1
|
Liu S, Zhou J, Yu L, Liu Y, Huang Y, Ouyang Y, Liu GK, Xu XH, Shibata N. Nitrogen-Based Organofluorine Functional Molecules: Synthesis and Applications. Chem Rev 2025; 125:4603-4764. [PMID: 40261821 DOI: 10.1021/acs.chemrev.4c00661] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/24/2025]
Abstract
Fluorine and nitrogen form a successful partnership in organic synthesis, medicinal chemistry, and material sciences. Although fluorine-nitrogen chemistry has a long and rich history, this field has received increasing interest and made remarkable progress over the past two decades, driven by recent advancements in transition metal and organocatalysis and photochemistry. This review, emphasizing contributions from 2015 to 2023, aims to update the state of the art of the synthesis and applications of nitrogen-based organofluorine functional molecules in organic synthesis and medicinal chemistry. In dedicated sections, we first focus on fluorine-containing reagents organized according to the type of fluorine-containing groups attached to nitrogen, including N-F, N-RF, N-SRF, and N-ORF. This review also covers nitrogen-linked fluorine-containing building blocks, catalysts, pharmaceuticals, and agrochemicals, underlining these components' broad applicability and growing importance in modern chemistry.
Collapse
Affiliation(s)
- Shuai Liu
- College of Chemistry and Chemical Engineering, Donghua University, 2999 North Renmin Road, Shanghai 201620, China
- National Engineering Research Center for Carbohydrate Synthesis, Jiangxi Normal University, Nanchang 330022, China
| | - Jun Zhou
- Department of Nanopharmaceutical Sciences & Department of Life Science and Applied Chemistry, Nagoya Institute of Technology, Gokiso, Showa-ku, Nagoya 466-8555, Japan
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou 350002, China
| | - Lu Yu
- Key Laboratory of Fluorine and Nitrogen Chemistry and Advanced Materials, Shanghai Institute of Organic Chemistry, Chinese Academy of Science, 345 Lingling Lu, Shanghai 200032, China
| | - Yingle Liu
- School of Chemistry and Environmental Engineering, Sichuan University of Science&Engineering, 180 Xueyuan Street, Huixing Lu, Zigong, Sichuan 643000, China
| | - Yangen Huang
- College of Chemistry and Chemical Engineering, Donghua University, 2999 North Renmin Road, Shanghai 201620, China
| | - Yao Ouyang
- Key Laboratory of Fluorine and Nitrogen Chemistry and Advanced Materials, Shanghai Institute of Organic Chemistry, Chinese Academy of Science, 345 Lingling Lu, Shanghai 200032, China
| | - Guo-Kai Liu
- School of Pharmacy, Shenzhen University Medical School, Shenzhen University, Shenzhen 518055, China
| | - Xiu-Hua Xu
- Key Laboratory of Fluorine and Nitrogen Chemistry and Advanced Materials, Shanghai Institute of Organic Chemistry, Chinese Academy of Science, 345 Lingling Lu, Shanghai 200032, China
| | - Norio Shibata
- Department of Nanopharmaceutical Sciences & Department of Life Science and Applied Chemistry, Nagoya Institute of Technology, Gokiso, Showa-ku, Nagoya 466-8555, Japan
| |
Collapse
|
2
|
Zhuo J, Liu J, Zhou M, Ma L, Zhang M. Visible-Light-Induced C(sp 3)-H Activation for Minisci Alkylation of Pyrimidines Using CHCl 3 as Radical Source and Oxidant. J Org Chem 2025; 90:1400-1410. [PMID: 39807970 DOI: 10.1021/acs.joc.4c02855] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2025]
Abstract
A highly efficient Minisci reaction of pyrimidines with alkyl radical generated from visible-light-induced activation of simple C(sp3)-H feedstocks such as (cyclo)alkanes, ethers, alcohols, esters, and amides is reported. A mechanistic study revealed that alkyl radical was generated via hydrogen atom transfer (HAT) of C(sp3)-H with dichloromethyl radical (·CHCl2), which was generated by photoreduction of chloroform.
Collapse
Affiliation(s)
- Jiatian Zhuo
- School of Chemistry and Chemical Engineering, Guangxi University, Nanning, Guangxi 530004, China
| | - Jinshan Liu
- School of Chemistry and Chemical Engineering, Guangxi University, Nanning, Guangxi 530004, China
| | - Min Zhou
- School of Chemistry and Chemical Engineering, Guangxi University, Nanning, Guangxi 530004, China
| | - Lin Ma
- School of Chemistry and Chemical Engineering, Guangxi University, Nanning, Guangxi 530004, China
| | - Min Zhang
- School of Chemistry and Chemical Engineering, Guangxi University, Nanning, Guangxi 530004, China
| |
Collapse
|
3
|
Lamb MC, Steiniger KA, Trigoura LK, Wu J, Kundu G, Huang H, Lambert TH. Electrophotocatalysis for Organic Synthesis. Chem Rev 2024; 124:12264-12304. [PMID: 39441982 DOI: 10.1021/acs.chemrev.4c00464] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2024]
Abstract
Electrocatalysis and photocatalysis have been the focus of extensive research efforts in organic synthesis in recent decades, and these powerful strategies have provided a wealth of new methods to construct complex molecules. Despite these intense efforts, only recently has there been a significant focus on the combined use of these two modalities. Nevertheless, the past five years have witnessed rapidly growing interest in the area of electrophotocatalysis. This hybrid strategy capitalizes on the enormous benefits of using photons as reagents while also employing an electric potential as a convenient and tunable source or sink of electrons. Research on this topic has led to a number of methods for C-H functionalization, reductive cross-coupling, and olefin addition among others. This field has also seen the use of a broad range of catalyst types, including both metal and organocatalysts. Of particular note has been work with open-shell photocatalysts, which tend to have comparatively large redox potentials. Electrochemistry provides a convenient means to generate such species, making electrophotocatalysis particularly amenable to this intriguing class of redox catalyst. This review surveys methods in the area of electrophotocatalysis as applied to organic synthesis, organized broadly into oxidative, reductive, and redox neutral transformations.
Collapse
Affiliation(s)
- Matthew C Lamb
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, New York 14853, United States
| | - Keri A Steiniger
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, New York 14853, United States
| | - Leslie K Trigoura
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, New York 14853, United States
| | - Jason Wu
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, New York 14853, United States
| | - Gourab Kundu
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, New York 14853, United States
| | - He Huang
- School of Materials Science and Engineering, Beijing Institute of Technology, Beijing 100081, China
| | - Tristan H Lambert
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, New York 14853, United States
| |
Collapse
|
4
|
Xiao WJ, Li CX, Lv JY, Xu S, Shi WX, Su XC, Xue JY, Huang BQ, Zou Y, Yan M, Zhang XJ. Molecular Editing of Pyrroles to Benzenes/Naphthalenes by N 2O Deletion. Angew Chem Int Ed Engl 2024; 63:e202411166. [PMID: 39008335 DOI: 10.1002/anie.202411166] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2024] [Revised: 07/11/2024] [Accepted: 07/15/2024] [Indexed: 07/16/2024]
Abstract
A molecular editing reaction for converting pyrrole rings into benzene rings through a sequential pathway of Diels-Alder and cheletropic reactions was developed. The nitrogen atom in a N-bridged intermediate is eliminated in the form of N2O by a strain-releasing pathway, ultimately leading to the formation of substituted benzene and naphthalene derivatives.
Collapse
Affiliation(s)
- Wen-Jie Xiao
- Guangdong Provincial Key Laboratory of Chiral Molecules and Drug Discovery, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, 510006, China
| | - Cheng-Xin Li
- Guangdong Provincial Key Laboratory of Chiral Molecules and Drug Discovery, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, 510006, China
| | - Jing-Yi Lv
- Guangdong Provincial Key Laboratory of Chiral Molecules and Drug Discovery, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, 510006, China
| | - Shan Xu
- Guangdong Provincial Key Laboratory of Chiral Molecules and Drug Discovery, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, 510006, China
| | - Wen-Xia Shi
- Guangdong Provincial Key Laboratory of Chiral Molecules and Drug Discovery, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, 510006, China
| | - Xiao-Can Su
- Guangdong Provincial Key Laboratory of Chiral Molecules and Drug Discovery, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, 510006, China
| | - Jia-Ying Xue
- Guangdong Provincial Key Laboratory of Chiral Molecules and Drug Discovery, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, 510006, China
| | - Bao-Qin Huang
- Guangdong Provincial Key Laboratory of Chiral Molecules and Drug Discovery, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, 510006, China
| | - Yong Zou
- Guangdong Provincial Key Laboratory of Chiral Molecules and Drug Discovery, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, 510006, China
| | - Ming Yan
- Guangdong Provincial Key Laboratory of Chiral Molecules and Drug Discovery, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, 510006, China
| | - Xue-Jing Zhang
- Guangdong Provincial Key Laboratory of Chiral Molecules and Drug Discovery, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, 510006, China
| |
Collapse
|
5
|
Mantry L, Gandeepan P. Photochemical direct alkylation of heteroarenes with alkanes, alcohols, amides, and ethers. Org Biomol Chem 2024; 22:7643-7648. [PMID: 39195903 DOI: 10.1039/d4ob01119h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/29/2024]
Abstract
Direct functionalization of heteroarenes with simple alkanes utilizing anthracene as a photoredox catalyst has been established. This approach provides a sustainable alternative, avoiding costly reagents or peroxides. The method demonstrates a broad substrate scope, enabling regioselective alkylation of various heteroarenes, including azoles, pyridines, quinolines, isoquinolones, and quinoxalinones under mild conditions. A range of alkyl sources, such as alkanes, ethers, dioxane, trioxane, alcohol, and alkylamides were viable substrates. A plausible catalytic cycle was proposed based on the preliminary mechanistic evidence.
Collapse
Affiliation(s)
- Lusina Mantry
- Department of Chemistry, Indian Institute of Technology Tirupati, Yerpedu-Venkatagiri Road, Yerpedu Post, Tirupati District, Andhra Pradesh, India - 517619.
| | - Parthasarathy Gandeepan
- Department of Chemistry, Indian Institute of Technology Tirupati, Yerpedu-Venkatagiri Road, Yerpedu Post, Tirupati District, Andhra Pradesh, India - 517619.
| |
Collapse
|
6
|
Lai J, Xiao X, Shao S, Wang S, Kan J, Su W. Photoinduced Transition-Metal and External Photosensitizer Free Benzylic Fluorination of Unactivated Alkylarenes. Chemistry 2024; 30:e202401669. [PMID: 38970448 DOI: 10.1002/chem.202401669] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2024] [Revised: 06/20/2024] [Accepted: 07/05/2024] [Indexed: 07/08/2024]
Abstract
A green and efficient protocol for the direct monofluorination of unactivated alkylarenes under visible-light irradiation has been developed, without any extraneous transition-metal catalysts or photosensitizers. This method is compatible with a broad spectrum of functional groups, including carboxylic and alcoholic scaffolds, under mild reaction conditions. Gram-scale synthesis of a fluorine-containing pharmaceutical analogue was successfully executed, underscoring the strategy's reliability and practicality. Furthermore, mechanistic studies suggest that a single-electron transfer mechanism might be responsible for the generation of the benzylic radicals in initiation step.
Collapse
Affiliation(s)
- Jiawen Lai
- College of Chemistry & Materials Science, Fujian Normal University, 350007, Fuzhou Fujian, P. R. China
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, 350002, Fuzhou Fujian, P. R. China
| | - Xuan Xiao
- College of Chemistry & Materials Science, Fujian Normal University, 350007, Fuzhou Fujian, P. R. China
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, 350002, Fuzhou Fujian, P. R. China
| | - Shixing Shao
- College of Chemistry & Materials Science, Fujian Normal University, 350007, Fuzhou Fujian, P. R. China
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, 350002, Fuzhou Fujian, P. R. China
| | - Shuping Wang
- College of Chemistry & Materials Science, Fujian Normal University, 350007, Fuzhou Fujian, P. R. China
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, 350002, Fuzhou Fujian, P. R. China
| | - Jian Kan
- College of Chemistry & Materials Science, Fujian Normal University, 350007, Fuzhou Fujian, P. R. China
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, 350002, Fuzhou Fujian, P. R. China
| | - Weiping Su
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, 350002, Fuzhou Fujian, P. R. China
- Fujian Science & Technology Innovation Laboratory for Optoelectronic Information of China, 350108, Fuzhou Fujian, P. R. China
| |
Collapse
|
7
|
Qiao K, Yang JF, Chen Z, Zhu Y, Jiang WF, Li F, Shi L. Minisci-Type Dehydrogenative Coupling of C(sp 3)-H and N-Heteroaromatics Enabled by Photoelectrochemical Hydrogen Atom Transfer. Org Lett 2024; 26:5805-5810. [PMID: 38949597 DOI: 10.1021/acs.orglett.4c01998] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/02/2024]
Abstract
Minisci-type dehydrogenative coupling of C(sp3)-H and N-heteroaromatics was performed with N-hydroxysuccinimide as a hydrogen atom transfer catalyst in a photoelectrochemical cell composed of a mesoporous BiVO4 photoanode and a Pt electrode. In the absence of metal catalysts and chemical oxidants, a range of N-heteroarenes (e.g., quinolines, isoquinolines, and quinoxaline) can undergo coupling with various C(sp3)-H partners to form the corresponding products in excellent yields.
Collapse
Affiliation(s)
- Kaikai Qiao
- School of Chemistry, Dalian University of Technology, Dalian 116024, P. R. China
| | - Jun-Feng Yang
- School of Chemistry, Dalian University of Technology, Dalian 116024, P. R. China
| | - Zhi Chen
- State Key Laboratory of Fine Chemicals, Dalian University of Technology, Dalian 116024, P. R. China
| | - Yong Zhu
- State Key Laboratory of Fine Chemicals, Dalian University of Technology, Dalian 116024, P. R. China
| | - Wen-Feng Jiang
- School of Chemistry, Dalian University of Technology, Dalian 116024, P. R. China
| | - Fei Li
- State Key Laboratory of Fine Chemicals, Dalian University of Technology, Dalian 116024, P. R. China
| | - Lei Shi
- School of Chemistry, Dalian University of Technology, Dalian 116024, P. R. China
| |
Collapse
|
8
|
Wan Q, Wu XD, Hou ZW, Ma Y, Wang L. Organophotoelectrocatalytic C(sp 2)-H alkylation of heteroarenes with unactivated C(sp 3)-H compounds. Chem Commun (Camb) 2024; 60:5502-5505. [PMID: 38699797 DOI: 10.1039/d4cc01335b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/05/2024]
Abstract
An organophotoelectrocatalytic method for the C(sp2)-H alkylation of heteroarenes with unactivated C(sp3)-H compounds through dehydrogenation cross-coupling has been developed. The C(sp2)-H alkylation combines organic catalysis, photochemistry and electrochemistry, avoiding the need for external metal-reagents, HAT-reagents, and oxidants. This protocol exhibits good substrate tolerance and functional group compatibility, providing a straightforward and powerful pathway to access a variety of alkylated heteroarenes under green conditions.
Collapse
Affiliation(s)
- Qinhui Wan
- Advanced Research Institute and School of Pharmaceutical Sciences, Taizhou University, Jiaojiang, Zhejiang, 318000, P. R. China.
| | - Xia-Die Wu
- Advanced Research Institute and School of Pharmaceutical Sciences, Taizhou University, Jiaojiang, Zhejiang, 318000, P. R. China.
| | - Zhong-Wei Hou
- Advanced Research Institute and School of Pharmaceutical Sciences, Taizhou University, Jiaojiang, Zhejiang, 318000, P. R. China.
| | - Yongmin Ma
- Advanced Research Institute and School of Pharmaceutical Sciences, Taizhou University, Jiaojiang, Zhejiang, 318000, P. R. China.
| | - Lei Wang
- Advanced Research Institute and School of Pharmaceutical Sciences, Taizhou University, Jiaojiang, Zhejiang, 318000, P. R. China.
- College of Material Chemistry and Chemical Engineering, Key Laboratory of Organosilicon Chemistry and Material Technology, Ministry of Education, Hangzhou Normal University, Hangzhou, 311121, Zhejiang, P. R. China
| |
Collapse
|
9
|
Qi M, Xu AW. A visible-light-induced photosensitizer-free decarbonylative Minisci-type reaction. Org Biomol Chem 2024; 22:2654-2661. [PMID: 38470359 DOI: 10.1039/d4ob00021h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/13/2024]
Abstract
This study presents a green and practical visible-light-induced photosensitizer-free decarbonylative Minisci-type reaction using aldehydes as alkyl radical precursors. The photocatalytic system exhibits a broad substrate scope and synthetically useful yields. Mechanistic experiments revealed that alkyl radicals could be generated through auto-oxidation of aldehydes under irradiation, which is a mild and effective method for achieving late-stage functionalization of N-heteroarenes. Some biologically active N-heteroarenes could be alkylated using this photocatalytic system smoothly.
Collapse
Affiliation(s)
- Ming Qi
- Division of Nanomaterials and Chemistry, Hefei National Research Center for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei, 230026, People's Republic of China.
| | - An-Wu Xu
- Division of Nanomaterials and Chemistry, Hefei National Research Center for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei, 230026, People's Republic of China.
| |
Collapse
|
10
|
Yang JF, Liu YF, Wei LL, Qiao KK, Zhao YQ, Shi L. Minisci-Type Dehydrogenative Coupling of N-Heteroaromatic Rings with Inert C(sp 3)-H Enabled by a Visible-Light-Catalyzed Intermolecular Hydrogen Atom Transfer Process. J Org Chem 2024; 89:4249-4260. [PMID: 38443760 DOI: 10.1021/acs.joc.4c00093] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/07/2024]
Abstract
The Minisci-type dehydrogenative coupling of N-heteroaromatic rings with inert C-H or Si-H partners via visible-light-catalyzed hydrogen atom transfer has been reported. This methodology allows the coupling reactions to be carried out in water as a solvent under air atmospheric conditions with visible-light illumination. A wide range of inert C-H and Si-H partners could be directly coupled with various N-aromatic heterocycles to deliver products in good to excellent yields.
Collapse
Affiliation(s)
- Jun-Feng Yang
- School of Chemistry, Dalian University of Technology, Dalian 116024, P. R. China
| | - Yun-Fei Liu
- School of Chemistry, Dalian University of Technology, Dalian 116024, P. R. China
| | - Lin-Lin Wei
- School of Chemistry, Dalian University of Technology, Dalian 116024, P. R. China
| | - Kai-Kai Qiao
- School of Chemistry, Dalian University of Technology, Dalian 116024, P. R. China
| | - Yan-Qiu Zhao
- School of Chemistry, Dalian University of Technology, Dalian 116024, P. R. China
| | - Lei Shi
- School of Chemistry, Dalian University of Technology, Dalian 116024, P. R. China
| |
Collapse
|
11
|
Cao X, Wei L, Yang J, Song H, Wei Y. A visible-light-induced bromine radical initiates direct C-H alkylation of heteroaromatics. Org Biomol Chem 2024; 22:1157-1161. [PMID: 38224149 DOI: 10.1039/d3ob02047a] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2024]
Abstract
Herein, a photoinduced direct C(sp2)-H alkylation of N-heteroaromatics by using commercially available tetrabutylammonium tribromide (TBATB) as a HAT reagent is described. The method uses O2 as the oxidant, and features metal-free, mild reaction conditions and good functional group compatibility.
Collapse
Affiliation(s)
- Xiangxue Cao
- School of Chemistry and Chemical Engineering/State Key Laboratory Incubation Base for Green Processing of Chemical Engineering, Shihezi, 832003, China.
| | - Lanfeng Wei
- Xinjiang Key Laboratory of Coal Mine Disaster Intelligent Prevention and Emergency Response, Xinjiang Institute of Engineering, Urumqi 830023, China.
| | - Jinbo Yang
- School of Chemistry and Chemical Engineering/State Key Laboratory Incubation Base for Green Processing of Chemical Engineering, Shihezi, 832003, China.
| | - Huanhuan Song
- Bingtuan Energy Development Institute, Shihezi University, Shihezi, 832003, China.
| | - Yu Wei
- School of Chemistry and Chemical Engineering/State Key Laboratory Incubation Base for Green Processing of Chemical Engineering, Shihezi, 832003, China.
| |
Collapse
|
12
|
Woodward AW, Bramham JE, Brookfield A, Golovanov AP, Bowen AM. Simple and effective in situ sample illumination for electron paramagnetic resonance. Chem Commun (Camb) 2024; 60:1012-1015. [PMID: 38170515 DOI: 10.1039/d3cc04802k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2024]
Abstract
Illumination into an electron paramagnetic resonance (EPR) spectrometer is commonly carried out through the optical window, perpendicular to the sample and magnetic field. Here we show that significant improvements can be obtained by using the walls of the EPR tube as a light guide, with the light scattered only around the sample-containing area.
Collapse
Affiliation(s)
- Adam W Woodward
- Department of Chemistry, School of Natural Sciences, The University of Manchester, Oxford Road, Manchester, M13 9PL, UK.
- Photon Science Institute, School of Natural Sciences, The University of Manchester, Oxford Road, Manchester, M13 9PL, UK
- National Research Facility for Electron Paramagnetic Resonance Spectroscopy, School of Natural Sciences, The University of Manchester, Oxford Road, Manchester, M13 9PL, UK
| | - Jack E Bramham
- Department of Chemistry, School of Natural Sciences, The University of Manchester, Oxford Road, Manchester, M13 9PL, UK.
| | - Adam Brookfield
- Department of Chemistry, School of Natural Sciences, The University of Manchester, Oxford Road, Manchester, M13 9PL, UK.
- Photon Science Institute, School of Natural Sciences, The University of Manchester, Oxford Road, Manchester, M13 9PL, UK
- National Research Facility for Electron Paramagnetic Resonance Spectroscopy, School of Natural Sciences, The University of Manchester, Oxford Road, Manchester, M13 9PL, UK
| | - Alexander P Golovanov
- Department of Chemistry, School of Natural Sciences, The University of Manchester, Oxford Road, Manchester, M13 9PL, UK.
| | - Alice M Bowen
- Department of Chemistry, School of Natural Sciences, The University of Manchester, Oxford Road, Manchester, M13 9PL, UK.
- Photon Science Institute, School of Natural Sciences, The University of Manchester, Oxford Road, Manchester, M13 9PL, UK
- National Research Facility for Electron Paramagnetic Resonance Spectroscopy, School of Natural Sciences, The University of Manchester, Oxford Road, Manchester, M13 9PL, UK
| |
Collapse
|
13
|
Cong F, Zhang W, Zhang G, Liu J, Zhang Y, Zhou C, Wang L. Visible light as a sole requirement for alkylation of α-C(sp 3)-H of N-aryltetrahydroisoquinolines with alkylboronic acids. Org Biomol Chem 2023; 21:8910-8917. [PMID: 37906093 DOI: 10.1039/d3ob01154b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2023]
Abstract
An alkylation of α-C(sp3)-H at N-aryltetrahydroisoquinolines with alkylboronic acids was developed under visible-light irradiation in the absence of additional photocatalyst. The reaction proceeded well, tolerating a variety of functional groups, and featured low-cost and mild reaction conditions. A preliminary mechanistic study indicated that an electron donor-acceptor (EDA) complex between an electron-rich N-aryltetrahydroisoquinoline and an electron-poor alkylboronic acid was involved in the reaction.
Collapse
Affiliation(s)
- Feihu Cong
- Key Laboratory of Green and Precise Synthetic Chemistry and Applications, Ministry of Education; Department of Chemistry, Huaibei Normal University, Huaibei, Anhui 235000, P. R. China.
| | - Wenjing Zhang
- Key Laboratory of Green and Precise Synthetic Chemistry and Applications, Ministry of Education; Department of Chemistry, Huaibei Normal University, Huaibei, Anhui 235000, P. R. China.
| | - Gan Zhang
- Key Laboratory of Green and Precise Synthetic Chemistry and Applications, Ministry of Education; Department of Chemistry, Huaibei Normal University, Huaibei, Anhui 235000, P. R. China.
| | - Jie Liu
- Key Laboratory of Green and Precise Synthetic Chemistry and Applications, Ministry of Education; Department of Chemistry, Huaibei Normal University, Huaibei, Anhui 235000, P. R. China.
| | - Yicheng Zhang
- Key Laboratory of Green and Precise Synthetic Chemistry and Applications, Ministry of Education; Department of Chemistry, Huaibei Normal University, Huaibei, Anhui 235000, P. R. China.
| | - Chao Zhou
- Key Laboratory of Green and Precise Synthetic Chemistry and Applications, Ministry of Education; Department of Chemistry, Huaibei Normal University, Huaibei, Anhui 235000, P. R. China.
| | - Lei Wang
- Key Laboratory of Green and Precise Synthetic Chemistry and Applications, Ministry of Education; Department of Chemistry, Huaibei Normal University, Huaibei, Anhui 235000, P. R. China.
- College of Material Chemistry and Chemical Engineering, Key Laboratory of Organosilicon Chemistry and Material Technology, Ministry of Education, Hangzhou Normal University, Hangzhou 311121, Zhejiang, P. R. China
| |
Collapse
|
14
|
Romero AH. C-H Bond Functionalization of N-Heteroarenes Mediated by Selectfluor. Top Curr Chem (Cham) 2023; 381:29. [PMID: 37736818 DOI: 10.1007/s41061-023-00437-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2023] [Accepted: 08/21/2023] [Indexed: 09/23/2023]
Abstract
Herein, recent developments for Selectfluor-mediated C-H functionalization of N-heteroarenes are described. This type of C-H bond activation is an attractive and competitive alternative to traditional methodologies, allowing the functionalization of a variety of chemical functions. In addition, Selectfluor is a more sustainable and economically accessible oxidant compared with expensive/toxic metals or hazardous peroxides. For a practical understanding, the current review classified systematically the reported strategies in four subsections as follows: (1) carbon-carbon formation, (2) carbon-nitrogen bond formation, (3) carbon-chalcogen bond, and (4) carbon-halogen bond formation. Mechanistic aspects and reaction conditions are fully discussed to provide an understanding of the aspects that govern C-H functionalization in N-heteroarenes mediated by Selectfluor.
Collapse
Affiliation(s)
- Angel H Romero
- Grupo de Química Orgánica Medicinal, Instituto de Química Biológica, Facultad de Ciencias, Universidad de la República, Igua 4225, 11400, Montevideo, Uruguay.
| |
Collapse
|
15
|
Meger FS, Murphy JA. Recent Advances in C-H Functionalisation through Indirect Hydrogen Atom Transfer. Molecules 2023; 28:6127. [PMID: 37630379 PMCID: PMC10459052 DOI: 10.3390/molecules28166127] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2023] [Revised: 08/09/2023] [Accepted: 08/15/2023] [Indexed: 08/27/2023] Open
Abstract
The functionalisation of C-H bonds has been an enormous achievement in synthetic methodology, enabling new retrosynthetic disconnections and affording simple synthetic equivalents for synthons. Hydrogen atom transfer (HAT) is a key method for forming alkyl radicals from C-H substrates. Classic reactions, including the Barton nitrite ester reaction and Hofmann-Löffler-Freytag reaction, among others, provided early examples of HAT. However, recent developments in photoredox catalysis and electrochemistry have made HAT a powerful synthetic tool capable of introducing a wide range of functional groups into C-H bonds. Moreover, greater mechanistic insights into HAT have stimulated the development of increasingly site-selective protocols. Site-selectivity can be achieved through the tuning of electron density at certain C-H bonds using additives, a judicious choice of HAT reagent, and a solvent system. Herein, we describe the latest methods for functionalizing C-H/Si-H/Ge-H bonds using indirect HAT between 2018-2023, as well as a critical discussion of new HAT reagents, mechanistic aspects, substrate scopes, and background contexts of the protocols.
Collapse
Affiliation(s)
- Filip S. Meger
- Institute of Chemical Research of Catalonia (ICIQ), The Barcelona Institute of Science and Technology, 16 Avinguda dels Països Catalans, 43007 Tarragona, Catalonia, Spain
| | - John A. Murphy
- Department of Pure and Applied Chemistry, University of Strathclyde, 295 Cathedral Street, Glasgow G1 1XL, UK
| |
Collapse
|
16
|
Li Y, Huang Y, Li Z, Sun J. Recent Advances in Regioselective C-H Bond Functionalization of Free Phenols. Molecules 2023; 28:molecules28083397. [PMID: 37110630 PMCID: PMC10143084 DOI: 10.3390/molecules28083397] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2023] [Revised: 04/08/2023] [Accepted: 04/10/2023] [Indexed: 04/29/2023] Open
Abstract
Phenols are important readily available synthetic building blocks and starting materials for organic synthetic transformations, which are widely found in agrochemicals, pharmaceuticals, and functional materials. The C-H functionalization of free phenols has proven to be an extremely useful tool in organic synthesis, which provides efficient increases in phenol molecular complexity. Therefore, approaches to functionalizing existing C-H bonds of free phenols have continuously attracted the attention of organic chemists. In this review, we summarize the current knowledge and recent advances in ortho-, meta-, and para-selective C-H functionalization of free phenols in the last five years.
Collapse
Affiliation(s)
- Yanan Li
- School of Chemical Engineering, Anhui University of Science and Technology, Huainan 232001, China
| | - Yekai Huang
- School of Chemical Engineering, Anhui University of Science and Technology, Huainan 232001, China
| | - Zhi Li
- School of Chemical Engineering, Anhui University of Science and Technology, Huainan 232001, China
| | - Jianan Sun
- School of Biomedical Engineering, Anhui Medical University, Hefei 230032, China
| |
Collapse
|
17
|
Saralaya SS, Shashiprabha, Kanakamajalu S. A comprehensive review of the disclosed approaches for the synthesis of Parvaquone, an anti-protozoan drug. J CHEM SCI 2023. [DOI: 10.1007/s12039-023-02145-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/30/2023]
|
18
|
Chen B, Huang Z, Hu Z, Liu X, Weng J. Visible Light Induced C2 Alkylation of 2
H
‐Benzoxazoles with Cycloalkanes and Ethers
via
Selectfluor‐Mediated Oxidation. ChemistrySelect 2023. [DOI: 10.1002/slct.202204773] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/17/2023]
Affiliation(s)
- Bo Chen
- College of Chemical Engineering Zhejiang University of Technology Hangzhou 310014 China
| | - Zhen Huang
- College of Chemical Engineering Zhejiang University of Technology Hangzhou 310014 China
| | - Zhi‐Gang Hu
- College of Chemical Engineering Zhejiang University of Technology Hangzhou 310014 China
| | - Xing‐Hai Liu
- College of Chemical Engineering Zhejiang University of Technology Hangzhou 310014 China
| | - Jian‐Quan Weng
- College of Chemical Engineering Zhejiang University of Technology Hangzhou 310014 China
| |
Collapse
|
19
|
Sahoo AK, Rakshit A, Pan A, Dhara HN, Patel BK. Visible/solar-light-driven thiyl-radical-triggered synthesis of multi-substituted pyridines. Org Biomol Chem 2023; 21:1680-1691. [PMID: 36723155 DOI: 10.1039/d3ob00009e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
A light-triggered synthesis of thio-functionalized pyridines is demonstrated using γ-ketodinitriles, thiols, and eosin Y as the photocatalyst. The reaction proceeds via the selective attack on one of the cyano groups by an in situ generated thiyl radical. The reaction also proceeds with nearly equal efficiency using direct sunlight. Large-scale synthesis and a few useful synthetic transformations of the substituted pyridines are also performed.
Collapse
Affiliation(s)
- Ashish Kumar Sahoo
- Department of Chemistry, Indian Institute of Technology Guwahati, 781039, Assam, India.
| | - Amitava Rakshit
- Department of Chemistry, Indian Institute of Technology Guwahati, 781039, Assam, India.
| | - Avishek Pan
- Department of Chemistry, Indian Institute of Technology Guwahati, 781039, Assam, India.
| | - Hirendra Nath Dhara
- Department of Chemistry, Indian Institute of Technology Guwahati, 781039, Assam, India.
| | - Bhisma K Patel
- Department of Chemistry, Indian Institute of Technology Guwahati, 781039, Assam, India.
| |
Collapse
|
20
|
Chen Y, Yang B, Li QY, Lin YM, Gong L. Selectfluor®-enabled photochemical selective C(sp 3)-H(sulfonyl)amidation. Chem Commun (Camb) 2022; 59:118-121. [PMID: 36477311 DOI: 10.1039/d2cc05569d] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Transition metal- and photosensitizer-free C(sp3)-H (sulfonyl)amidation reactions have been realized by employing Selectfluor® as a versatile reagent, functioning as a photoactive component, a HAT precursor and an oxidant. Various toluene derivatives, cycloalkanes, natural products and bioactive molecules can be converted into N-containing products under mild conditions in good yield and with high chemo- and site-selectivity.
Collapse
Affiliation(s)
- Yuehua Chen
- Key Laboratory of Chemical Biology of Fujian Province, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China.
| | - Boxuan Yang
- Key Laboratory of Chemical Biology of Fujian Province, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China.
| | - Qian-Yu Li
- Key Laboratory of Chemical Biology of Fujian Province, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China.
| | - Yu-Mei Lin
- Key Laboratory of Chemical Biology of Fujian Province, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China.
| | - Lei Gong
- Key Laboratory of Chemical Biology of Fujian Province, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China. .,Innovation Laboratory for Sciences and Technologies of Energy Materials of Fujian Province (IKKEM), Xiamen 361005, China
| |
Collapse
|
21
|
Bhakat M, Khatua B, Guin J. Photocatalytic Aerobic Coupling of Azaarenes and Alkanes via Nontraditional Cl • Generation. Org Lett 2022; 24:5276-5280. [PMID: 35839079 DOI: 10.1021/acs.orglett.2c01784] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
Abstract
Herein, we demonstrate a nonconventional photocatalytic generation of Cl• from a common chlorinated solvent, dichloroethane, under aerobic conditions and its successful utilization toward the cross-dehydrogenative coupling of alkanes and azaarenes via hydrogen atom transfer with Cl•. The process is free from chloride salt, toxic oxidant, and UV light. It is applicable to a broad spectrum of substrates. The proposed mechanism involving Cl• is supported by a series of mechanistic investigations.
Collapse
Affiliation(s)
- Manotosh Bhakat
- School of Chemical Sciences, Indian Association for the Cultivation of Science, 2A & 2B Raja S. C. Mullick Road, Jadavpur, Kolkata-700032, India
| | - Bitasik Khatua
- School of Chemical Sciences, Indian Association for the Cultivation of Science, 2A & 2B Raja S. C. Mullick Road, Jadavpur, Kolkata-700032, India
| | - Joyram Guin
- School of Chemical Sciences, Indian Association for the Cultivation of Science, 2A & 2B Raja S. C. Mullick Road, Jadavpur, Kolkata-700032, India
| |
Collapse
|
22
|
Ruan S, Zhou C, Li L, Wang L, Liu J, Li P. Microwave-accelerated and benzoyl peroxide (BPO)-initiated cyclization of 1,5-enynes having cyano groups with cyclic alkanes under metal-free conditions. Org Biomol Chem 2022; 20:3817-3822. [PMID: 35467683 DOI: 10.1039/d2ob00430e] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
A novel and efficient method for preparing exocyclic indan derivatives, with this method involving benzoyl peroxide (BPO)-initiated cyclization of 1,5-enynes having cyano groups with simple cyclic alkanes under microwave irradiation, has been developed. The presented approach showed advantages of simple conditions, an environmentally friendly protocol, good functional-group tolerance, and high yields of products.
Collapse
Affiliation(s)
- Shuchen Ruan
- Key Laboratory of Green and Precise Synthetic Chemistry, Ministry of Education, Huaibei Normal University, Huaibei, Anhui 235000, P. R. China.
| | - Chao Zhou
- Key Laboratory of Green and Precise Synthetic Chemistry, Ministry of Education, Huaibei Normal University, Huaibei, Anhui 235000, P. R. China.
| | - Laiqiang Li
- Key Laboratory of Green and Precise Synthetic Chemistry, Ministry of Education, Huaibei Normal University, Huaibei, Anhui 235000, P. R. China.
| | - Lei Wang
- Key Laboratory of Green and Precise Synthetic Chemistry, Ministry of Education, Huaibei Normal University, Huaibei, Anhui 235000, P. R. China. .,Advanced Research Institute and Department of Chemistry, Taizhou University, Taizhou, Zhejiang 318000, P. R. China.
| | - Jie Liu
- Key Laboratory of Green and Precise Synthetic Chemistry, Ministry of Education, Huaibei Normal University, Huaibei, Anhui 235000, P. R. China.
| | - Pinhua Li
- Key Laboratory of Green and Precise Synthetic Chemistry, Ministry of Education, Huaibei Normal University, Huaibei, Anhui 235000, P. R. China. .,Anhui Laboratory of Clean Catalytic Engineering and College of Chemical and Environmental Engineering, Anhui Polytechnic University, Wuhu, Anhui 241000, P. R. of China.
| |
Collapse
|
23
|
Zhang L, Pfund B, Wenger OS, Hu X. Oxidase‐Type C−H/C−H Coupling Using an Isoquinoline‐Derived Organic Photocatalyst. Angew Chem Int Ed Engl 2022; 61:e202202649. [PMID: 35253971 PMCID: PMC9310868 DOI: 10.1002/anie.202202649] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2022] [Indexed: 12/21/2022]
Abstract
Oxidase‐type oxidation is an attractive strategy in organic synthesis due to the use of O2 as the terminal oxidant. Organic photocatalysis can effect metal‐free oxidase chemistry. Nevertheless, current methods are limited in reaction scope, possibly due to the lack of suitable photocatalysts. Here we report an isoquinoline‐derived diaryl ketone‐type photocatalyst, which has much enhanced absorption of blue and visible light compared to conventional diaryl ketones. This photocatalyst enables dehydrogenative cross‐coupling of heteroarenes with unactivated and activated alkanes as well as aldehydes using air as the oxidant. A wide range of heterocycles with various functional groups are suitable substrates. Transient absorption and excited‐state quenching experiments point to an unconventional mechanism that involves an excited state “self‐quenching” process to generate the N‐radical cation form of the sensitizer, which subsequently abstracts a hydrogen atom from the alkane substrate to yield a reactive alkyl radical.
Collapse
Affiliation(s)
- Lei Zhang
- Laboratory of Inorganic Synthesis and Catalysis Institute of Chemical Sciences and Engineering École Polytechnique Fédérale de Lausanne (EPFL) ISIC-LSCI Lausanne Switzerland
- School of Chemistry and Material Sciences Hangzhou Institute of Advanced Study University of Chinese Academy of Sciences 1 Sub-lane Xiangshan, Hangzhou 310024 China
| | - Björn Pfund
- Department of Chemistry University of Basel 4056 Basel Switzerland
| | - Oliver S. Wenger
- Department of Chemistry University of Basel 4056 Basel Switzerland
| | - Xile Hu
- Laboratory of Inorganic Synthesis and Catalysis Institute of Chemical Sciences and Engineering École Polytechnique Fédérale de Lausanne (EPFL) ISIC-LSCI Lausanne Switzerland
| |
Collapse
|
24
|
Li L, Song X, Qi MF, Sun B. Weak Brønsted Base-Promoted Photoredox Catalysis for C–H Alkylation of Heteroarenes Mediated by Triplet Excited Diaryl Ketone. Tetrahedron Lett 2022. [DOI: 10.1016/j.tetlet.2022.153846] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
25
|
Zeng CL, Wang H, Gao D, Zhang Z, Ji D, He W, Liu CK, Yang Z, Fang Z, Guo K. CF 3SO 2Na-Mediated Visible-Light-Induced Cross-Dehydrogenative Coupling of Heteroarenes with Aliphatic C(sp 3)-H Bonds. Org Lett 2022; 24:3244-3248. [PMID: 35446591 DOI: 10.1021/acs.orglett.2c01032] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Minisci-type reaction is one of the important means to construct C(sp3)-H functionalization of heteroarenes. According to traditional methods, stoichiometric amounts of precious transition metal catalysts and chemical oxidants were required at high temperatures. Here, a green and gentle novel Minisci-type method was developed via visible-light-induced cross-dehydrogenative coupling of heteroarenes with aliphatic C(sp3)-H bonds under oxidant-free and transition-metal-catalyst-free conditions. Only the catalytic equivalent of CF3SO2Na and room temperature were required to maintain an efficient reaction.
Collapse
Affiliation(s)
- Cui-Lian Zeng
- College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing 211816, P.R. China
| | - Hao Wang
- College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing 211816, P.R. China
| | - Di Gao
- College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing 211816, P.R. China
| | - Zhen Zhang
- College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing 211816, P.R. China
| | - Dong Ji
- College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing 211816, P.R. China
| | - Wei He
- College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing 211816, P.R. China
| | - Cheng-Kou Liu
- College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing 211816, P.R. China
| | - Zhao Yang
- College of Engineering, China Pharmaceutical University, Nanjing 210003, P.R. China
| | - Zheng Fang
- College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing 211816, P.R. China.,State Key Laboratory of Materials-Oriented Chemical Engineering, Nanjing Tech University, Nanjing 211800, P.R. China
| | - Kai Guo
- College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing 211816, P.R. China.,State Key Laboratory of Materials-Oriented Chemical Engineering, Nanjing Tech University, Nanjing 211800, P.R. China
| |
Collapse
|
26
|
Pham PH, Petersen HA, Katsirubas JL, Luca OR. Recent synthetic methods involving carbon radicals generated by electrochemical catalysis. Org Biomol Chem 2022; 20:5907-5932. [PMID: 35437556 DOI: 10.1039/d2ob00424k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Driven by a resurgence of interest in electrode-driven synthetic methods, this paper covers recent activity in the field of mediated electrochemical and photoelectrochemical bond activation, inclusive of C-H, C-C, C-N, and other C-heteroatom bonds.
Collapse
Affiliation(s)
- Phuc H Pham
- Department of Chemistry, University of Colorado Boulder and the Renewable and Sustainable Energy Institute, Boulder, CO, 80300, USA.
| | - Haley A Petersen
- Department of Chemistry, University of Colorado Boulder and the Renewable and Sustainable Energy Institute, Boulder, CO, 80300, USA.
| | - Jaclyn L Katsirubas
- Department of Chemistry, University of Colorado Boulder and the Renewable and Sustainable Energy Institute, Boulder, CO, 80300, USA.
| | - Oana R Luca
- Department of Chemistry, University of Colorado Boulder and the Renewable and Sustainable Energy Institute, Boulder, CO, 80300, USA.
| |
Collapse
|
27
|
Visible-light induced transition-metal and photosensitizer-free conversion of aldehydes to acyl fluorides under mild conditions. GREEN SYNTHESIS AND CATALYSIS 2022. [DOI: 10.1016/j.gresc.2022.04.007] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
|
28
|
Wang M, Zhang Y, Yang X, Sun P. Phenanthrenequinone (PQ) catalyzed cross-dehydrogenative coupling of alkanes with quinoxalin-2(1 H)-ones and simple N-heteroarenes under visible light irradiation. Org Biomol Chem 2022; 20:2467-2472. [PMID: 35262545 DOI: 10.1039/d2ob00278g] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
A direct and convenient strategy to 3-alkylquinoxalin-2(1H)-ones and other alkyl N-heteroarenes via a photocatalyzed alkylation of quinoxalin-2(1H)-ones and other N-heterocycles with commercially available, low-cost alkanes under ambient conditions using phenanthrenequinone (PQ) as a photocatalyst was developed. This transformation has advantages of environment-friendly protocol, mild conditions, good functional-group tolerance, and high yields of products.
Collapse
Affiliation(s)
- Min Wang
- School of Chemistry and Materials Science, Jiangsu Provincial Key Laboratory of Material Cycle Processes and Pollution Control, Jiangsu Collaborative Innovation Center of Biomedical Functional Materials, Nanjing Normal University, Nanjing 210023, China. .,Key Laboratory of Green and Precise Synthetic Chemistry and Applications, Ministry of Education; Department of chemistry, Huaibei Normal University, Huaibei, Anhui 235000, China.
| | - Yicheng Zhang
- Key Laboratory of Green and Precise Synthetic Chemistry and Applications, Ministry of Education; Department of chemistry, Huaibei Normal University, Huaibei, Anhui 235000, China.
| | - Xinyu Yang
- Key Laboratory of Green and Precise Synthetic Chemistry and Applications, Ministry of Education; Department of chemistry, Huaibei Normal University, Huaibei, Anhui 235000, China.
| | - Peipei Sun
- School of Chemistry and Materials Science, Jiangsu Provincial Key Laboratory of Material Cycle Processes and Pollution Control, Jiangsu Collaborative Innovation Center of Biomedical Functional Materials, Nanjing Normal University, Nanjing 210023, China.
| |
Collapse
|
29
|
Tan Z, He X, Xu K, Zeng C. Electrophotocatalytic C-H Functionalization of N-Heteroarenes with Unactivated Alkanes under External Oxidant-Free Conditions. CHEMSUSCHEM 2022; 15:e202102360. [PMID: 34967138 DOI: 10.1002/cssc.202102360] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/05/2021] [Revised: 12/29/2021] [Indexed: 06/14/2023]
Abstract
The Minisci alkylation of N-heteroarenes with unactivated alkanes under external oxidant-free conditions provides an economically attractive route to access alkylated N-heteroarenes but remains underdeveloped. Herein, a new electrophotocatalytic strategy to access alkyl radicals from strong C(sp3 )-H bonds was reported for the following Minisci alkylation reactions in the absence of chemical oxidants. This strategy realized the first example of cerium-catalyzed Minisci alkylation reaction directly from abundant unactivated alkanes with excellent atom economy. It is anticipated that the general design principle would enrich catalytic strategies to explore the functionalizations of strong C(sp3 )-H bonds under external oxidant-free conditions with H2 evolution.
Collapse
Affiliation(s)
- Zhoumei Tan
- Faculty of Environment and Life, Beijing University of Technology, Beijing, 100124, P.R. China
| | - Xinrui He
- Faculty of Environment and Life, Beijing University of Technology, Beijing, 100124, P.R. China
| | - Kun Xu
- Faculty of Environment and Life, Beijing University of Technology, Beijing, 100124, P.R. China
| | - Chengchu Zeng
- Faculty of Environment and Life, Beijing University of Technology, Beijing, 100124, P.R. China
| |
Collapse
|
30
|
Zhang L, Pfund B, Wenger OS, Hu X. Oxidase‐Type C−H/C−H Coupling Using an Isoquinoline‐Derived Organic Photocatalyst. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202202649] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Lei Zhang
- Laboratory of Inorganic Synthesis and Catalysis Institute of Chemical Sciences and Engineering École Polytechnique Fédérale de Lausanne (EPFL) ISIC-LSCI Lausanne Switzerland
- School of Chemistry and Material Sciences Hangzhou Institute of Advanced Study University of Chinese Academy of Sciences 1 Sub-lane Xiangshan, Hangzhou 310024 China
| | - Björn Pfund
- Department of Chemistry University of Basel 4056 Basel Switzerland
| | - Oliver S. Wenger
- Department of Chemistry University of Basel 4056 Basel Switzerland
| | - Xile Hu
- Laboratory of Inorganic Synthesis and Catalysis Institute of Chemical Sciences and Engineering École Polytechnique Fédérale de Lausanne (EPFL) ISIC-LSCI Lausanne Switzerland
| |
Collapse
|
31
|
Matsumoto A, Yamamoto M, Maruoka K. Cationic DABCO-Based Catalyst for Site-Selective C–H Alkylation via Photoinduced Hydrogen-Atom Transfer. ACS Catal 2022. [DOI: 10.1021/acscatal.1c05484] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- Akira Matsumoto
- Graduate School of Pharmaceutical Sciences, Kyoto University, Sakyo, Kyoto 606-8501, Japan
| | - Masanori Yamamoto
- Graduate School of Pharmaceutical Sciences, Kyoto University, Sakyo, Kyoto 606-8501, Japan
| | - Keiji Maruoka
- Graduate School of Pharmaceutical Sciences, Kyoto University, Sakyo, Kyoto 606-8501, Japan
- School of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou 510006, China
| |
Collapse
|
32
|
Wang Y, Liu R, Zhou P, Wu J, Li W, Wang C, Li H, Li D, Yang J. Visible Light‐Driven Base‐Promoted Radical Cascade Difluoroalkylization‐cyclization‐iodination of 1,6‐Enynes with Ethyl Difluoroiodoacetate. European J Org Chem 2022. [DOI: 10.1002/ejoc.202101395] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Yan Wang
- Ningxia University School of chemistry and chemical Engineering 539 West Helan Mountains road, Xixia District, Yinchuan 750000 Yinchuan CHINA
| | - Ruyan Liu
- Ningxia University School of Chemistry and Chemical Engineering CHINA
| | - Pengsheng Zhou
- Ningxia University School of Chemistry and Chemical Engineering CHINA
| | - Jianglong Wu
- Ningxia University School of Chemistry and Chemical Engineering CHINA
| | - Wenshuang Li
- Ningxia University School of Chemistry and Chemical Engineering CHINA
| | - Chenyu Wang
- Ningxia University School of Chemistry and Chemical Engineering CHINA
| | - Hao Li
- Ningxia University School of Chemistry and Chemical Engineering CHINA
| | - Dianjun Li
- Ningxia University State Key Laboratory of High-Efficiency Utilization of Coal and Green Chemical Engineering, School of Chemistry and Chemical Engineering CHINA
| | - Jinhui Yang
- Ningxia University State Key Laboratory of High-efficiency Utilization of Coal and Green Chemical Engineering China, Ning Xia, Yinchuan, Xixia District Ningxia University B 750021 Yinchuan CHINA
| |
Collapse
|
33
|
Li J, Siang Tan S, Kyne SH, Wai Hong Chan P. Minisci‐Type Alkylation of
N
‐Heteroarenes by
N
‐(Acyloxy)phthalimide Esters Mediated by a Hantzsch Ester and Blue LED Light. Adv Synth Catal 2022. [DOI: 10.1002/adsc.202101195] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Jiacheng Li
- School of Chemistry Monash University Clayton Victoria 3800 Australia
| | - Suan Siang Tan
- School of Chemistry Monash University Clayton Victoria 3800 Australia
| | - Sara Helen Kyne
- School of Chemistry Monash University Clayton Victoria 3800 Australia
| | - Philip Wai Hong Chan
- Department of Biological Environment Jiyang College of Zhejiang A&F University Hang Zhou Shi, Zhuji 311800, People's Republic of China
- School of Chemistry Monash University Clayton Victoria 3800 Australia
| |
Collapse
|
34
|
Wang X, Zhang Q, Liu S, Li M, Li H, Duan C, Jin Y. Visible Light-Induced Metal-Free Benzylation of Quinones via Cross Dehydrogenation Coupling Reaction. CHINESE J ORG CHEM 2022. [DOI: 10.6023/cjoc202112018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
35
|
Michelet V, Marsicano V, Arcadi A. Gold‐Catalyzed Regioselective Oxyfluorination / Oxydifluorination vs. Diketonization of Phthalimido‐Protected Propargylamines with Selectfluor. European J Org Chem 2021. [DOI: 10.1002/ejoc.202101524] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Veronique Michelet
- University of Cote d'Azur: Universite de Nice Sophia Antipolis CHEMISTRY Parc Valrose 06100 NICE FRANCE
| | - Vincenzo Marsicano
- Nice University: Universite de Nice Sophia Antipolis Chemistry Parc Valrose FRANCE
| | - Antonio Arcadi
- University of L'Aquila Department of Physical and Chemical Sciences: Universita degli Studi dell'Aquila Dipartimento di Scienze Fisiche e Chimiche Chemistry L'Aquila ITALY
| |
Collapse
|
36
|
Chalcogenative spirocyclization of N-aryl propiolamides with diselenides/disulfides promoted by Selectfluor. ZEITSCHRIFT FUR NATURFORSCHUNG SECTION B-A JOURNAL OF CHEMICAL SCIENCES 2021. [DOI: 10.1515/znb-2021-0154] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Abstract
A practical and efficient synthetic route to construct a variety of 3-arylselenenyl/3-arylthio spiro[4.5]trienones was developed using Selectfluor reagent as a mild oxidant. This reaction proceeds via a sequence of electrophilic cation addition, spirocyclization and dearomatization, then offers an approach to introduce Se/S-centered cation into the C–C triple bonds. The utility of this protocol were justified by the excellent compatibility of a wide range of functional groups, good yields and scalability under mild reaction conditions.
Collapse
|
37
|
Wang C, Shi H, Deng GJ, Huang H. Visible-light- and bromide-mediated photoredox Minisci alkylation of N-heteroarenes with ester acetates. Org Biomol Chem 2021; 19:9177-9181. [PMID: 34647121 DOI: 10.1039/d1ob01799c] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A visible-light-induced photoredox Minisci alkylation reaction of N-heteroarenes with ethyl acetate has been reported. The low-toxic ethyl acetate was used for the first time as an alkylation reagent. Hence, 4-quinazolinones, quinolines and pyridines reacted smoothly in the current reaction system. Mechanistic studies indicate that LiBr plays a key role to dramatically improve the efficiency of the reaction by the mediation of hydrogen atom transfer.
Collapse
Affiliation(s)
- Chunlian Wang
- Key Laboratory for Green Organic Synthesis and Application of Hunan Province, Key Laboratory of Environmentally Friendly Chemistry and Application of Ministry of Education, College of Chemistry, Xiangtan University, Xiangtan 411105, China.
| | - Hang Shi
- Key Laboratory for Green Organic Synthesis and Application of Hunan Province, Key Laboratory of Environmentally Friendly Chemistry and Application of Ministry of Education, College of Chemistry, Xiangtan University, Xiangtan 411105, China.
| | - Guo-Jun Deng
- Key Laboratory for Green Organic Synthesis and Application of Hunan Province, Key Laboratory of Environmentally Friendly Chemistry and Application of Ministry of Education, College of Chemistry, Xiangtan University, Xiangtan 411105, China.
| | - Huawen Huang
- Key Laboratory for Green Organic Synthesis and Application of Hunan Province, Key Laboratory of Environmentally Friendly Chemistry and Application of Ministry of Education, College of Chemistry, Xiangtan University, Xiangtan 411105, China.
| |
Collapse
|
38
|
Bhakat M, Biswas P, Dey J, Guin J. Heteroarylation of Ethers, Amides, and Alcohols with Light and O 2. Org Lett 2021; 23:6886-6890. [PMID: 34431683 DOI: 10.1021/acs.orglett.1c02440] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
An efficient protocol for the Cα-H heteroarylation of ethers, amides, and alcohols using air and light under mild conditions is described. The reaction is applicable to a wide spectrum of functional groups. The generation of C-radicals via photoinduced aerobic oxidation of ethers, amides, and alcohols is the key feature of the process. Control experiments suggest a radical pathway for the reaction.
Collapse
Affiliation(s)
- Manotosh Bhakat
- School of Chemical Sciences, Indian Association for the Cultivation of Science, 2A & 2B Raja S. C. Mullick Road, Jadavpur, Kolkata 700032, India
| | - Promita Biswas
- School of Chemical Sciences, Indian Association for the Cultivation of Science, 2A & 2B Raja S. C. Mullick Road, Jadavpur, Kolkata 700032, India
| | - Jayanta Dey
- School of Chemical Sciences, Indian Association for the Cultivation of Science, 2A & 2B Raja S. C. Mullick Road, Jadavpur, Kolkata 700032, India
| | - Joyram Guin
- School of Chemical Sciences, Indian Association for the Cultivation of Science, 2A & 2B Raja S. C. Mullick Road, Jadavpur, Kolkata 700032, India
| |
Collapse
|
39
|
Li Z, Wu L, Guo J, Shao Y, Song Y, Ding Y, Zhu L, Yao X. Light‐Promoted Minisci Coupling Reaction of Ethers and Aza Aromatics Catalyzed by Au/TiO
2
Heterogeneous Photocatalyst. ChemCatChem 2021. [DOI: 10.1002/cctc.202100298] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Zhanchong Li
- Department of Applied Chemistry College of Material Science and Technology Nanjing University of Aeronautics and Astronautics Nanjing 210016 P. R. China
| | - Liangying Wu
- Department of Applied Chemistry College of Material Science and Technology Nanjing University of Aeronautics and Astronautics Nanjing 210016 P. R. China
| | - Jiabao Guo
- Department of Applied Chemistry College of Material Science and Technology Nanjing University of Aeronautics and Astronautics Nanjing 210016 P. R. China
| | - Yifei Shao
- Department of Applied Chemistry College of Material Science and Technology Nanjing University of Aeronautics and Astronautics Nanjing 210016 P. R. China
| | - Yang Song
- Department of Applied Chemistry College of Material Science and Technology Nanjing University of Aeronautics and Astronautics Nanjing 210016 P. R. China
| | - Yuzhou Ding
- Department of Chemistry School of Pharmacy Nanjing Medical University Nanjing 211166 P. R. China
| | - Li Zhu
- Department of Chemistry School of Pharmacy Nanjing Medical University Nanjing 211166 P. R. China
| | - Xiaoquan Yao
- Department of Applied Chemistry College of Material Science and Technology Nanjing University of Aeronautics and Astronautics Nanjing 210016 P. R. China
| |
Collapse
|
40
|
Bell JD, Murphy JA. Recent advances in visible light-activated radical coupling reactions triggered by (i) ruthenium, (ii) iridium and (iii) organic photoredox agents. Chem Soc Rev 2021; 50:9540-9685. [PMID: 34309610 DOI: 10.1039/d1cs00311a] [Citation(s) in RCA: 180] [Impact Index Per Article: 45.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Photoredox chemistry with organic or transition metal agents has been reviewed in earlier years, but such is the pace of progress that we will overlap very little with earlier comprehensive reviews. This review first presents an overview of the area of research and then examines recent examples of C-C, C-N, C-O and C-S bond formations via radical intermediates with transition metal and organic radical promoters. Recent successes with Birch reductions are also included. The transition metal chemistry will be restricted to photocatalysts based on the most widely used metals, Ru and Ir, but includes coupling chemistries that take advantage of low-valent nickel, or occasionally copper, complexes to process the radicals that are formed. Our focus is on developments in the past 10 years (2011-2021). This period has also seen great advances in the chemistry of organic photoredox reagents and the review covers this area. The review is intended to present highlights and is not comprehensive.
Collapse
Affiliation(s)
- Jonathan D Bell
- Department of Pure and Applied Chemistry, University of Strathclyde, 295 Cathedral Street, Glasgow, G1 1XL, UK.
| | | |
Collapse
|
41
|
Donzel M, Karabiyikli D, Cotos L, Elhabiri M, Davioud‐Charvet E. Direct C−H Radical Alkylation of 1,4‐Quinones. European J Org Chem 2021. [DOI: 10.1002/ejoc.202100452] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Affiliation(s)
- Maxime Donzel
- UMR7042 Université de Strasbourg-CNRS-UHA Laboratoire d'Innovation Moléculaire et Applications (LIMA) Team Bio (IN) organic and Medicinal Chemistry European School of Chemistry, Polymers and Materials (ECPM) 25 Rue Becquerel Strasbourg 67087 France
| | - Deniz Karabiyikli
- UMR7042 Université de Strasbourg-CNRS-UHA Laboratoire d'Innovation Moléculaire et Applications (LIMA) Team Bio (IN) organic and Medicinal Chemistry European School of Chemistry, Polymers and Materials (ECPM) 25 Rue Becquerel Strasbourg 67087 France
| | - Leandro Cotos
- UMR7042 Université de Strasbourg-CNRS-UHA Laboratoire d'Innovation Moléculaire et Applications (LIMA) Team Bio (IN) organic and Medicinal Chemistry European School of Chemistry, Polymers and Materials (ECPM) 25 Rue Becquerel Strasbourg 67087 France
| | - Mourad Elhabiri
- UMR7042 Université de Strasbourg-CNRS-UHA Laboratoire d'Innovation Moléculaire et Applications (LIMA) Team Bio (IN) organic and Medicinal Chemistry European School of Chemistry, Polymers and Materials (ECPM) 25 Rue Becquerel Strasbourg 67087 France
| | - Elisabeth Davioud‐Charvet
- UMR7042 Université de Strasbourg-CNRS-UHA Laboratoire d'Innovation Moléculaire et Applications (LIMA) Team Bio (IN) organic and Medicinal Chemistry European School of Chemistry, Polymers and Materials (ECPM) 25 Rue Becquerel Strasbourg 67087 France
| |
Collapse
|
42
|
|
43
|
Singh S, Dagar N, Raha Roy S. Direct functionalization of quinoxalin-2(1H)-one with alkanes: C(sp 2)-H/C(sp 3)-H cross coupling in transition metal-free mode. Org Biomol Chem 2021; 19:5383-5394. [PMID: 34047750 DOI: 10.1039/d1ob00665g] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Considering the significance of pharmaceutically important heterocycles, efficient and highly versatile protocols for the functionalization of diverse heterocycles with easily accessible feedstock are crucial. Here, we have reported selective alkylation of quinoxalin-2(1H)-one with a broad class of hydrocarbons having different C(sp3)-H bonds with varying bond strengths using di-tert-butyl peroxide (DTBP) as an alkoxyl radical mediator for hydrogen atom transfer (HAT). This dehydrogenative coupling approach utilizes feedstock chemicals such as cycloalkanes, cyclic ethers and alkyl arenes as coupling partners. This protocol exhibits good functional group compatibility and selectivity regarding both heterocycles and unactivated alkanes. Moreover, this methodology allows functionalization of relatively strong C-H bonds of adamantane and exclusive selectivity towards 3° C(sp3)-H bonds is observed. We also illustrate the applicability of this C(sp2)-H/C(sp3)-H cross-coupling for practical access to bioactive pharmaceuticals.
Collapse
Affiliation(s)
- Swati Singh
- Department of Chemistry, Indian Institute of Technology Delhi, Hauz Khas, New Delhi, 110016, India.
| | - Neha Dagar
- Department of Chemistry, Indian Institute of Technology Delhi, Hauz Khas, New Delhi, 110016, India.
| | - Sudipta Raha Roy
- Department of Chemistry, Indian Institute of Technology Delhi, Hauz Khas, New Delhi, 110016, India.
| |
Collapse
|
44
|
Manujyothi R, Aneeja T, Anilkumar G. Solvent-free synthesis of propargylamines: an overview. RSC Adv 2021; 11:19433-19449. [PMID: 35479216 PMCID: PMC9033675 DOI: 10.1039/d1ra03324g] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2021] [Accepted: 05/25/2021] [Indexed: 12/15/2022] Open
Abstract
Propargylamines are a class of compounds with many pharmaceutical and biological properties. A green approach to synthesize such compounds is very relevant. This review aims to describe the solvent-free synthetic approaches towards propargylamines via A3 and KA2 coupling reactions covering the literature up to 2021.
Collapse
Affiliation(s)
- Ravi Manujyothi
- Institute for Integrated Programmes and Research in Basic Sciences (IIRBS), Mahatma Gandhi University Priyadarsini Hills P O Kottayam Kerala 686560 India +91-481-2731036
| | - Thaipparambil Aneeja
- School of Chemical Sciences, Mahatma Gandhi University Priyadarsini Hills P O Kottayam Kerala 686560 India
| | - Gopinathan Anilkumar
- Institute for Integrated Programmes and Research in Basic Sciences (IIRBS), Mahatma Gandhi University Priyadarsini Hills P O Kottayam Kerala 686560 India +91-481-2731036
- School of Chemical Sciences, Mahatma Gandhi University Priyadarsini Hills P O Kottayam Kerala 686560 India
- Advanced Molecular Materials Research Centre (AMMRC), Mahatma Gandhi University Priyadarsini Hills P O Kottayam Kerala 686560 India
| |
Collapse
|
45
|
Liu Z, Wang Y, Huo J, Li XJ, Li S, Song X. Selectfluor-Promoted Intramolecular N-S Bond Formation of α-Carbamoyl Ketene Dithioacetals in the Presence of Water: Synthesis of Multifunctionalized Isothiazolones. J Org Chem 2021; 86:5506-5517. [PMID: 33797258 DOI: 10.1021/acs.joc.0c03036] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
A practical and efficient protocol toward fully substituted isothiazolones through Selectfluor-mediated intramolecular oxidative annulation of α-carbamoyl ketene dithioacetals has been developed in the presence of H2O and metal-free conditions. Notably, the experimental results reveal that H2O was crucial to the formation of new N-S bonds and the elimination of alkyl group from the sulfur atom. This protocol provides readily prepared substrates and possesses good functional group tolerance, mild reaction conditions, and operational simplicity, which provides potential access to applications in the pharmaceutical chemistry.
Collapse
Affiliation(s)
- Zheng Liu
- School of Chemical Engineering and Technology, Hebei University of Technology, Tianjin 300401, P. R. China
| | - Youkun Wang
- School of Chemical Engineering and Technology, Hebei University of Technology, Tianjin 300401, P. R. China
| | - Jianfeng Huo
- School of Chemical Engineering and Technology, Hebei University of Technology, Tianjin 300401, P. R. China
| | - Xiao-Jun Li
- School of Chemical Engineering and Technology, Hebei University of Technology, Tianjin 300401, P. R. China
| | - Shengnan Li
- School of Chemical Engineering and Technology, Hebei University of Technology, Tianjin 300401, P. R. China
| | - Xiaoning Song
- School of Chemical Engineering and Technology, Hebei University of Technology, Tianjin 300401, P. R. China
| |
Collapse
|
46
|
Zhou Z, Wu Y, Yang P, Deng S, Zhang Q, Li D. Silver‐Catalyzed Cross Dehydrogenative Coupling between Heteroarenes and Cyclic Ethers under Mild Conditions. ChemistrySelect 2021. [DOI: 10.1002/slct.202100339] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Zhong Zhou
- Hubei Provincial Key Laboratory of Green Materials for Light Industry Hubei University of Technology Wuhan 430068 China
| | - Yunli Wu
- Ecology and Environment Monitoring and Scientific Research Center Changjiang River Basin Ecology and Environment Administration Ministry of Ecology and Environment Wuhan 430010 China
| | - Peng Yang
- Hubei Provincial Key Laboratory of Green Materials for Light Industry Hubei University of Technology Wuhan 430068 China
| | - Shijun Deng
- Hubei Provincial Key Laboratory of Green Materials for Light Industry Hubei University of Technology Wuhan 430068 China
| | - Qian Zhang
- Hubei Provincial Key Laboratory of Green Materials for Light Industry Hubei University of Technology Wuhan 430068 China
| | - Dong Li
- Hubei Provincial Key Laboratory of Green Materials for Light Industry Hubei University of Technology Wuhan 430068 China
| |
Collapse
|
47
|
Zhang L, Liu Z, Tian X, Zi Y, Duan S, Fang Y, Chen W, Jing H, Yang L, Yang X. Transition-Metal-Free C(sp 3)-H Coupling of Cycloalkanes Enabled by Single-Electron Transfer and Hydrogen Atom Transfer. Org Lett 2021; 23:1714-1719. [PMID: 33591768 DOI: 10.1021/acs.orglett.1c00135] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Here we report a unique transition-metal-free C(sp3)-H/C(sp3)-H coupling of cycloalkanes at room temperature. Unactivated cycloalkanes and 2-azaallyls underwent the combination process of single-electron transfer (SET) and hydrogen atom transfer (HAT) to deliver a wide variety of cycloalkane-functionalized products. This expedient approach enables C(sp3)-H/C(sp3)-H coupling of cycloalkanes under mild conditions without transition metals, initiators, and oxidants.
Collapse
Affiliation(s)
- Linlin Zhang
- Key Laboratory of Medicinal Chemistry for Natural Resource, Ministry of Education, Yunnan Provincial Center for Research & Development of Natural Products, and School of Chemical Science and Technology, Yunnan University, Kunming 650091, P. R. China
| | - Zhengfen Liu
- Key Laboratory of Medicinal Chemistry for Natural Resource, Ministry of Education, Yunnan Provincial Center for Research & Development of Natural Products, and School of Chemical Science and Technology, Yunnan University, Kunming 650091, P. R. China.,Faculty of Chemical and Environment Sciences, Qujing Normal University, Qujing 655011, P. R. China
| | - Xun Tian
- Key Laboratory of Medicinal Chemistry for Natural Resource, Ministry of Education, Yunnan Provincial Center for Research & Development of Natural Products, and School of Chemical Science and Technology, Yunnan University, Kunming 650091, P. R. China
| | - Yujin Zi
- Key Laboratory of Medicinal Chemistry for Natural Resource, Ministry of Education, Yunnan Provincial Center for Research & Development of Natural Products, and School of Chemical Science and Technology, Yunnan University, Kunming 650091, P. R. China
| | - Shengzu Duan
- Key Laboratory of Medicinal Chemistry for Natural Resource, Ministry of Education, Yunnan Provincial Center for Research & Development of Natural Products, and School of Chemical Science and Technology, Yunnan University, Kunming 650091, P. R. China.,School of Chemistry & Environment, Key Laboratory of Intelligent Supramolecular Chemistry at the University of Yunnan Province, Yunnan Minzu University, Kunming 650500, P. R. China
| | - Yongsheng Fang
- Key Laboratory of Medicinal Chemistry for Natural Resource, Ministry of Education, Yunnan Provincial Center for Research & Development of Natural Products, and School of Chemical Science and Technology, Yunnan University, Kunming 650091, P. R. China
| | - Wen Chen
- Key Laboratory of Medicinal Chemistry for Natural Resource, Ministry of Education, Yunnan Provincial Center for Research & Development of Natural Products, and School of Chemical Science and Technology, Yunnan University, Kunming 650091, P. R. China
| | - Hong Jing
- Key Laboratory of Medicinal Chemistry for Natural Resource, Ministry of Education, Yunnan Provincial Center for Research & Development of Natural Products, and School of Chemical Science and Technology, Yunnan University, Kunming 650091, P. R. China
| | - Lijuan Yang
- School of Chemistry & Environment, Key Laboratory of Intelligent Supramolecular Chemistry at the University of Yunnan Province, Yunnan Minzu University, Kunming 650500, P. R. China
| | - Xiaodong Yang
- Key Laboratory of Medicinal Chemistry for Natural Resource, Ministry of Education, Yunnan Provincial Center for Research & Development of Natural Products, and School of Chemical Science and Technology, Yunnan University, Kunming 650091, P. R. China
| |
Collapse
|
48
|
Swarnkar S, Ansari MY, Kumar A. Visible-Light-Induced Tertiary C(sp3)–H Sulfonylation: An Approach to Tertiary Sulfones. Org Lett 2021; 23:1163-1168. [DOI: 10.1021/acs.orglett.0c03898] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Affiliation(s)
- Sumedha Swarnkar
- Medicinal & Process Chemistry Division, CSIR-Central Drug Research Institute, Sector 10, Jankipuram Extension, Sitapur Road, P.O. Box 173, Lucknow 226031, India
| | - Mohd Yeshab Ansari
- Medicinal & Process Chemistry Division, CSIR-Central Drug Research Institute, Sector 10, Jankipuram Extension, Sitapur Road, P.O. Box 173, Lucknow 226031, India
| | - Atul Kumar
- Medicinal & Process Chemistry Division, CSIR-Central Drug Research Institute, Sector 10, Jankipuram Extension, Sitapur Road, P.O. Box 173, Lucknow 226031, India
- Academy of Scientific and Innovative Research, New Delhi 110001, India
| |
Collapse
|
49
|
Yuan JW, Zhang Y, Huang GC, Ma MY, Yang TY, Yang LR, Zhang SR, Mao P, Qu LB. Site-specific C–H chalcogenation of quinoxalin-2(1 H)-ones enabled by Selectfluor reagent. Org Chem Front 2021. [DOI: 10.1039/d1qo01332g] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
A site-specific C6–H chalcogenation of quinoxalin-2(1H)-ones with various diselenides and dithiols is presented by employing Selectfluor reagent as an oxidant.
Collapse
Affiliation(s)
- Jin-Wei Yuan
- School of Chemistry & Chemical Engineering, Henan University of Technology, Zhengzhou 450001, China
| | - Yang Zhang
- School of Chemistry & Chemical Engineering, Henan University of Technology, Zhengzhou 450001, China
| | - Guang-Chao Huang
- School of Chemistry & Chemical Engineering, Henan University of Technology, Zhengzhou 450001, China
| | - Meng-Yao Ma
- School of Chemistry & Chemical Engineering, Henan University of Technology, Zhengzhou 450001, China
| | - Teng-Yu Yang
- School of Chemistry & Chemical Engineering, Henan University of Technology, Zhengzhou 450001, China
| | - Liang-Ru Yang
- School of Chemistry & Chemical Engineering, Henan University of Technology, Zhengzhou 450001, China
| | - Shou-Ren Zhang
- Henan Key Laboratory of Nanocomposites and Applications; Institute of Nanostructured Functional Materials, Huanghe Science and Technology College, Zhengzhou 450006, China
| | - Pu Mao
- School of Chemistry & Chemical Engineering, Henan University of Technology, Zhengzhou 450001, China
| | - Ling-Bo Qu
- College of Chemistry, Zhengzhou University, Zhengzhou 450001, China
| |
Collapse
|
50
|
Mannarsamy M, Prabusankar G. Rare proximity enforced copper hydrogen interactions in copper( i)-chalcogenones. NEW J CHEM 2021. [DOI: 10.1039/d1nj00397f] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Homoleptic tetra-coordinated copper(i)-chalcogenone complexes have been reported with rare proximity-enforced intramolecular Cu⋯H–C(sp3) hydrogen bonding interactions.
Collapse
|