for Diazo Compounds. Chem Rev 2022; 122:13108-13205. [DOI: 10.1021/acs.chemrev.1c00991] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Affiliation(s)
- Monalisa Akter
- Department of Chemistry, Indian Institute of Technology Madras, Chennai 600 036, India
| | - Kavuri Rupa
- Department of Chemistry, Indian Institute of Technology Madras, Chennai 600 036, India
| | - Pazhamalai Anbarasan
- Department of Chemistry, Indian Institute of Technology Madras, Chennai 600 036, India
| |
Collapse
|
9
|
Mishra DR, Panda BS, Nayak S, Panda J, Mohapatra S. Recent Advances in the Synthesis of 5‐Membered
N
‐Heterocycles via Rhodium Catalysed Cascade Reactions. ChemistrySelect 2022. [DOI: 10.1002/slct.202200531] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Affiliation(s)
- Deepak R. Mishra
- Organic Synthesis Laboratory Department of Chemistry Ravenshaw University Cuttack 753003 Odisha India
| | - Bhabani S. Panda
- Organic Synthesis Laboratory Department of Chemistry Ravenshaw University Cuttack 753003 Odisha India
| | - Sabita Nayak
- Organic Synthesis Laboratory Department of Chemistry Ravenshaw University Cuttack 753003 Odisha India
| | - Jasmine Panda
- Organic Synthesis Laboratory Department of Chemistry Ravenshaw University Cuttack 753003 Odisha India
| | - Seetaram Mohapatra
- Organic Synthesis Laboratory Department of Chemistry Ravenshaw University Cuttack 753003 Odisha India
| |
Collapse
|
10
|
He Y, Huang Z, Wu K, Ma J, Zhou YG, Yu Z. Recent advances in transition-metal-catalyzed carbene insertion to C-H bonds. Chem Soc Rev 2022; 51:2759-2852. [PMID: 35297455 DOI: 10.1039/d1cs00895a] [Citation(s) in RCA: 107] [Impact Index Per Article: 35.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
C-H functionalization has been emerging as a powerful method to establish carbon-carbon and carbon-heteroatom bonds. Many efforts have been devoted to transition-metal-catalyzed direct transformations of C-H bonds. Metal carbenes generated in situ from transition-metal compounds and diazo or its equivalents are usually applied as the transient reactive intermediates to furnish a catalytic cycle for new C-C and C-X bond formation. Using this strategy compounds from unactivated simple alkanes to complex molecules can be further functionalized or transformed to multi-functionalized compounds. In this area, transition-metal-catalyzed carbene insertion to C-H bonds has been paid continuous attention. Diverse catalyst design strategies, synthetic methods, and potential applications have been developed. This critical review will summarize the advance in transition-metal-catalyzed carbene insertion to C-H bonds dated up to July 2021, by the categories of C-H bonds from aliphatic C(sp3)-H, aryl (aromatic) C(sp2)-H, heteroaryl (heteroaromatic) C(sp2)-H bonds, alkenyl C(sp2)-H, and alkynyl C(sp)-H, as well as asymmetric carbene insertion to C-H bonds, and more coverage will be given to the recent work. Due to the rapid development of the C-H functionalization area, future directions in this topic are also discussed. This review will give the authors an overview of carbene insertion chemistry in C-H functionalization with focus on the catalytic systems and synthetic applications in C-C bond formation.
Collapse
Affiliation(s)
- Yuan He
- Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Road, Dalian 116023, P. R. China. .,University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Zilong Huang
- Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Road, Dalian 116023, P. R. China. .,University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Kaikai Wu
- Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Road, Dalian 116023, P. R. China.
| | - Juan Ma
- Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Road, Dalian 116023, P. R. China. .,University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Yong-Gui Zhou
- Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Road, Dalian 116023, P. R. China.
| | - Zhengkun Yu
- Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Road, Dalian 116023, P. R. China. .,State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, 354 Fenglin Road, Shanghai 200032, P. R. China.,Innovation Academy for Green Manufacture, Chinese Academy of Sciences, Beijing 100190, P. R. China
| |
Collapse
|
11
|
Liu Y, Chen Y, Yihuo A, Zhou Y, Liu X, Lin L, Feng X. Diastereodivergent Synthesis of Chiral α-Aminoketones via a Catalytic O–H Insertion/Barnes–Claisen Rearrangement Reaction. ACS Catal 2022. [DOI: 10.1021/acscatal.1c05789] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Affiliation(s)
- Yun Liu
- Key Laboratory of Green Chemistry and Technology, Ministry of Education, College of Chemistry, Sichuan University, Chengdu 610064, People’s Republic of China
| | - Yushuang Chen
- Key Laboratory of Green Chemistry and Technology, Ministry of Education, College of Chemistry, Sichuan University, Chengdu 610064, People’s Republic of China
| | - Aying Yihuo
- Key Laboratory of Green Chemistry and Technology, Ministry of Education, College of Chemistry, Sichuan University, Chengdu 610064, People’s Republic of China
| | - Yuqiao Zhou
- Key Laboratory of Green Chemistry and Technology, Ministry of Education, College of Chemistry, Sichuan University, Chengdu 610064, People’s Republic of China
| | - Xiaohua Liu
- Key Laboratory of Green Chemistry and Technology, Ministry of Education, College of Chemistry, Sichuan University, Chengdu 610064, People’s Republic of China
| | - Lili Lin
- Key Laboratory of Green Chemistry and Technology, Ministry of Education, College of Chemistry, Sichuan University, Chengdu 610064, People’s Republic of China
| | - Xiaoming Feng
- Key Laboratory of Green Chemistry and Technology, Ministry of Education, College of Chemistry, Sichuan University, Chengdu 610064, People’s Republic of China
| |
Collapse
|
12
|
Pal K, Volla CMR. Catalytic Insertion Reactions of α-Imino Carbenoids. CHEM REC 2021; 21:4032-4058. [PMID: 34791794 DOI: 10.1002/tcr.202100238] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2021] [Revised: 10/28/2021] [Accepted: 10/29/2021] [Indexed: 12/31/2022]
Abstract
Over the past decade, α-imino carbenoids generated via transition metal (such as rhodium, nickel, copper, palladium, silver) catalyzed denitrogenative ring-opening of N-sulfonyl-1,2,3-triazoles have found an extensive account of applications in synthetic organic chemistry. Particularly, they have been widely utilized as a donor/acceptor carbene complex in a range of transformations leading to diverse nitrogen containing compounds and heterocycles. Along the same direction, 3-diazoindolin-2-imines were successfully applied as an alternative source of α-imino carbenoid precursors for the development of a number of methodologies to access diverse indole derivatives. This review summarizes the insertion reactions of α-imino metal carbenes derived from N-sulfonyl-1,2,3-triazoles and 3-diazoindolin-2-imines.
Collapse
Affiliation(s)
- Kuntal Pal
- Department of Chemistry, Indian Institute of Technology Bombay, Powai, Mumbai, 400076, India
| | - Chandra M R Volla
- Department of Chemistry, Indian Institute of Technology Bombay, Powai, Mumbai, 400076, India
| |
Collapse
|
13
|
Ramachandran K, Anbarasan P. Cobalt-catalyzed multisubstituted allylation of the chelation-assisted C-H bond of (hetero)arenes with cyclopropenes. Chem Sci 2021; 12:13442-13449. [PMID: 34777763 PMCID: PMC8528013 DOI: 10.1039/d1sc03476f] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2021] [Accepted: 09/14/2021] [Indexed: 12/04/2022] Open
Abstract
Cyclopropenes are highly strained three-membered carbocycles, which offer unique reactivity in organic synthesis. Herein, Cp*CoIII-catalyzed ring-opening isomerization of cyclopropenes to cobalt vinylcarbene has been utilized for the synthesis of multisubstituted allylarenes via directing group-assisted functionalization of C-H bonds of arenes and heteroarenes. Employing this methodology, various substituents can be introduced at all three carbons of the allyl moiety with high selectivity. The important highlights are excellent functional group tolerance, multisubstituted allylation, high selectivity, gram scale synthesis, removable directing group, and synthesis of cyclopenta[b]indoles. In addition, a potential cobaltocycle intermediate was identified and a plausible mechanism is also proposed.
Collapse
Affiliation(s)
- Kuppan Ramachandran
- Department of Chemistry, Indian Institute of Technology Madras Chennai 600036 India https://home.iitm.ac.in/anbarasansp/
| | - Pazhamalai Anbarasan
- Department of Chemistry, Indian Institute of Technology Madras Chennai 600036 India https://home.iitm.ac.in/anbarasansp/
| |
Collapse
|
14
|
Sharma P, Gupta R, Bansal RK. Recent advances in organocatalytic asymmetric aza-Michael reactions of amines and amides. Beilstein J Org Chem 2021; 17:2585-2610. [PMID: 34760026 PMCID: PMC8551878 DOI: 10.3762/bjoc.17.173] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2021] [Accepted: 09/27/2021] [Indexed: 11/23/2022] Open
Abstract
Nitrogen-containing scaffolds are ubiquitous in nature and constitute an important class of building blocks in organic synthesis. The asymmetric aza-Michael reaction (aza-MR) alone or in tandem with other organic reaction(s) is an important synthetic tool to form new C-N bond(s) leading to developing new libraries of diverse types of bioactive nitrogen compounds. The synthesis and application of a variety of organocatalysts for accomplishing highly useful organic syntheses without causing environmental pollution in compliance with 'Green Chemistry" has been a landmark development in the recent past. Application of many of these organocatalysts has been extended to asymmetric aza-MR during the last two decades. The present article overviews the literature published during the last 10 years concerning the asymmetric aza-MR of amines and amides catalysed by organocatalysts. Both types of the organocatalysts, i.e., those acting through non-covalent interactions and those working through covalent bond formation have been applied for the asymmetric aza-MR. Thus, the review includes the examples wherein cinchona alkaloids, squaramides, chiral amines, phase-transfer catalysts and chiral bifunctional thioureas have been used, which activate the substrates through hydrogen bond formation. Most of these reactions are accompanied by high yields and enantiomeric excesses. On the other hand, N-heterocyclic carbenes and chiral pyrrolidine derivatives acting through covalent bond formation such as the iminium ions with the substrates have also been included. Wherever possible, a comparison has been made between the efficacies of various organocatalysts in asymmetric aza-MR.
Collapse
Affiliation(s)
- Pratibha Sharma
- Department of Chemistry, The IIS (deemed to be University), Jaipur 302 020, India
| | - Raakhi Gupta
- Department of Chemistry, The IIS (deemed to be University), Jaipur 302 020, India
| | - Raj Kumar Bansal
- Department of Chemistry, The IIS (deemed to be University), Jaipur 302 020, India
| |
Collapse
|
15
|
Wang J, Yu J, Chen J, Jiang Y, Xiao T. Doyle-Kirmse reaction using 3,3-difluoroallyl sulfide and N-sulfonyl-1,2,3-triazole: an efficient access to gem-difluoroallylated multifunctional quaternary carbon. Org Biomol Chem 2021; 19:6974-6978. [PMID: 34338276 DOI: 10.1039/d1ob01129d] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A Doyle-Kirmse reaction of N-sulfonyl-1,2,3-triazole with 3,3-difluoroallyl sulfide through a Rh(ii)-catalyzed [2,3]-sigmatropic rearrangement has been developed, which provides an efficient access to multifunctional quaternary centers containing aryl, imino, thio, and brominated gem-difluoroallyl groups. The reaction features broad substrate scope with moderate to excellent yields. The applicability of the method is confirmed by gram-scale synthesis and further transformations.
Collapse
Affiliation(s)
- Jiazhuang Wang
- Faculty of Science, Kunming University of Science and Technology, Jingming South Road 727, Chenggong District, Kunming 650500, P. R. of China.
| | | | | | | | | |
Collapse
|
16
|
Yadagiri D, Anbarasan P. Catalytic Functionalization of Metallocarbenes Derived from α-Diazocarbonyl Compounds and Their Precursors. CHEM REC 2021; 21:3872-3883. [PMID: 34448345 DOI: 10.1002/tcr.202100167] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2021] [Revised: 08/14/2021] [Indexed: 11/12/2022]
Abstract
Short and efficient synthesis of heterocyclic compounds are highly desirable in synthetic organic chemistry. It is a dream approach to accomplish these syntheses from readily available starting materials in a single step. In this personal account, we discuss our contribution in the synthesis of heterocyclic compounds and beyond from N-sulfonyl-1,2,3-triazoles and α-diazocarbonyl compounds, which are the precursors for α-imino (carbonyl) metal carbenes in the presence of transition metal catalysts. Functionalization of α-imino(carbonyl) metal carbenes has been achieved through in-situ generated metal-stabilized ylides followed by either intramolecular trapping by non-polar bonds, rearrangement, cycloaddition, or 1,3-insertion fashion, which led to the efficient synthesis of various synthetically important intermediates and heterocyclic compounds.
Collapse
Affiliation(s)
- Dongari Yadagiri
- Department of Chemistry, Indian Institute of Technology Roorkee, Roorkee, 247667, India
| | - Pazhamalai Anbarasan
- Department of Chemistry, Indian Institute of Technology Madras, Chennai, 600036, India
| |
Collapse
|
17
|
Sánchez-Roselló M, Escolano M, Gaviña D, Del Pozo C. Two Decades of Progress in the Asymmetric Intramolecular aza-Michael Reaction. CHEM REC 2021; 22:e202100161. [PMID: 34415097 DOI: 10.1002/tcr.202100161] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2021] [Revised: 07/22/2021] [Accepted: 08/04/2021] [Indexed: 11/08/2022]
Abstract
The asymmetric intramolecular aza-Michael reaction (IMAMR) is a very convenient strategy for the generation of heterocycles bearing nitrogen-substituted stereocenters. Due to the ubiquitous presence of these skeletons in natural products, the IMAMR has found widespread applications in the total synthesis of alkaloids and biologically relevant compounds. The development of asymmetric versions of the IMAMR are quite recent, most of them reported in this century. The fundamental advances in this field involve the use of organocatalysts. Chiral imidazolidinones, diaryl prolinol derivatives, Cinchone-derived primary amines and quaternary ammonium salts, and BINOL-derived phosphoric acids account for the success of those methodologies. Moreover, the use of N-sulfinyl imines with a dual role, as nitrogen nucleophiles and as chiral auxiliaries, appeared as a versatile mode of performing the asymmetric IMAMR.
Collapse
Affiliation(s)
- María Sánchez-Roselló
- Organic Chemistry, University of Valencia, Avda Vicente Andrés Estellés s/n, 46100-Burjassot, Valencia), Spain
| | - Marcos Escolano
- Organic Chemistry, University of Valencia, Avda Vicente Andrés Estellés s/n, 46100-Burjassot, Valencia), Spain
| | - Daniel Gaviña
- Organic Chemistry, University of Valencia, Avda Vicente Andrés Estellés s/n, 46100-Burjassot, Valencia), Spain
| | - Carlos Del Pozo
- Organic Chemistry, University of Valencia, Avda Vicente Andrés Estellés s/n, 46100-Burjassot, Valencia), Spain
| |
Collapse
|
18
|
Biswas A, Ghosh A, Shankhdhar R, Chatterjee I. Squaramide Catalyzed Asymmetric Synthesis of Five‐ and Six‐Membered Rings. ASIAN J ORG CHEM 2021. [DOI: 10.1002/ajoc.202100181] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Affiliation(s)
- Anup Biswas
- Department of Chemistry Hooghly Women's College Hooghly West Bengal India
| | - Avisek Ghosh
- Department of Chemistry Indian Institute of Technology- Ropar India
| | - Rajat Shankhdhar
- Department of Chemistry Indian Institute of Technology- Ropar India
| | | |
Collapse
|
19
|
Duan S, Xue B, Meng H, Ye Z, Xu Z, Li C. Rhodium(
II
)‐Catalyzed [4+3] Cyclization of Triazoles with Indole Derivatives and Its Application in the Total Synthesis of (±)‐Aurantioclavine. CHINESE J CHEM 2021. [DOI: 10.1002/cjoc.202000657] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Shengguo Duan
- Department of Chemistry, Zhejiang Sci‐Tech University, Hangzhou Zhejiang 310018 China
| | - Bing Xue
- Department of Chemistry, Zhejiang Sci‐Tech University, Hangzhou Zhejiang 310018 China
| | - Hui Meng
- Department of Chemistry, Zhejiang Sci‐Tech University, Hangzhou Zhejiang 310018 China
| | - Zihang Ye
- Department of Chemistry, Zhejiang Sci‐Tech University, Hangzhou Zhejiang 310018 China
| | - Ze‐Feng Xu
- Department of Chemistry, Zhejiang Sci‐Tech University, Hangzhou Zhejiang 310018 China
| | - Chuan‐Ying Li
- Department of Chemistry, Zhejiang Sci‐Tech University, Hangzhou Zhejiang 310018 China
| |
Collapse
|
20
|
Reddy PM, Ramachandran K, Anbarasan P. Palladium-catalyzed diastereoselective synthesis of 2,2,3-trisubstituted dihydrobenzofurans via intramolecular trapping of O-ylides with activated alkenes. J Catal 2021. [DOI: 10.1016/j.jcat.2021.02.032] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
|
21
|
Application of Transition Metal‐Catalyzed C−H Activation Strategies in the Synthesis and Functionalization of β‐Carbolines. ASIAN J ORG CHEM 2021. [DOI: 10.1002/ajoc.202100055] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
|
22
|
Koronatov AN, Afanaseva KK, Sakharov PA, Rostovskii NV, Khlebnikov AF, Novikov MS. Rh(ii)-Catalyzed denitrogenative 1-sulfonyl-1,2,3-triazole-1-alkyl-1,2,3-triazole cross-coupling as a route to 3-sulfonamido-1H-pyrroles and 1,2,3-triazol-3-ium ylides. Org Chem Front 2021. [DOI: 10.1039/d0qo01571g] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
The reaction of 1-alkyl-1H-1,2,3-triazoles with rhodium(ii) azavinyl carbenes, generated from 1-sulfonyl-1H-1,2,3-triazoles, was utilized to prepare 3-sulfonamido-1H-pyrroles and 1,2,3-triazol-3-ium ylides in good yields.
Collapse
Affiliation(s)
| | | | - Pavel A. Sakharov
- St Petersburg State University
- Institute of Chemistry
- St Petersburg
- Russia
| | | | | | | |
Collapse
|
23
|
Duan S, An Y, Xue B, Chen Y, Zhang W, Xu Z, Li C. Synthesis of Pyrido[2,3‐
b
]indole Derivatives via Rhodium‐Catalyzed Cyclization of Indoles and 1‐Sulfonyl‐1,2,3‐triazoles. Adv Synth Catal 2020. [DOI: 10.1002/adsc.201901599] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Shengguo Duan
- Department of ChemistryZhejiang Sci-Tech University, Xiasha West Higher Education District Hangzhou 310018 People's Republic of China
| | - Yuehui An
- Department of ChemistryZhejiang Sci-Tech University, Xiasha West Higher Education District Hangzhou 310018 People's Republic of China
| | - Bing Xue
- Department of ChemistryZhejiang Sci-Tech University, Xiasha West Higher Education District Hangzhou 310018 People's Republic of China
| | - Yidian Chen
- Department of ChemistryZhejiang Sci-Tech University, Xiasha West Higher Education District Hangzhou 310018 People's Republic of China
| | - Wan Zhang
- Department of ChemistryZhejiang Sci-Tech University, Xiasha West Higher Education District Hangzhou 310018 People's Republic of China
| | - Ze‐Feng Xu
- Department of ChemistryZhejiang Sci-Tech University, Xiasha West Higher Education District Hangzhou 310018 People's Republic of China
| | - Chuan‐Ying Li
- Department of ChemistryZhejiang Sci-Tech University, Xiasha West Higher Education District Hangzhou 310018 People's Republic of China
| |
Collapse
|
24
|
Reddy ACS, Reddy PM, Anbarasan P. Diastereoselective Palladium Catalyzed Carbenylative Amination of
ortho
‐Vinylanilines with 3‐Diazoindolin‐2‐ones. Adv Synth Catal 2020. [DOI: 10.1002/adsc.201901286] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Affiliation(s)
| | | | - Pazhamalai Anbarasan
- Department of ChemistryIndian Institute of Technology Madras Chennai 600036 India
| |
Collapse
|
25
|
Reddy ACS, Ramachandran K, Reddy PM, Anbarasan P. Rhodium-catalyzed Sommelet–Hauser type rearrangement of α-diazoimines: synthesis of functionalized enamides. Chem Commun (Camb) 2020; 56:5649-5652. [DOI: 10.1039/d0cc00016g] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
An efficient rhodium catalyzed Sommelet–Hauser type rearrangement of sulfur ylides derived from α-thioesters and N-sulfonyl-1,2,3-triazoles has been successfully accomplished for the synthesis of various functionalized enamides.
Collapse
Affiliation(s)
| | - Kuppan Ramachandran
- Department of Chemistry
- Indian Institute of Technology Madras
- Chennai–600036
- India
| | | | | |
Collapse
|
26
|
Reddy ACS, Anbarasan P. Rhodium-Catalyzed Rearrangement of S/Se-Ylides for the Synthesis of Substituted Vinylogous Carbonates. Org Lett 2019; 21:9965-9969. [DOI: 10.1021/acs.orglett.9b03852] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Affiliation(s)
| | - Pazhamalai Anbarasan
- Department of Chemistry, Indian Institute of Technology Madras, Chennai 600036, India
| |
Collapse
|
27
|
Rajasekar S, Anbarasan P. A General Proline‐Catalyzed Synthesis of 4,5‐Disubstituted
N
‐Sulfonyl‐1,2,3‐Triazoles from 1,3‐Dicarbonyl Compounds and Sulfonyl Azide. Chem Asian J 2019; 14:4563-4567. [DOI: 10.1002/asia.201901015] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2019] [Revised: 08/22/2019] [Indexed: 01/03/2023]
Affiliation(s)
- Shanmugam Rajasekar
- Department of ChemistryIndian Institute of Technology Madras Chennai- 600036 India
| | - Pazhamalai Anbarasan
- Department of ChemistryIndian Institute of Technology Madras Chennai- 600036 India
| |
Collapse
|