1
|
Wang Y, Hu Y, Jin L, Gu Y, Xie Y. Rapid and Controlled Assembly of Polysubstituted Furans and Their Oligoaryls from Alkynes and Aldehydes Facilitated by Sequential Deprotonation. Org Lett 2025; 27:692-697. [PMID: 39746046 DOI: 10.1021/acs.orglett.4c04584] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2025]
Abstract
A new sequential deprotonation strategy of dimethyl sulfoxide (DMSO) and propargyl alcohol in the presence of a base was developed for the generation of the α-hydroxyl carbanion, which enables rapid and controllable access to a wide range of valuable highly functionalized furans in one pot from alkynes and aldehydes under transition-metal- and additive-free conditions. Preliminary mechanistic studies revealed the crucial role of the base and DMSO. More importantly, deuterium labeling experiments confirmed the formation of the α-hydroxyl carbanion.
Collapse
Affiliation(s)
- Yiqing Wang
- College of Chemical Engineering, Zhejiang University of Technology, Hangzhou 310014, P. R. China
- Materials Tech Laboratory for Hydrogen & Energy Storage, Ningbo Institute of Materials Technology and Engineering (NIMTE), Chinese Academy of Sciences, Ningbo 315201, P. R. China
| | - Yue Hu
- Materials Tech Laboratory for Hydrogen & Energy Storage, Ningbo Institute of Materials Technology and Engineering (NIMTE), Chinese Academy of Sciences, Ningbo 315201, P. R. China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Liqun Jin
- College of Chemical Engineering, Zhejiang University of Technology, Hangzhou 310014, P. R. China
| | - Yanwei Gu
- Materials Tech Laboratory for Hydrogen & Energy Storage, Ningbo Institute of Materials Technology and Engineering (NIMTE), Chinese Academy of Sciences, Ningbo 315201, P. R. China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yinjun Xie
- Materials Tech Laboratory for Hydrogen & Energy Storage, Ningbo Institute of Materials Technology and Engineering (NIMTE), Chinese Academy of Sciences, Ningbo 315201, P. R. China
- University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
2
|
Li N, Li C, Zhou Q, Zhang X, Deng Z, Jiang ZX, Yang Z. General access to furan-substituted gem-difluoroalkenes enabled by PFTB-promoted cross-coupling of ene-yne-ketones and difluorocarbene. Chem Sci 2025; 16:1455-1464. [PMID: 39720138 PMCID: PMC11664252 DOI: 10.1039/d4sc08247h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2024] [Accepted: 12/16/2024] [Indexed: 12/26/2024] Open
Abstract
Replacement of a carbonyl group with fluorinated bioisostere (e.g., CF2[double bond, length as m-dash]C) has been adopted as a key tactical strategy in drug design and development, which typically improves potency and modulates lipophilicity while maintaining biological activity. Consequently, new gem-difluoroalkenation reactions have undoubtedly accelerated this shift, and conceptually innovative practices would be of great benefit to medicinal chemists. Here we describe an expeditous protocol for the direct assembly of furan-substituted gem-difluoroalkenes via PFTB-promoted cross-coupling of ene-yne-ketones and difluorocarbene. In this multi-step tandem reaction process, the furan ring and the gem-difluorovinyl group are constructed simultaneously in an efficient manner. These products can serve as bioisosteres of the α-carbonyl furan core, which is an important scaffold present in natural products and drug candidates. The broad generality and practicality of this method for late-stage modification of bioactive molecules, gram-scale synthesis and versatile derivatisation of products has been described. Biological activity evaluation showed that the gem-difluoroalkene skeleton exhibited dramatic antitumor activity.
Collapse
Affiliation(s)
- Na Li
- Department of Spine Surgery and Musculoskeletal Tumor, Zhongnan Hospital of Wuhan University, School of Pharmaceutical Sciences, Wuhan University Wuhan 430071 China
| | - Chenghui Li
- Department of Spine Surgery and Musculoskeletal Tumor, Zhongnan Hospital of Wuhan University, School of Pharmaceutical Sciences, Wuhan University Wuhan 430071 China
| | - Qianying Zhou
- Department of Spine Surgery and Musculoskeletal Tumor, Zhongnan Hospital of Wuhan University, School of Pharmaceutical Sciences, Wuhan University Wuhan 430071 China
| | - Xin Zhang
- Department of Spine Surgery and Musculoskeletal Tumor, Zhongnan Hospital of Wuhan University, School of Pharmaceutical Sciences, Wuhan University Wuhan 430071 China
| | - Zhouming Deng
- Department of Spine Surgery and Musculoskeletal Tumor, Zhongnan Hospital of Wuhan University Wuhan 430071 China
| | - Zhong-Xing Jiang
- State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, National Center for Magnetic Resonance in Wuhan, Wuhan Institute of Physics and Mathematics, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences-Wuhan National Laboratory for Optoelectronics Wuhan 430071 China
| | - Zhigang Yang
- Department of Spine Surgery and Musculoskeletal Tumor, Zhongnan Hospital of Wuhan University, School of Pharmaceutical Sciences, Wuhan University Wuhan 430071 China
| |
Collapse
|
3
|
Yoshimura A, Zhdankin VV. Recent Progress in Synthetic Applications of Hypervalent Iodine(III) Reagents. Chem Rev 2024; 124:11108-11186. [PMID: 39269928 PMCID: PMC11468727 DOI: 10.1021/acs.chemrev.4c00303] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Revised: 08/18/2024] [Accepted: 08/29/2024] [Indexed: 09/15/2024]
Abstract
Hypervalent iodine(III) compounds have found wide application in modern organic chemistry as environmentally friendly reagents and catalysts. Hypervalent iodine reagents are commonly used in synthetically important halogenations, oxidations, aminations, heterocyclizations, and various oxidative functionalizations of organic substrates. Iodonium salts are important arylating reagents, while iodonium ylides and imides are excellent carbene and nitrene precursors. Various derivatives of benziodoxoles, such as azidobenziodoxoles, trifluoromethylbenziodoxoles, alkynylbenziodoxoles, and alkenylbenziodoxoles have found wide application as group transfer reagents in the presence of transition metal catalysts, under metal-free conditions, or using photocatalysts under photoirradiation conditions. Development of hypervalent iodine catalytic systems and discovery of highly enantioselective reactions using chiral hypervalent iodine compounds represent a particularly important recent achievement in the field of hypervalent iodine chemistry. Chemical transformations promoted by hypervalent iodine in many cases are unique and cannot be performed by using any other common, non-iodine-based reagent. This review covers literature published mainly in the last 7-8 years, between 2016 and 2024.
Collapse
Affiliation(s)
- Akira Yoshimura
- Faculty
of Pharmaceutical Sciences, Aomori University, 2-3-1 Kobata, Aomori 030-0943, Japan
| | - Viktor V. Zhdankin
- Department
of Chemistry and Biochemistry, University
of Minnesota Duluth, Duluth, Minnesota 55812, United States
| |
Collapse
|
4
|
Li B, Peng JH, Liu BX, Rao W, Shen SS, Sheng D, Wang SY. Manganese-Promoted Cyclization Reaction of Enynones with Tetrasulfides: Synthesis of Multisubstituted Furanmethyl Disulfides. J Org Chem 2024; 89:13386-13400. [PMID: 39258469 DOI: 10.1021/acs.joc.4c01538] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/12/2024]
Abstract
A tandem cyclization reaction of enynones with tetrasulfides has been developed under manganese-promoted conditions, leading to the high-yield formation of various furanmethyl disulfides. This reaction is characterized by readily available starting materials, mild reaction conditions, and a broad substrate scope, making it attractive and practical. It provides a new strategy for the synthesis of disulfide-containing functionalized furans.
Collapse
Affiliation(s)
- Bin Li
- Key Laboratory of Organic Synthesis of Jiangsu Province, College of Chemistry, Chemical Engineering and Materials Science & Collaborative Innovation Center of Suzhou Nano Science and Technology, Soochow University, Suzhou 215123, PR China
| | - Jing-Han Peng
- Key Laboratory of Organic Synthesis of Jiangsu Province, College of Chemistry, Chemical Engineering and Materials Science & Collaborative Innovation Center of Suzhou Nano Science and Technology, Soochow University, Suzhou 215123, PR China
| | - Bo-Xi Liu
- Key Laboratory of Organic Synthesis of Jiangsu Province, College of Chemistry, Chemical Engineering and Materials Science & Collaborative Innovation Center of Suzhou Nano Science and Technology, Soochow University, Suzhou 215123, PR China
| | - Weidong Rao
- Key Laboratory of Biomass-based Green Fuels and Chemicals, College of Chemical Engineering Nanjing Forestry University, Nanjing 210037, China
| | - Shu-Su Shen
- School of Environmental Science and Engineering, Suzhou University of Science and Technology, No.99, Xuefu road, Huqiu district, Suzhou 215009, PR China
| | - Daopeng Sheng
- State Key Laboratory of Radiation Medicine and Protection, School for Radiological and Interdisciplinary Sciences (RAD-X) and Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou, Jiangsu 215123, China
| | - Shun-Yi Wang
- Key Laboratory of Organic Synthesis of Jiangsu Province, College of Chemistry, Chemical Engineering and Materials Science & Collaborative Innovation Center of Suzhou Nano Science and Technology, Soochow University, Suzhou 215123, PR China
| |
Collapse
|
5
|
Wang J, Zheng M, Jia Q, Ren Q, Wu J. Synthesis of Highly Substituted Furans via Intermolecular Enynone-Aldehyde Cross-Coupling/Cyclization Catalyzed by N-Heterocyclic Carbenes. Org Lett 2024; 26:4868-4872. [PMID: 38832854 DOI: 10.1021/acs.orglett.4c01253] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/06/2024]
Abstract
A new strategy for facile access to multifunctionalized furans via N-heterocyclic carbene-catalyzed cross-coupling/cyclization of ynenones with aldehydes has been explored. This protocol features readily obtainable starting materials, mild and metal-free conditions, broad substrate scope, good functional group tolerance, excellent yields, and easy scale-up. Synthetic utility of the protocol has been further corroborated through functionalization of complex substrates and postmodifications of the product.
Collapse
Affiliation(s)
- Jie Wang
- Chongqing Key Laboratory of Natural Product Synthesis and Drug Research, Innovative Drug Research Center, School of Pharmaceutical Sciences, Chongqing University, Chongqing 401331, P. R. China
| | - Mingyue Zheng
- Chongqing Key Laboratory of Natural Product Synthesis and Drug Research, Innovative Drug Research Center, School of Pharmaceutical Sciences, Chongqing University, Chongqing 401331, P. R. China
| | - Qianfa Jia
- Chongqing Key Laboratory for New Chemical Materials of Shale Gas, College of Chemistry and Chemical Engineering, Yangtze Normal University, Chongqing 408100, P. R. China
| | - Qiao Ren
- Key Laboratory of Luminescence Analysis and Molecular Sensing (Southwest University), Ministry of Education, College of Pharmaceutical Science, Southwest University, Chongqing 400715, P. R. China
| | - Jicheng Wu
- Chongqing Key Laboratory of Natural Product Synthesis and Drug Research, Innovative Drug Research Center, School of Pharmaceutical Sciences, Chongqing University, Chongqing 401331, P. R. China
| |
Collapse
|
6
|
Bisek B, Chaładaj W. Access to 2-Alkenyl-furans via a Cascade of Pd-Catalyzed Cyclization/Coupling Followed by Oxidative Aromatization with DDQ. J Org Chem 2024; 89:7275-7279. [PMID: 38700491 PMCID: PMC11110045 DOI: 10.1021/acs.joc.4c00149] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Revised: 03/18/2024] [Accepted: 04/17/2024] [Indexed: 05/05/2024]
Abstract
An unprecedented DDQ-mediated oxidative aromatization of 2-bezylidene-dihydrofurans yielding 2-alkenyl-furans is disclosed. Integration of this transformation with a prior Pd-catalyzed reaction of α-propargylic-β-ketoesters and (hetero)aryl halides into a one-pot cascade process opens a direct modular route to highly substituted 2-vinyl-furans. Experimental and computational studies reveal that the crucial step of the oxidative-aromatization involves facile hydride transfer from the dihydrofuran ring to the O-center of DDQ.
Collapse
Affiliation(s)
- Bartosz Bisek
- Institute of Organic Chemistry, Polish Academy of Sciences, Kasprzaka 44/52, 01-224 Warsaw, Poland
| | - Wojciech Chaładaj
- Institute of Organic Chemistry, Polish Academy of Sciences, Kasprzaka 44/52, 01-224 Warsaw, Poland
| |
Collapse
|
7
|
Zhang Y, Deng G. Highly Diastereoselective Synthesis and Application of Functionalized 2,3-Dihydrofuran Derivatives from Enynones and Bis(diazo) Compounds. J Org Chem 2024; 89:80-90. [PMID: 38091516 DOI: 10.1021/acs.joc.3c01527] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2024]
Abstract
A highly efficient Ag(I)-catalyzed cascade Michael addition/cyclization of enynones with 1,3-(bis)diazo compounds has been established, providing functionalized 2,3-dihydrofuran derivatives containing a diazo group and an acetylenic bond with excellent diastereoselectivity. Transformation of the diazo group and hydration of the carbon-carbon triple bond have been performed successfully in different reaction systems.
Collapse
Affiliation(s)
- Yu Zhang
- Key Laboratory of Chemical Biology and Traditional Chinese Medicine Research (Ministry of Education of China), Hunan Normal University, Changsha 410081, China
- Key Laboratory of the Assembly and Application of Organic Functional Molecules of Hunan Province, Hunan Normal University, Changsha 410081, China
| | - Guisheng Deng
- Key Laboratory of Chemical Biology and Traditional Chinese Medicine Research (Ministry of Education of China), Hunan Normal University, Changsha 410081, China
- Key Laboratory of the Assembly and Application of Organic Functional Molecules of Hunan Province, Hunan Normal University, Changsha 410081, China
| |
Collapse
|
8
|
Peng H, Zhang Y, Deng G. Silver(I)-Catalyzed Tandem Reaction of Enynones and 4-Alkenyl Isoxazoles: Synthesis of 2-(Furan-2-yl)-1,2-dihydropyridines. J Org Chem 2023. [PMID: 37183921 DOI: 10.1021/acs.joc.3c00312] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/16/2023]
Abstract
Silver(I)-catalyzed tandem reaction of enynones with 4-alkenyl isoxazoles provides access to 2-(furan-2-yl)-1,2-dihydropyridines. No competitive cyclopropanation of alkenes and O-H insertion via (2-furyl)carbene complexes were observed. The cascade reaction proceeds via the formation of (2-furyl)metal carbene intermediate, the N-O bond cleavage of 4-alkenyl isoxazoles/rearrangement, subsequent 6π electrocyclic reaction, and [1,5] H-shift. The successive construction of both 1,2-dihydropyridine skeleton and furan frame has been achieved in the one-pot reaction. A broad range of readily available enynones and 4-alkenyl isoxazoles are suitable to this protocol; however, when R3 is the alkyl group such as n-Bu and Me, a complicated mixture was generated without the desired products. In addition, in the case of R4 = bulky group such as R3'SiOCH2, the reaction gave an in situ oxo-product of (2-furyl)silver carbene. An atom-economic strategy for the synthesis of 2-(furan-2-yl)-1,2-dihydropyridines has been established.
Collapse
Affiliation(s)
- Haiyun Peng
- Key Laboratory of Chemical Biology and Traditional Chinese Medicine Research (Ministry of Education of China), Hunan Normal University, Changsha 410081, China
- Key Laboratory of the Assembly and Application of Organic Functional Molecules of Hunan Province, Hunan Normal University, Changsha 410081, China
| | - Yangyi Zhang
- Key Laboratory of Chemical Biology and Traditional Chinese Medicine Research (Ministry of Education of China), Hunan Normal University, Changsha 410081, China
- Key Laboratory of the Assembly and Application of Organic Functional Molecules of Hunan Province, Hunan Normal University, Changsha 410081, China
| | - Guisheng Deng
- Key Laboratory of Chemical Biology and Traditional Chinese Medicine Research (Ministry of Education of China), Hunan Normal University, Changsha 410081, China
- Key Laboratory of the Assembly and Application of Organic Functional Molecules of Hunan Province, Hunan Normal University, Changsha 410081, China
| |
Collapse
|
9
|
Ma R, Chen Y, Fang S, Jiang H, Yang S, Wu W. Palladium-catalyzed acetalization/cyclization of enynones with alcohols: rapid access to functionalized dihaloalkenyl dihydrofurans. Chem Commun (Camb) 2022; 58:13907-13910. [DOI: 10.1039/d2cc03949d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
A novel Pd-catalyzed acetalization/cyclization of enynones and alcohols for the construction of dihaloalkenyl dihydrofuran derivatives is described.
Collapse
Affiliation(s)
- Ruize Ma
- School of Chemistry and Chemical Engineering, State Key Laboratory of Luminescent Materials and Devices, South China University of Technology, Guangzhou 510640, China
| | - Yang Chen
- School of Chemistry and Chemical Engineering, State Key Laboratory of Luminescent Materials and Devices, South China University of Technology, Guangzhou 510640, China
| | - Songjia Fang
- School of Chemistry and Chemical Engineering, State Key Laboratory of Luminescent Materials and Devices, South China University of Technology, Guangzhou 510640, China
| | - Huanfeng Jiang
- School of Chemistry and Chemical Engineering, State Key Laboratory of Luminescent Materials and Devices, South China University of Technology, Guangzhou 510640, China
| | - Shaorong Yang
- School of Chemistry and Chemical Engineering, State Key Laboratory of Luminescent Materials and Devices, South China University of Technology, Guangzhou 510640, China
| | - Wanqing Wu
- School of Chemistry and Chemical Engineering, State Key Laboratory of Luminescent Materials and Devices, South China University of Technology, Guangzhou 510640, China
| |
Collapse
|
10
|
Wan Y, Zhu Y, Peng H, Deng G. Preparation of 4-(Nitromethyl)furan Derivatives and Their Application in the Syntheses of Bis(furan-2-yl)oximes. J Org Chem 2021; 87:281-293. [PMID: 34902975 DOI: 10.1021/acs.joc.1c02359] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
An efficient method for the preparation of tetrasubstituted furans, which contains a nitromethyl group at the 4-position, has been developed. The applications of 4-(nitromethyl)furans on the synthesis of highly functionalized bis(furyl)oxime were explored for the first time.
Collapse
Affiliation(s)
- Yinbo Wan
- Key Laboratory of Chemical Biology and Traditional Chinese Medicine Research (Ministry of Education of China), Hunan Normal University, Changsha 410081, China.,Key Laboratory of the Assembly and Application of Organic Functional Molecules of Hunan Province, Hunan Normal University, Changsha 410081, China
| | - Yang Zhu
- Key Laboratory of Chemical Biology and Traditional Chinese Medicine Research (Ministry of Education of China), Hunan Normal University, Changsha 410081, China.,Key Laboratory of the Assembly and Application of Organic Functional Molecules of Hunan Province, Hunan Normal University, Changsha 410081, China
| | - Haiyun Peng
- Key Laboratory of Chemical Biology and Traditional Chinese Medicine Research (Ministry of Education of China), Hunan Normal University, Changsha 410081, China.,Key Laboratory of the Assembly and Application of Organic Functional Molecules of Hunan Province, Hunan Normal University, Changsha 410081, China
| | - Guisheng Deng
- Key Laboratory of Chemical Biology and Traditional Chinese Medicine Research (Ministry of Education of China), Hunan Normal University, Changsha 410081, China.,Key Laboratory of the Assembly and Application of Organic Functional Molecules of Hunan Province, Hunan Normal University, Changsha 410081, China
| |
Collapse
|
11
|
Tang L, Zhang Y, Deng G. AgOTf/I 2-Mediated Cyclization/Cross-Coupling/Isomerization of Enynones with Phosphorus Ylides: An Expedient Route to Stereoselective Synthesis of ( E)-2-Alkenylfurans. J Org Chem 2021; 86:13245-13251. [PMID: 34528433 DOI: 10.1021/acs.joc.1c01109] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Ag(I)-catalyzed cascade reactions involving enynone cyclization and cross-coupling with phosphorus ylides have been achieved for the first time. Subsequent treatment of the reaction mixture with I2 afforded the corresponding (E)-α-alkenylfurans in 73-95% yields with excellent stereoselectively. A reasonable mechanism has been proposed.
Collapse
Affiliation(s)
- Ling Tang
- Key Laboratory of Chemical Biology and Traditional Chinese Medicine Research (Ministry of Education of China), Hunan Normal University, Changsha 410081, China.,Key Laboratory of the Assembly and Application of Organic Functional Molecules of Hunan Province, Hunan Normal University, Changsha 410081, China
| | - Yangyi Zhang
- Key Laboratory of Chemical Biology and Traditional Chinese Medicine Research (Ministry of Education of China), Hunan Normal University, Changsha 410081, China.,Key Laboratory of the Assembly and Application of Organic Functional Molecules of Hunan Province, Hunan Normal University, Changsha 410081, China
| | - Guisheng Deng
- Key Laboratory of Chemical Biology and Traditional Chinese Medicine Research (Ministry of Education of China), Hunan Normal University, Changsha 410081, China.,Key Laboratory of the Assembly and Application of Organic Functional Molecules of Hunan Province, Hunan Normal University, Changsha 410081, China
| |
Collapse
|
12
|
Ni H, He X, Zhong K, Chen H, Lai W, Zhao Z, Zeng Z, Bai R, Lan Y. Oxymetalation or oxidative cyclization? mechanism of Pd-catalyzed annulation of enynones. Chem Commun (Camb) 2021; 57:8316-8319. [PMID: 34319338 DOI: 10.1039/d1cc02744a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Enynones are powerful synthons for constructing furan derivatives in the presence of transition metal catalysts. Unlike the conventional intramolecular nucleophilic attack with the activation of coinage metals, we propose that enynones undergo an oxidative cyclization process with a Pd(0) species. The full catalytic cycle involves oxidative cyclization, isocyanide insertion, and reductive elimination, which was supported by DFT calculations. Geometric and electronic analyses confirmed the oxidative cyclization process, which proceeds via a Pd(ii) intermediate.
Collapse
Affiliation(s)
- Hao Ni
- School of Chemistry and Chemical Engineering, Chongqing Key Laboratory of Theoretical and Computational Chemistry, Chongqing University, Chongqing, 400030, P. R. China.
| | | | | | | | | | | | | | | | | |
Collapse
|
13
|
Zhang B, Zhou P, Xu H, Huang J, Sun Y, Liu D, Yu F. Copper(II)‐Mediated Intermolecular Radical [3+2]‐Annulation of
N
,
N
‐Dimethyl Enaminones: Direct Access to 5‐Acyl‐3‐Furancarboxaldehydes. Adv Synth Catal 2021. [DOI: 10.1002/adsc.202100633] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Affiliation(s)
- Biao Zhang
- Faculty of Life Science and Technology Kunming University of Science and Technology Kunming 650500 People's Republic of China
| | - Pan Zhou
- Faculty of Life Science and Technology Kunming University of Science and Technology Kunming 650500 People's Republic of China
| | - Hui Xu
- Faculty of Life Science and Technology Kunming University of Science and Technology Kunming 650500 People's Republic of China
| | - Jiuzhong Huang
- School of Pharmacy Gannan Medical University Ganzhou 341000 People's Republic of China
| | - Yulin Sun
- Faculty of Life Science and Technology Kunming University of Science and Technology Kunming 650500 People's Republic of China
| | - Donghan Liu
- Faculty of Life Science and Technology Kunming University of Science and Technology Kunming 650500 People's Republic of China
| | - Fuchao Yu
- Faculty of Life Science and Technology Kunming University of Science and Technology Kunming 650500 People's Republic of China
| |
Collapse
|
14
|
Ping Y, Chang T, Wang J. Carbene insertion into acyl C-H bonds: Rh(III)-catalyzed cross-coupling of 2-aminobenzaldehydes with conjugated enynones. Tetrahedron 2021. [DOI: 10.1016/j.tet.2021.132274] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
15
|
|
16
|
Peng H, Zhang Y, Deng G, Deng H. Silver( i)-catalyzed tandem reaction of enynones and 4-alkynyl isoxazoles: regioselective synthesis of highly functionalized 4 H-furan[3,4- c]pyrroles. Org Chem Front 2021. [DOI: 10.1039/d1qo00510c] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
This work reports a silver(i)-catalyzed tandem reaction of enynones with 4-alkynyl isoxazoles.
Collapse
Affiliation(s)
- Haiyun Peng
- Key Laboratory of Chemical Biology and Traditional Chinese Medicine Research (Ministry of Education of China), Hunan Normal University, Changsha 410081, China
- Key Laboratory of the Assembly and Application of Organic Functional Molecules of Hunan Province, Hunan Normal University, Changsha 410081, China
| | - Yangyi Zhang
- Key Laboratory of Chemical Biology and Traditional Chinese Medicine Research (Ministry of Education of China), Hunan Normal University, Changsha 410081, China
- Key Laboratory of the Assembly and Application of Organic Functional Molecules of Hunan Province, Hunan Normal University, Changsha 410081, China
| | - Guisheng Deng
- Key Laboratory of Chemical Biology and Traditional Chinese Medicine Research (Ministry of Education of China), Hunan Normal University, Changsha 410081, China
- Key Laboratory of the Assembly and Application of Organic Functional Molecules of Hunan Province, Hunan Normal University, Changsha 410081, China
| | - Hongmei Deng
- Key Laboratory of Water Safety and Protection in Pearl River Delta, Ministry of Education, School of Environmental Science and Engineering, Guangzhou University, Guangzhou 510006, China
| |
Collapse
|
17
|
Yang Q, Zhu Y, Deng G. CuOTf/TfOH-mediated tandem reaction of conjugated ene-yne-ketones: Synthesis of novel spiro dihydrofurans. Tetrahedron 2020. [DOI: 10.1016/j.tet.2020.131519] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
18
|
Peng H, Zhang Y, Zhu Y, Deng G. Silver(I)-Catalyzed Domino Cyclization/Cyclopropanation/Ring-Cleavage/Nucleophilic Substitution Reaction of Enynones with Enamines: Synthesis of 4-(Furan-2-yl)-3,4-dihydro-2H-pyrrol-2-one. J Org Chem 2020; 85:13290-13297. [DOI: 10.1021/acs.joc.0c01711] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Affiliation(s)
- Haiyun Peng
- Key Laboratory of Chemical Biology and Traditional Chinese Medicine Research (Ministry of Education of China), Hunan Normal University, Changsha 410081, China
- Key Laboratory of the Assembly and Application of Organic Functional Molecules of Hunan Province, Hunan Normal University, Changsha 410081, China
| | - Yu Zhang
- Key Laboratory of Chemical Biology and Traditional Chinese Medicine Research (Ministry of Education of China), Hunan Normal University, Changsha 410081, China
- Key Laboratory of the Assembly and Application of Organic Functional Molecules of Hunan Province, Hunan Normal University, Changsha 410081, China
| | - Yang Zhu
- Key Laboratory of Chemical Biology and Traditional Chinese Medicine Research (Ministry of Education of China), Hunan Normal University, Changsha 410081, China
- Key Laboratory of the Assembly and Application of Organic Functional Molecules of Hunan Province, Hunan Normal University, Changsha 410081, China
| | - Guisheng Deng
- Key Laboratory of Chemical Biology and Traditional Chinese Medicine Research (Ministry of Education of China), Hunan Normal University, Changsha 410081, China
- Key Laboratory of the Assembly and Application of Organic Functional Molecules of Hunan Province, Hunan Normal University, Changsha 410081, China
| |
Collapse
|
19
|
Enyne Meldrum´s acid derivatives: synthesis and Michael reactions with amines and thiols. Russ Chem Bull 2020. [DOI: 10.1007/s11172-020-2761-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
20
|
Ruan W, Yang T, Shi C, Bai W, Sung HHY, Williams ID, Lin Z, Jia G. Substituent Effect on the Reactions of OsCl2(PPh3)3 with o-Ethynylphenyl Carbonyl Compounds. Organometallics 2020. [DOI: 10.1021/acs.organomet.9b00810] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Affiliation(s)
- Wenqing Ruan
- Department of Chemistry, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong
| | - Tilong Yang
- Department of Chemistry, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong
| | - Chuan Shi
- Department of Chemistry, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong
| | - Wei Bai
- Department of Chemistry, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong
| | - Herman H. Y. Sung
- Department of Chemistry, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong
| | - Ian D. Williams
- Department of Chemistry, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong
| | - Zhenyang Lin
- Department of Chemistry, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong
| | - Guochen Jia
- Department of Chemistry, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong
| |
Collapse
|
21
|
Peng H, Wan Y, Zhang Y, Deng G. Synthesis of 2-alkenylfurans via a Ag(i)-catalyzed tandem cyclization/cross-coupling reaction of enynones with iodonium ylides. Chem Commun (Camb) 2020; 56:1417-1420. [PMID: 31912806 DOI: 10.1039/c9cc08561k] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
A silver(i)-catalyzed tandem cyclization/cross-coupling reaction of enynones with iodonium ylides to construct carbon-carbon double bonds has been developed. The strategy provides a novel method for the synthesis of 2-alkenylfurans. This is the first cross-coupling reaction between metal-carbene complexes and iodonium ylides.
Collapse
Affiliation(s)
- Haiyun Peng
- Key Laboratory of Chemical Biology and Traditional Chinese Medicine Research (Ministry of Education of China), Hunan Normal University, Changsha 410081, China.
| | | | | | | |
Collapse
|
22
|
Li M, Yang F, Yuan T, Li H, Li J, Chen ZS, Ji K. Syntheses of Z-Iodovinylfurans and 2-Acyl Furans via Controllable Cyclization of Ynenones. J Org Chem 2019; 84:12617-12625. [PMID: 31525974 DOI: 10.1021/acs.joc.9b01852] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
A divergent synthesis of Z-iodovinylfurans and 2-acyl furans promoted by NIS via controllable cyclization of ynenones is reported. The reaction proceeded by sequential 5-exo-dig electrophilic cyclization to intermediate 2-(iodomethylene)-2H-furanium cation D, providing a range of synthetically valuable and useful trisubstituted furan derivatives 2 and 3 in moderate to excellent yields. This approach is metal-free, mild, and atom-economic, with good selectivity and high stereoselectivity.
Collapse
Affiliation(s)
- Mengxue Li
- College of Chemistry and Pharmacy, Shaanxi Key Laboratory of Natural Products & Chemical Biology , Northwest A&F University , 3 Taicheng Road , Yangling, Xianyang 712100 , Shaanxi , P. R. China
| | - Fang Yang
- College of Chemistry and Pharmacy, Shaanxi Key Laboratory of Natural Products & Chemical Biology , Northwest A&F University , 3 Taicheng Road , Yangling, Xianyang 712100 , Shaanxi , P. R. China
| | - Ting Yuan
- College of Chemistry and Pharmacy, Shaanxi Key Laboratory of Natural Products & Chemical Biology , Northwest A&F University , 3 Taicheng Road , Yangling, Xianyang 712100 , Shaanxi , P. R. China
| | - Haoyang Li
- College of Chemistry and Pharmacy, Shaanxi Key Laboratory of Natural Products & Chemical Biology , Northwest A&F University , 3 Taicheng Road , Yangling, Xianyang 712100 , Shaanxi , P. R. China
| | - Jian Li
- College of Chemistry and Pharmacy, Shaanxi Key Laboratory of Natural Products & Chemical Biology , Northwest A&F University , 3 Taicheng Road , Yangling, Xianyang 712100 , Shaanxi , P. R. China
| | - Zi-Sheng Chen
- College of Chemistry and Pharmacy, Shaanxi Key Laboratory of Natural Products & Chemical Biology , Northwest A&F University , 3 Taicheng Road , Yangling, Xianyang 712100 , Shaanxi , P. R. China
| | - Kegong Ji
- College of Chemistry and Pharmacy, Shaanxi Key Laboratory of Natural Products & Chemical Biology , Northwest A&F University , 3 Taicheng Road , Yangling, Xianyang 712100 , Shaanxi , P. R. China
| |
Collapse
|
23
|
Deng B, Rao CB, Zhang R, Li J, Liang Y, Zhao Y, Gao M, Dong D. A Formal [3+2] Annulation of
β
‐Oxoamides and 3‐Alkyl‐ or 3‐Aryl‐Substituted Prop‐2‐Ynyl Sulfonium Salts: Substrate‐Controlled Chemoselective Synthesis of Substituted
γ
‐Lactams and Furans. Adv Synth Catal 2019. [DOI: 10.1002/adsc.201900693] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Affiliation(s)
- Bicheng Deng
- Key Laboratory of Preparation and Application of Environmental Friendly Materials of the Ministry of EducationJilin Normal University Changchun 130103 People's Republic of China
- Key Laboratory of High-Performance Synthetic Rubber and its Composites, Changchun Institute of Applied ChemistryChinese Academy of Sciences Changchun 130022 People's Republic of China
| | - Chitturi Bhujanga Rao
- Key Laboratory of High-Performance Synthetic Rubber and its Composites, Changchun Institute of Applied ChemistryChinese Academy of Sciences Changchun 130022 People's Republic of China
| | - Rui Zhang
- Key Laboratory of High-Performance Synthetic Rubber and its Composites, Changchun Institute of Applied ChemistryChinese Academy of Sciences Changchun 130022 People's Republic of China
| | - Jiacheng Li
- Key Laboratory of High-Performance Synthetic Rubber and its Composites, Changchun Institute of Applied ChemistryChinese Academy of Sciences Changchun 130022 People's Republic of China
| | - Yongjiu Liang
- Key Laboratory of High-Performance Synthetic Rubber and its Composites, Changchun Institute of Applied ChemistryChinese Academy of Sciences Changchun 130022 People's Republic of China
| | - Yanning Zhao
- Key Laboratory of Preparation and Application of Environmental Friendly Materials of the Ministry of EducationJilin Normal University Changchun 130103 People's Republic of China
| | - Ming Gao
- Key Laboratory of Preparation and Application of Environmental Friendly Materials of the Ministry of EducationJilin Normal University Changchun 130103 People's Republic of China
- Key Laboratory of High-Performance Synthetic Rubber and its Composites, Changchun Institute of Applied ChemistryChinese Academy of Sciences Changchun 130022 People's Republic of China
| | - Dewen Dong
- Key Laboratory of Preparation and Application of Environmental Friendly Materials of the Ministry of EducationJilin Normal University Changchun 130103 People's Republic of China
- Key Laboratory of High-Performance Synthetic Rubber and its Composites, Changchun Institute of Applied ChemistryChinese Academy of Sciences Changchun 130022 People's Republic of China
| |
Collapse
|