1
|
Canote CA, Kilyanek SM. Reactivity of metal dioxo complexes. Dalton Trans 2024; 53:4874-4889. [PMID: 38379444 DOI: 10.1039/d3dt04390h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/22/2024]
Abstract
Metal dioxo chemistry and its diverse reactivity are presented with an emphasis on the mechanisms of reactivity. Work from approximately the last decade is surveyed and organized by metal. In particular, the chemistry of cis-dioxo metal complexes is discussed at length. Reactions are grouped by generic type, including addition across a metal oxo bond, oxygen atom transfer, and radical atom transfer reactions. Attention is given to advances in deoxygenation chemistry, oxidation chemistry, and reductive transformations.
Collapse
Affiliation(s)
- Cody A Canote
- Department of Chemistry and Biochemistry, 1 University of Arkansas, Fayetteville, AR 72701, USA.
| | - Stefan M Kilyanek
- Department of Chemistry and Biochemistry, 1 University of Arkansas, Fayetteville, AR 72701, USA.
| |
Collapse
|
2
|
Su Z, Amin PM, Wang S. Gold(I)-Catalyzed Ring-Closing Alkyne-Carbonyl Metathesis for the Synthesis of Butenolides. Chemistry 2023; 29:e202302044. [PMID: 37652895 DOI: 10.1002/chem.202302044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Revised: 08/31/2023] [Accepted: 08/31/2023] [Indexed: 09/02/2023]
Abstract
Alkyne-carbonyl metathesis is a type of carbon-carbon forming reaction involving the construction a carbon-carbon double bond and a carbonyl group in one transformation. Herein, a Au(I)-catalyzed ring-closing alkyne-carbonyl metathesis protocol has been developed to make densely substituted γ-butenolides from propargyl α-ketoesters. It features 100 % atom economy, excellent substrate flexibility and benign functional group tolerance. Mechanistic studies demonstrate that the coordinative interaction between the gold catalyst and the alkyne might initiate the transfer of an oxygen atom and the formation of the carbon-carbon double bond. By using this gold-catalyzed ring-closing alkyne-carbonyl metathesis as a key step reaction, four naturally occurring butenolide-type compounds including decumbic acid (45 % yield for 3 steps), deoxyisosporothric acid (32 % yield for 5 steps), lichesterinic acid (34 % yield for 5 steps) and isomuronic acid (6 % yield for 8 steps) have been synthesized starting from commercially available starting materials.
Collapse
Affiliation(s)
- Zhenjie Su
- State Key Laboratory of Coordination Chemistry, Jiangsu Key Laboratory of Advanced Organic Materials, School of Chemistry and Chemical Engineering, Nanjing University, 163 Xianlin Avenue, Nanjing, Jiangsu, 210023, China
| | - Pathan Mosim Amin
- State Key Laboratory of Coordination Chemistry, Jiangsu Key Laboratory of Advanced Organic Materials, School of Chemistry and Chemical Engineering, Nanjing University, 163 Xianlin Avenue, Nanjing, Jiangsu, 210023, China
| | - Shaozhong Wang
- State Key Laboratory of Coordination Chemistry, Jiangsu Key Laboratory of Advanced Organic Materials, School of Chemistry and Chemical Engineering, Nanjing University, 163 Xianlin Avenue, Nanjing, Jiangsu, 210023, China
| |
Collapse
|
3
|
Wang K, Niu S, Guo X, Tang W, Xue D, Xiao J, Sun H, Wang C. Asymmetric Hydrogenation of Racemic Allylic Alcohols via an Isomerization-Dynamic Kinetic Resolution Cascade. J Org Chem 2022; 87:3804-3809. [PMID: 35041421 DOI: 10.1021/acs.joc.1c02916] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
Prochiral racemic allylic alcohols are converted to enantioenriched chiral alcohols bearing adjacent stereocenters catalyzed by a diamine diphosphine Ru complex in the presence of tBuOK. The protocol features a broad substrate scope (56 examples) and high diastereo- and enantioselectivities (up to >99:1 dr, >99% ee) and could be applied to the synthesis of enantioenriched chromane and indane compounds. Mechanistic studies suggest that the reaction proceeds via tBuOK-promoted allylic alcohol isomerization followed by Ru-catalyzed hydrogenative dynamic kinetic resolution.
Collapse
Affiliation(s)
- Kun Wang
- Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an 710062, China
| | - Saisai Niu
- Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an 710062, China
| | - Xin Guo
- Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an 710062, China
| | - Weijun Tang
- Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an 710062, China
| | - Dong Xue
- Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an 710062, China
| | - Jianliang Xiao
- Department of Chemistry, University of Liverpool, Liverpool L69 7ZD, U.K
| | - Huaming Sun
- Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an 710062, China
| | - Chao Wang
- Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an 710062, China
| |
Collapse
|
4
|
Chen W, Tan CH, Wang H, Ye X. Molybdenum/Tungsten-Based Heteropoly Salts in Oxidations. Chem Asian J 2021; 16:2753-2772. [PMID: 34286908 DOI: 10.1002/asia.202100686] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2021] [Revised: 07/13/2021] [Indexed: 11/12/2022]
Abstract
Oxidation represents one of the most important and practical chemical transformations for both organic synthesis, material science and pharmaceutical area. Among the existing strategies, molybdenum/tungsten-based heteropoly salts involved oxidations with low-cost and environmentally benign terminal oxidant and thus have attracted considerable attention in recent years. In this review, we have summarized the recent development of heteropoly salts utilized in oxidations, mainly the peroxomolybdates and peroxotungstates. We wish to highlight the progress made in the past 20 years of this field. Three categories are classified according to the aggregation state of metal oxides. Special attention is paid to the catalytically active peroxometalate species generated during the oxidation process. It is helpful to shed light on the common features that enable highly efficient and selective oxidations. We aim to inspire fellow chemists to explore more functional metalates for catalytic oxidations, especially asymmetric versions. Meanwhile, we attempt to understand the design principles for the discovery of more efficient, selective and economical catalytic systems.
Collapse
Affiliation(s)
- Wenchao Chen
- College of Pharmaceutical Science & Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals, Zhejiang University of Technology, 18 Chaowang Road, Hangzhou, 310014, P. R. China
| | - Choon-Hong Tan
- Division of Chemistry and Biological Chemistry, School of Physical and Mathematical Sciences, Nanyang Technological University, 21 Nanyang Link, 637371, Singapore
| | - Hong Wang
- College of Pharmaceutical Science & Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals, Zhejiang University of Technology, 18 Chaowang Road, Hangzhou, 310014, P. R. China.,Key Laboratory of Marine Fishery Resources Exploitment & Utilization of Zhejiang Province, Hangzhou, 310014, P. R. China
| | - Xinyi Ye
- College of Pharmaceutical Science & Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals, Zhejiang University of Technology, 18 Chaowang Road, Hangzhou, 310014, P. R. China
| |
Collapse
|
5
|
Yang F, Ding D, Wang C. Nickel-Catalyzed Directed Cross-Electrophile Coupling of Phenolic Esters with Alkyl Bromides. Org Lett 2020; 22:9203-9209. [PMID: 33210932 DOI: 10.1021/acs.orglett.0c03342] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
Herein, we demonstrate the successful use of robust phenolic esters as an electrophilic acyl source in the reaction with diverse primary and secondary unactivated alkyl bromides. The cleavage of the relatively inert C-O bond is facilitated by the neighboring coordinating hydroxyl or sulfonamide moiety. By circumventing the use of pregenerated organometallics, this method allows efficient preparation of a variety of o-hydroxyl and tosyl-protected o-amino aryl ketones with high compatibility with a wide range of functionalities.
Collapse
Affiliation(s)
- Feiyan Yang
- Hefei National Laboratory for Physical Science at the Microscale and Department of Chemistry, University of Science and Technology of China, Hefei, Anhui 230026, P. R. China
| | - Decai Ding
- Hefei National Laboratory for Physical Science at the Microscale and Department of Chemistry, University of Science and Technology of China, Hefei, Anhui 230026, P. R. China
| | - Chuan Wang
- Hefei National Laboratory for Physical Science at the Microscale and Department of Chemistry, University of Science and Technology of China, Hefei, Anhui 230026, P. R. China.,Center for Excellence in Molecular Synthesis of CAS, Hefei, Anhui 230026, P. R. China
| |
Collapse
|
6
|
Wang XT, Han WB, Chen HJ, Zha Q, Wu Y. Regio- and Stereoselective Addition of HO/OOH to Allylic Alcohols. J Org Chem 2020; 85:10007-10021. [PMID: 32790359 DOI: 10.1021/acs.joc.0c01280] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
A range of allylic alcohols are shown to readily react with ethereal H2O2 in the presence of catalytic amounts of Na2MoO4-gly or MoO2(acac)2, affording the C═C trans hydroxylation-hydroperoxylation products in good yields with high regio- and stereoselectivity. Use of enantiomers of cyclic substrates resulted in corresponding enantiopure diol-tert-hydroperoxides. The possibility of further conversion of the diol-tert-hydroperoxides into triols or linear building blocks with an isolated tert-peroxy group containing a quaternary center is also exemplified.
Collapse
Affiliation(s)
- Xiao-Tao Wang
- State Key Laboratory of Bioorganic and Natural Products Chemistry, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry and the University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Lingling Road, Shanghai 200032 China
| | - Wei-Bo Han
- State Key Laboratory of Bioorganic and Natural Products Chemistry, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry and the University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Lingling Road, Shanghai 200032 China
| | - Hui-Jun Chen
- State Key Laboratory of Bioorganic and Natural Products Chemistry, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry and the University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Lingling Road, Shanghai 200032 China
| | - Qinghong Zha
- State Key Laboratory of Bioorganic and Natural Products Chemistry, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry and the University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Lingling Road, Shanghai 200032 China
| | - Yikang Wu
- State Key Laboratory of Bioorganic and Natural Products Chemistry, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry and the University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Lingling Road, Shanghai 200032 China
| |
Collapse
|
7
|
Liu J, Wang C. Zinc-Catalyzed Hydroxyl-Directed Regioselective Ring Opening of Aziridines in SN2 Reaction Pathway. ACS Catal 2019. [DOI: 10.1021/acscatal.9b04823] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- Jiawei Liu
- Hefei National Laboratory for Physical Science at the Microscale, Department of Chemistry, Center for Excellence in Molecular Synthesis, University of Science and Technology of China, 96 Jinzhai Road, Hefei, Anhui 230026, People’s Republic of China
| | - Chuan Wang
- Hefei National Laboratory for Physical Science at the Microscale, Department of Chemistry, Center for Excellence in Molecular Synthesis, University of Science and Technology of China, 96 Jinzhai Road, Hefei, Anhui 230026, People’s Republic of China
| |
Collapse
|
8
|
Fan P, Wang C. Molybdenum-catalyzed asymmetric anti-dihydroxylation of allylic alcohols. Commun Chem 2019. [DOI: 10.1038/s42004-019-0208-2] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
|