1
|
Davis CR, Ichiishi N, Burke BJ, Tedrow JS. Butyl Imidates: Highly Stable and Isolable Synthetic Intermediates. J Org Chem 2025; 90:1905-1911. [PMID: 39847341 DOI: 10.1021/acs.joc.4c02571] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2025]
Abstract
Imidates are versatile synthetic intermediates that contain ambiphilic reactivity, making them valuable pharmaceutically relevant synthons. Despite their extensive utility, imidates are typically generated in situ rather than isolated due to their inherent instability. This report details a systematic study that led to the discovery of an isolable imidate hydrogen chloride (HCl) salt that exhibits high tolerance to hydrolysis, thereby improving process control and facilitating downstream transformations. Optimization of reaction conditions and anti-solvent selection resulted in a general and scalable approach to access the imidate HCl salt in high yield. A multikilogram campaign of the butyl imidate demonstrated key improvements over the ethyl congener, addressing key practical challenges such as solubility, hydrolysis, and impurity formation. The scope was extended to a series of phenyl- and benzyl-substituted n-butyl imidates.
Collapse
Affiliation(s)
- Colton R Davis
- U.S. Process Chemistry, CMC Synthetics Platform, Sanofi, 350 Water Street, Cambridge, Massachusetts 02141, United States
| | - Naoko Ichiishi
- U.S. Process Chemistry, CMC Synthetics Platform, Sanofi, 350 Water Street, Cambridge, Massachusetts 02141, United States
| | - Brenda J Burke
- U.S. Process Chemistry, CMC Synthetics Platform, Sanofi, 350 Water Street, Cambridge, Massachusetts 02141, United States
| | - Jason S Tedrow
- U.S. Process Chemistry, CMC Synthetics Platform, Sanofi, 350 Water Street, Cambridge, Massachusetts 02141, United States
| |
Collapse
|
2
|
Wang J, Zhou F, Xu Y, Zhang L. Photocatalyst-free light-promoted carbohydrate synthesis and modification. Carbohydr Res 2024; 546:109304. [PMID: 39520807 DOI: 10.1016/j.carres.2024.109304] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2024] [Revised: 10/25/2024] [Accepted: 11/04/2024] [Indexed: 11/16/2024]
Abstract
Photoredox catalysis has recently emerged as a powerful approach for preparing oligosaccharides because it uses mild conditions, is compatible with partially or completely unprotected carbohydrate substrates, and exhibits impressive regio- and stereo-selectivity and high functional group tolerance. However, most catalytic photoredox reactions require an external photocatalyst (organic dye or expensive transition-metal complex) to deliver key glycosyl radicals. Several photocatalyst-free photocatalytic reactions that avoid the use of expensive metal salts or organic-dye additives have received significant attention. In this review, we highlight the most recent developments in photocatalyst-free light-promoted carbohydrate synthesis and modification, which is expected to inspire broad interest in further innovations in the green synthesis of saccharides.
Collapse
Affiliation(s)
- Jing Wang
- Qiandongnan Traditional Medicine Research & Development Center, School of Life and Health Science, Kaili University, Kaili, 556011, China; Key Laboratory for Modernization of Qiandongnan Miao & Dong Medicine, Higher Education Institutions in Guizhou Province, Kaili, 556011, China
| | - Fan Zhou
- Qiandongnan Traditional Medicine Research & Development Center, School of Life and Health Science, Kaili University, Kaili, 556011, China; Key Laboratory for Modernization of Qiandongnan Miao & Dong Medicine, Higher Education Institutions in Guizhou Province, Kaili, 556011, China
| | - Yuping Xu
- Qiandongnan Traditional Medicine Research & Development Center, School of Life and Health Science, Kaili University, Kaili, 556011, China; Key Laboratory for Modernization of Qiandongnan Miao & Dong Medicine, Higher Education Institutions in Guizhou Province, Kaili, 556011, China
| | - Lei Zhang
- Qiandongnan Traditional Medicine Research & Development Center, School of Life and Health Science, Kaili University, Kaili, 556011, China; Key Laboratory for Modernization of Qiandongnan Miao & Dong Medicine, Higher Education Institutions in Guizhou Province, Kaili, 556011, China.
| |
Collapse
|
3
|
Pal S, Nandi R, Manna AS, Bag D, Rahaman R, Maiti DK. Cu(I)-Catalyzed C(sp 3)-H Functionalization of Amino Acids with Benzimidate and Reactive Oxygen Species (ROS) To Synthesize Triazines and 2-Pyrrolidinones. Org Lett 2024. [PMID: 39526848 DOI: 10.1021/acs.orglett.4c03536] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2024]
Abstract
An easily accessible Cu(I)-catalyzed regioselective oxidative C-N/C-O cross-coupling organic transformation has been disclosed for the syntheses of variably functionalized triazines and N-benzoylpyrrolidin-2-ones through the involvement of C(sp3)-H bond functionalization, which is unknown in the literature. This general synthetic method is extended for decarboxylative oxidation of amino acids to install carbonyl functionality. It facilitates the formation of 2-3 new bonds through the cross-coupling strategy involving benzimidates, amino acids, and in situ-generated reactive oxygen species (ROS) from the aerial O2 as the sole oxidant. The key utilities of the new reactions are demonstrated by its operational simplicity, regioselectivity, robustness, and broad substrate scope with high yields.
Collapse
Affiliation(s)
- Subhasis Pal
- Department of Chemistry, University of Calcutta, 92 A. P. C. Road, Kolkata-700009, India
| | - Rajesh Nandi
- Department of Chemistry, University of Calcutta, 92 A. P. C. Road, Kolkata-700009, India
| | - Anindya S Manna
- Department of Chemistry, University of Calcutta, 92 A. P. C. Road, Kolkata-700009, India
| | - Debanjana Bag
- Department of Chemistry, University of Calcutta, 92 A. P. C. Road, Kolkata-700009, India
| | - Rajjakfur Rahaman
- Department of Chemistry, University of Calcutta, 92 A. P. C. Road, Kolkata-700009, India
| | - Dilip K Maiti
- Department of Chemistry, University of Calcutta, 92 A. P. C. Road, Kolkata-700009, India
| |
Collapse
|
4
|
Yoshimura A, Zhdankin VV. Recent Progress in Synthetic Applications of Hypervalent Iodine(III) Reagents. Chem Rev 2024; 124:11108-11186. [PMID: 39269928 PMCID: PMC11468727 DOI: 10.1021/acs.chemrev.4c00303] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Revised: 08/18/2024] [Accepted: 08/29/2024] [Indexed: 09/15/2024]
Abstract
Hypervalent iodine(III) compounds have found wide application in modern organic chemistry as environmentally friendly reagents and catalysts. Hypervalent iodine reagents are commonly used in synthetically important halogenations, oxidations, aminations, heterocyclizations, and various oxidative functionalizations of organic substrates. Iodonium salts are important arylating reagents, while iodonium ylides and imides are excellent carbene and nitrene precursors. Various derivatives of benziodoxoles, such as azidobenziodoxoles, trifluoromethylbenziodoxoles, alkynylbenziodoxoles, and alkenylbenziodoxoles have found wide application as group transfer reagents in the presence of transition metal catalysts, under metal-free conditions, or using photocatalysts under photoirradiation conditions. Development of hypervalent iodine catalytic systems and discovery of highly enantioselective reactions using chiral hypervalent iodine compounds represent a particularly important recent achievement in the field of hypervalent iodine chemistry. Chemical transformations promoted by hypervalent iodine in many cases are unique and cannot be performed by using any other common, non-iodine-based reagent. This review covers literature published mainly in the last 7-8 years, between 2016 and 2024.
Collapse
Affiliation(s)
- Akira Yoshimura
- Faculty
of Pharmaceutical Sciences, Aomori University, 2-3-1 Kobata, Aomori 030-0943, Japan
| | - Viktor V. Zhdankin
- Department
of Chemistry and Biochemistry, University
of Minnesota Duluth, Duluth, Minnesota 55812, United States
| |
Collapse
|
5
|
Baidya R, Khamarui S, Molla SA, Pratihar P, Das P, Pati TK, Maiti DK. Ru II-Catalyzed C-H Activated Diverse Cyclization with Transformation of Substrate-DG to Functional Groups: Synthesis of Functionalized Indoles and Indenones. J Org Chem 2024; 89:14183-14196. [PMID: 39283992 DOI: 10.1021/acs.joc.4c01588] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/05/2024]
Abstract
We present an elegant and efficient method for Ru(II)-catalyzed C-H activation, followed by a diverse range of intermolecular cross-dehydrogenative coupling reactions. This process is facilitated by an intrinsic directing group (DG) and includes the in situ transformation of the DG into common and useful functional groups. Notably, this method avoids the installation and deinstallation of the directing group. Our approach enables the selective functionalization of benzimidate, coupled with the cyclization of o-alkynyl-aniline, resulting in the high-yield synthesis of diverse compounds such as indoles, and indenones. The sequential formation of C-N, C-C, and C-O bonds, followed by hydrolysis, underscores the versatile in situ transformation of the directing group. This work not only broadens the synthetic toolbox for constructing complex heterocyclic structures but also highlights the potential for sustainable and selective synthesis of valuable compounds.
Collapse
Affiliation(s)
- Ramlal Baidya
- Department of Chemistry, University of Calcutta, 92, A. P. C. Road, Kolkata 700009, India
| | - Saikat Khamarui
- Department of Chemistry, Government General Degree College, Kalna-1, Burdwan 713405, India
| | - Sabir A Molla
- Department of Chemistry, University of Calcutta, 92, A. P. C. Road, Kolkata 700009, India
| | - Pintu Pratihar
- Department of Chemistry, University of Calcutta, 92, A. P. C. Road, Kolkata 700009, India
| | - Prasenjit Das
- Department of Chemistry, University of Calcutta, 92, A. P. C. Road, Kolkata 700009, India
| | - Tanmay K Pati
- Department of Chemistry, Rensselaer Polytechnic Institute, Troy, New York 12180-3522, United States
| | - Dilip K Maiti
- Department of Chemistry, University of Calcutta, 92, A. P. C. Road, Kolkata 700009, India
| |
Collapse
|
6
|
Upadhyaya K, Dubbu S. Advancing carbohydrate functionality: The role of hypervalent iodine. Carbohydr Res 2024; 542:109175. [PMID: 38865797 DOI: 10.1016/j.carres.2024.109175] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Revised: 05/29/2024] [Accepted: 06/03/2024] [Indexed: 06/14/2024]
Abstract
Hypervalent iodine reagents have undergone significant development and widespread application in the functionalization of carbohydrates. This is primarily attributed to their exceptional properties, including mildness, ease of handling, high selectivity, environmental friendliness, and stability. This review aims to emphasize the utilization of hypervalent iodine compounds in the functionalization of carbohydrates. The present article covers various aspects, including glycal functionalization, C-H or N-H insertion reactions, O-arylations, C-2 deoxy-2-iodo glycoconjugates, iminosugars, and C3-oxo-glycals, achieved through the use of hypervalent iodine reagents/catalysts. Additionally, it explores hypervalent iodine-mediated bioactive 1,3,5-trioxocane synthesis followed by rare sugars synthesis.
Collapse
Affiliation(s)
- Kapil Upadhyaya
- Department of Chemical Physiology and Biochemistry, Oregon Health and Science University, Portland, OR 97239, USA.
| | - Sateesh Dubbu
- Roger Adams Laboratory, Department of Chemistry, University of Illinois, Urbana, IL, 61801, USA.
| |
Collapse
|
7
|
Manna AS, Nandi R, Ghosh T, Pal S, Rahaman R, Maiti DK. Organic Base-Promoted C-N- and C-O-Coupled Domino Cyclization Strategy: Syntheses of Oxazine-6-ones and 4-Pyrimidinols. J Org Chem 2024; 89:5650-5664. [PMID: 38577786 DOI: 10.1021/acs.joc.4c00132] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/06/2024]
Abstract
Oxazine-6-one and 4-pyrimidinol are two important frameworks in pharmaceutical production. Herein, we disclosed a simple, efficient, inexpensive organic base-promoted and additive-stimulated protocol for the syntheses of variably functionalized oxazine-6-ones and 4-pyrimidinols employing acetonitrile solvent under conventional heating conditions using an oil bath through C-N and C-O coupled domino steps. This simple practicable productive protocol utilizes easily producible cheap precursors, namely, benzimidates or benzamidines, with differently substituted dicyano-olefins, and it comprises step economy, robustness, and moisture insensitive conditions affording high yield that avoids the use of transition-metal catalysts, multistep with multicomponent strategy, and harsh reaction conditions involving hazardous chemicals. This method is scalable into gram-scale production with good yield.
Collapse
Affiliation(s)
- Anindya S Manna
- Department of Chemistry, University of Calcutta, 92 A. P. C. Road, Kolkata 700009, India
| | - Rajesh Nandi
- Department of Chemistry, University of Calcutta, 92 A. P. C. Road, Kolkata 700009, India
| | - Tanmoy Ghosh
- Department of Chemistry, University of Calcutta, 92 A. P. C. Road, Kolkata 700009, India
| | - Subhasis Pal
- Department of Chemistry, University of Calcutta, 92 A. P. C. Road, Kolkata 700009, India
| | - Rajjakfur Rahaman
- Department of Chemistry, University of Calcutta, 92 A. P. C. Road, Kolkata 700009, India
| | - Dilip K Maiti
- Department of Chemistry, University of Calcutta, 92 A. P. C. Road, Kolkata 700009, India
| |
Collapse
|
8
|
Pal S, Nandi R, Manna AS, Aich S, Maiti DK. Cu I-Catalyzed Radical Reaction of Benzimidates to Form Valuable 4,5-Dihydrooxazoles through Regioselective Aerobic Oxidative Cross-Coupling. J Org Chem 2024; 89:2703-2717. [PMID: 38295826 DOI: 10.1021/acs.joc.3c02773] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/17/2024]
Abstract
A straightforward Cu(I)-catalyzed oxidative cross-coupled organic transformation has been developed under mild conditions for the construction of functionalized 4,5-dihydrooxazoles through a four-bond-forming regiocontrolled C-C/C-N/C-O coupling strategy emerging benzimidates, paraformaldehyde, and 1,3-diketo analogues using eco-friendly O2 as the sole oxidant. The fundamental features of these designed approaches involve operational simplicity, selectivity, generality, and a broad substrate scope with high yields under the same reaction conditions.
Collapse
Affiliation(s)
- Subhasis Pal
- Department of Chemistry, University of Calcutta, 92 A. P. C. Road, Kolkata 700009, India
| | - Rajesh Nandi
- Department of Chemistry, University of Calcutta, 92 A. P. C. Road, Kolkata 700009, India
| | - Anindya S Manna
- Department of Chemistry, University of Calcutta, 92 A. P. C. Road, Kolkata 700009, India
| | - Shobhon Aich
- Department of Chemistry, University of Calcutta, 92 A. P. C. Road, Kolkata 700009, India
| | - Dilip K Maiti
- Department of Chemistry, University of Calcutta, 92 A. P. C. Road, Kolkata 700009, India
| |
Collapse
|
9
|
Gorelik DJ, Desai SP, Jdanova S, Turner JA, Taylor MS. Transformations of carbohydrate derivatives enabled by photocatalysis and visible light photochemistry. Chem Sci 2024; 15:1204-1236. [PMID: 38274059 PMCID: PMC10806712 DOI: 10.1039/d3sc05400d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Accepted: 12/13/2023] [Indexed: 01/27/2024] Open
Abstract
This review article highlights the diverse ways in which recent developments in the areas of photocatalysis and visible light photochemistry are impacting synthetic carbohydrate chemistry. The major topics covered are photocatalytic glycosylations, generation of radicals at the anomeric position, transformations involving radical formation at non-anomeric positions, additions to glycals, processes initiated by photocatalytic hydrogen atom transfer from sugars, and functional group interconversions at OH and SH groups. Factors influencing stereo- and site-selectivity in these processes, along with mechanistic aspects, are discussed.
Collapse
Affiliation(s)
- Daniel J Gorelik
- Department of Chemistry, University of Toronto 80 St. George St. Toronto ON M5S 3H6 Canada
| | - Shrey P Desai
- Department of Chemistry, University of Toronto 80 St. George St. Toronto ON M5S 3H6 Canada
| | - Sofia Jdanova
- Department of Chemistry, University of Toronto 80 St. George St. Toronto ON M5S 3H6 Canada
| | - Julia A Turner
- Department of Chemistry, University of Toronto 80 St. George St. Toronto ON M5S 3H6 Canada
| | - Mark S Taylor
- Department of Chemistry, University of Toronto 80 St. George St. Toronto ON M5S 3H6 Canada
| |
Collapse
|
10
|
Chaidali AG, Lykakis IN. Simple Synthetic Approach to N-(Pyridin-2-yl)imidates from Nitrostyrenes and 2-Aminopyridines via the N-(Pyridin-2-yl)iminonitriles as Intermediates. Molecules 2023; 28:molecules28083321. [PMID: 37110555 PMCID: PMC10147006 DOI: 10.3390/molecules28083321] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Revised: 04/06/2023] [Accepted: 04/07/2023] [Indexed: 04/29/2023] Open
Abstract
A facile, green, synthetic protocol of several substituted N-(pyridin-2-yl)imidates from nitrostyrenes and 2-aminopyridines via the corresponding N-(pyridin-2-yl)iminonitriles as intermediates is reported. The reaction process involved the in situ formation of the corresponding α-iminontriles under heterogeneous Lewis acid catalysis in the presence of Al2O3. Subsequently, α-iminonitriles were selectively transformed into the desired N-(pyridin-2-yl)imidates under ambient conditions and in the presence of Cs2CO3 in alcoholic media. Under these conditions, 1,2- and 1,3-propanediols also led to the corresponding mono-substituted imidates at room temperature. The present synthetic protocol was also developed on one mmol scale, providing access to this important scaffold. A preliminary synthetic application of the present N-(pyridin-2-yl)imidates was carried out for their facile conversion into the N-heterocycles 2-(4-chlorophenyl)-4,5-dihydro-1H-imidazole and 2-(4-chlorophenyl)-1,4,5,6-tetrahydropyrimidine in the presence of the corresponding ethylenediamine and 1,3-diaminopropane.
Collapse
Affiliation(s)
- Andriani G Chaidali
- Department of Chemistry, Aristotle University of Thessaloniki, University Campus, 54124 Thessaloniki, Greece
| | - Ioannis N Lykakis
- Department of Chemistry, Aristotle University of Thessaloniki, University Campus, 54124 Thessaloniki, Greece
| |
Collapse
|
11
|
Aich S, Nandi R, Chatterjee N, Gayen KS, Pal S, Maiti DK. Catalytic I 2-moist DMSO-mediated synthesis of valuable α-amidohydroxyketones and unsymmetrical gem-bisamides from benzimidates. Org Biomol Chem 2023; 21:2524-2530. [PMID: 36876635 DOI: 10.1039/d3ob00165b] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/16/2023]
Abstract
We developed an efficient and straightforward I2-catalyzed strategy for the synthesis of functionalized α-amidohydroxyketones and symmetrical and unsymmetrical bisamides using incipient benzimidate scaffolds as starting materials and moist-DMSO as a reagent and solvent. The developed method proceeds through chemoselective intermolecular N-C-bond formation of benzimidates and the α-C(sp3)-H bond of acetophenone moieties. The key advantages of these design approaches include broad substrate scope and moderate yields. High-resolution mass spectrometry of the reaction progress and labeling experiments provided suitable evidence regarding the possible mechanism. 1H nuclear magnetic resonance titration revealed notable interaction between the synthesized α-amidohydroxyketones and some anions as well as biologically important molecules, which revealed a promising recognition property of these valuable motifs.
Collapse
Affiliation(s)
- Shobhon Aich
- Department of Chemistry, University of Calcutta, 92 A. P. C. Road, Kolkata-700009, India.
| | - Rajesh Nandi
- Department of Chemistry, University of Calcutta, 92 A. P. C. Road, Kolkata-700009, India.
| | - Nirbhik Chatterjee
- Department of Chemistry, Kanchrapara College, North 24 parganas-743145, India
| | | | - Subhasis Pal
- Department of Chemistry, University of Calcutta, 92 A. P. C. Road, Kolkata-700009, India.
| | - Dilip K Maiti
- Department of Chemistry, University of Calcutta, 92 A. P. C. Road, Kolkata-700009, India.
| |
Collapse
|
12
|
Abstract
Synthetic chemists have long focused on selective C(sp 3)-N bond-forming approaches in response to the high value of this motif in natural products, pharmaceutical agents and functional materials. In recent years, visible light-induced protocols have become an important synthetic platform to promote this transformation under mild reaction conditions. These photo-driven methods rely on converting visible light into chemical energy to generate reactive but controllable radical species. This Review highlights recent advances in this area, mostly after 2014, with an emphasis placed on C(sp 3)-H bond activations, including amination of olefins and carbonyl compounds, and cross-coupling reactions.
Collapse
|
13
|
Halder S, Addanki RB, Moktan S, Kancharla PK. Glycosyl o-[1-( p-MeO-Phenyl)vinyl]benzoates (PMPVB) as Easily Accessible, Stable, and Reactive Glycosyl Donors for O-, S-, and C-Glycosylations under Brønsted Acid Catalysis. J Org Chem 2022; 87:7033-7055. [PMID: 35559689 DOI: 10.1021/acs.joc.2c00093] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Methods suitable for the synthesis of both O- and S-glycosylations are relatively rare because commonly used promoters like halonium sources or gold catalysts are incompatible with thiols as nucleophiles. Here, we present (p-MeO)phenylvinylbenzoates (PMPVB) as easily accessible, stable, and reactive alkene-based glycosyl donors that can be activated with catalytic amounts of a Brønsted acid. This activation protocol not only allows us to synthesize O-glycosides but also can successfully provide S- and C-linked glycosides. The armed and disarmed donors lead to product formation in 5 min, showcasing the high reactivity of the donors. Competitive experiments show that the PMPVB donors are much more reactive than the corresponding PVB donors even under NIS/TMSOTf conditions, whereas PVB donors are not reactive enough to be efficiently activated under Brønsted acid conditions. The potential of the catalytic glycosylation protocol has also been showcased by synthesizing trisaccharides. The Brønsted acid activation of PMPVB donors also allows access to C-glycosides in a stereoselective fashion. The easy accessibility of the donor aglycon on a multigram scale in just two steps makes the PMPVB donors highly attractive alternatives.
Collapse
Affiliation(s)
- Suvendu Halder
- Department of Chemistry, Indian Institute of Technology Guwahati, Guwahati, Assam 781039, India
| | - Rupa Bai Addanki
- Department of Chemistry, Indian Institute of Technology Guwahati, Guwahati, Assam 781039, India
| | - Sangay Moktan
- Department of Chemistry, Indian Institute of Technology Guwahati, Guwahati, Assam 781039, India
| | - Pavan K Kancharla
- Department of Chemistry, Indian Institute of Technology Guwahati, Guwahati, Assam 781039, India
| |
Collapse
|
14
|
Wu J, Kopp A, Ackermann L. Synthesis of C-Oligosaccharides through Versatile C(sp 3 )-H Glycosylation of Glycosides. Angew Chem Int Ed Engl 2022; 61:e202114993. [PMID: 35015329 PMCID: PMC9306939 DOI: 10.1002/anie.202114993] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2021] [Indexed: 12/12/2022]
Abstract
C-oligosaccharides are pharmacologically relevant because they are more hydrolysis-resistant than O-oligosaccharides. Despite indisputable advances, C-oligosaccharides continue to be underdeveloped, likely due to a lack of efficient and selective strategies for the assembly of the interglycosidic C-C linkages. In contrast, we, herein, report a versatile and robust strategy for the synthesis of structurally complex C-oligosaccharides via catalyzed C(sp3 )-H activations. Thus, a wealth of complex interglycosidic (2→1)- and (1→1)-C-oligosaccharides becomes readily available by palladium-catalyzed C(sp3 )-H glycoside glycosylation. The isolation of key palladacycle intermediates and experiments with isotopically-labeled compounds identified a trans-stereoselectivity for the C(sp3 )-H glycosylation. The glycoside C(sp3 )-H activation manifold was likewise exploited for the diversification of furanoses, pyranoses and disaccharides.
Collapse
Affiliation(s)
- Jun Wu
- Institut für Organische und Biomolekulare ChemieGeorg-August-Universität GöttingenTammanstraße 237077GöttingenGermany
| | - Adelina Kopp
- Institut für Organische und Biomolekulare ChemieGeorg-August-Universität GöttingenTammanstraße 237077GöttingenGermany
| | - Lutz Ackermann
- Institut für Organische und Biomolekulare ChemieGeorg-August-Universität GöttingenTammanstraße 237077GöttingenGermany
- DZHK (German Centre for Cardiovascular Research)Potsdamer Straße 5810785BerlinGermany
| |
Collapse
|
15
|
Synthesis of C‐Oligosaccharides through Versatile C(sp3)–H Glycosylation of Glycosides. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202114993] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
16
|
Zhao G, Li J, Wang T. Visible-light-induced photoacid catalysis: application in glycosylation with O-glycosyl trichloroacetimidates. Chem Commun (Camb) 2021; 57:12659-12662. [PMID: 34768281 DOI: 10.1039/d1cc04887b] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
The development of visible-light-induced photoacid catalyzed glycosylation is reported. The eosin Y and PhSSPh catalyst system is applied to realize glycosylation with different glycosyl donors upon light irradiation. The reaction shows a broad substrate scope, including both glycosyl donors and acceptors, and highlights the mild nature of the reaction conditions.
Collapse
Affiliation(s)
- Gaoyuan Zhao
- Department of Chemistry, University at Albany, State University of New York, 1400 Washington Avenue, Albany, New York 12222, USA.
| | - Juncheng Li
- Department of Chemistry, University at Albany, State University of New York, 1400 Washington Avenue, Albany, New York 12222, USA.
| | - Ting Wang
- Department of Chemistry, University at Albany, State University of New York, 1400 Washington Avenue, Albany, New York 12222, USA.
| |
Collapse
|
17
|
La Ferla B, D’Orazio G. Pyranoid Spirosugars as Enzyme Inhibitors. Curr Org Synth 2021; 18:3-22. [DOI: 10.2174/1570179417666200924152648] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2020] [Revised: 08/25/2020] [Accepted: 08/31/2020] [Indexed: 11/22/2022]
Abstract
Background:
Pyranoid spirofused sugar derivatives represent a class of compounds with a significant
impact in the literature. From the structural point of view, the rigidity inferred by the spirofused entity has made
these compounds object of interest mainly as enzymatic inhibitors, in particular, carbohydrate processing enzymes.
Among them glycogen phosphorylase and sodium glucose co-transporter 2 are important target enzymes
for diverse pathological states. Most of the developed compounds present the spirofused entity at the C1 position
of the sugar moiety; nevertheless, spirofused entities can also be found at other sugar ring positions. The main
spirofused entities encountered are spiroacetals/thioacetals, spiro-hydantoin and derivatives, spiro-isoxazolines,
spiro-aminals, spiro-lactams, spiro-oxathiazole and spiro-oxazinanone, but also others are present.
Objectives:
The present review focuses on the most explored synthetic strategies for the preparation of this class
of compounds, classified according to the position and structure of the spirofused moiety on the pyranoid scaffold.
Moreover, the structures are correlated to their main biological activities or to their role as chiral auxiliaries.
Conclusion:
It is clear from the review that, among the different derivatives, the spirofused structures at position
C1 of the pyranoid scaffold are the most represented and possess the most relevant enzymatic inhibitor activities.
Nevertheless, great efforts have been devoted to the introduction of the spirofused entity also in the other positions,
mainly for the preparation of biologically active compounds but also for the synthesis of chiral auxiliaries
useful in asymmetric reactions; examples of such auxiliaries are the spirofused chiral 1,3-oxazolidin-2-ones and
1,3-oxazolidine-2-thiones.
Collapse
Affiliation(s)
- Barbara La Ferla
- Department of Biotechnology and Bioscience, University of Milano-Bicocca, Milan, Italy
| | - Giuseppe D’Orazio
- Department of Biotechnology and Bioscience, University of Milano-Bicocca, Milan, Italy
| |
Collapse
|
18
|
Zhao R, Fu K, Fang Y, Zhou J, Shi L. Site-Specific C(sp 3 )-H Aminations of Imidates and Amidines Enabled by Covalently Tethered Distonic Radical Anions. Angew Chem Int Ed Engl 2020; 59:20682-20690. [PMID: 32706927 DOI: 10.1002/anie.202008806] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2020] [Revised: 07/21/2020] [Indexed: 11/11/2022]
Abstract
The utilization of N-centered radicals to synthesize nitrogen-containing compounds has attracted considerable attention recently, due to their powerful reactivities and the concomitant construction of C-N bonds. However, the generation and control of N-centered radicals remain particularly challenging. We report a tethering strategy using SOMO-HOMO-converted distonic radical anions for the site-specific aminations of imidates and amidines with aid of the non-covalent interaction. This reaction features a remarkably broad substrate scope and also enables the late-stage functionalization of bioactive molecules. Furthermore, the reaction mechanism is thoroughly investigated through kinetic studies, Raman spectroscopy, electron paramagnetic resonance spectroscopy, and density functional theory calculations, revealing that the aminations likely involve direct homolytic cleavage of N-H bonds and subsequently controllable 1,5 or 1,6 hydrogen atom transfer.
Collapse
Affiliation(s)
- Rong Zhao
- School of Science, Harbin Institute of Technology (Shenzhen), Shenzhen, 518055, China
| | - Kang Fu
- School of Science, Harbin Institute of Technology (Shenzhen), Shenzhen, 518055, China
| | - Yuanding Fang
- School of Science, Harbin Institute of Technology (Shenzhen), Shenzhen, 518055, China
| | - Jia Zhou
- School of Science, Harbin Institute of Technology (Shenzhen), Shenzhen, 518055, China
| | - Lei Shi
- School of Science, Harbin Institute of Technology (Shenzhen), Shenzhen, 518055, China.,Beijing National Laboratory for Molecular Sciences, Beijing, 100190, China
| |
Collapse
|
19
|
Pawlowski R, Skorka P, Stodulski M. Radical‐Mediated Non‐Dearomative Strategies in Construction of Spiro Compounds. Adv Synth Catal 2020. [DOI: 10.1002/adsc.202000807] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- R. Pawlowski
- Institute of Organic Chemistry Polish Academy of Sciences Warsaw Poland
| | - P. Skorka
- Medical University of Warsaw Faculty of Pharmacy Warsaw Poland
| | - M. Stodulski
- Institute of Organic Chemistry Polish Academy of Sciences Warsaw Poland
| |
Collapse
|
20
|
Zhao R, Fu K, Fang Y, Zhou J, Shi L. Site‐Specific C(sp
3
)–H Aminations of Imidates and Amidines Enabled by Covalently Tethered Distonic Radical Anions. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.202008806] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Affiliation(s)
- Rong Zhao
- School of Science Harbin Institute of Technology (Shenzhen) Shenzhen 518055 China
| | - Kang Fu
- School of Science Harbin Institute of Technology (Shenzhen) Shenzhen 518055 China
| | - Yuanding Fang
- School of Science Harbin Institute of Technology (Shenzhen) Shenzhen 518055 China
| | - Jia Zhou
- School of Science Harbin Institute of Technology (Shenzhen) Shenzhen 518055 China
| | - Lei Shi
- School of Science Harbin Institute of Technology (Shenzhen) Shenzhen 518055 China
- Beijing National Laboratory for Molecular Sciences Beijing 100190 China
| |
Collapse
|
21
|
Nandi R, Mandal PK, Kayet A, Bhattachariya T, Ghosh S, Maiti DK. Benzimidates as gem-Diamidation and Amidoindolyzation Cascade Synthons with a Hydrated Ni II Catalyst. Org Lett 2020; 22:3474-3478. [PMID: 32275155 DOI: 10.1021/acs.orglett.0c00928] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
We contributed a new benzimidate chemistry through moisture-insensitive NiII/NiII-FeIII combo-catalysis for a simultaneous 2-3 bond-forming gem-diamidation and amidoindolyzation cascade reaction to construct symmetrical and unsymmetrical gem-(arylmethylene)amides and indolo(arylmethylene)amides, using emerging benzimidate synthons. The operational simplicity, mild nature, generality, and robustness of the strategy were validated through syntheses of a wide range of new molecules, labile sugar-based chiral compounds, and pharmaceuticals with high yields under the same reaction conditions.
Collapse
Affiliation(s)
- Rajesh Nandi
- Department of Chemistry, University of Calcutta, 92 A.P.C. Road, Kolkata - 700009, India
| | - Prakash K Mandal
- Department of Chemistry, University of Calcutta, 92 A.P.C. Road, Kolkata - 700009, India
| | - Anirban Kayet
- Department of Chemistry, University of Calcutta, 92 A.P.C. Road, Kolkata - 700009, India
| | - Tamalika Bhattachariya
- Department of Chemistry, University of Calcutta, 92 A.P.C. Road, Kolkata - 700009, India
| | - Sukla Ghosh
- Department of Chemistry, Women's College, Calcutta, Kolkata - 700003, India
| | - Dilip K Maiti
- Department of Chemistry, University of Calcutta, 92 A.P.C. Road, Kolkata - 700009, India
| |
Collapse
|
22
|
Prusinowski AF, Twumasi RK, Wappes EA, Nagib DA. Vicinal, Double C-H Functionalization of Alcohols via an Imidate Radical-Polar Crossover Cascade. J Am Chem Soc 2020; 142:5429-5438. [PMID: 32141741 PMCID: PMC7299201 DOI: 10.1021/jacs.0c01318] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
A double functionalization of vicinal sp3 C-H bonds has been developed, wherein a β amine and γ iodide are incorporated onto an aliphatic alcohol in a single operation. This approach is enabled by an imidate radical chaperone, which selectively affords a transient β alkene that is amino-iodinated in situ. Overall, the radical-polar-crossover cascade entails the following key steps: (i) β C-H iodination via 1,5-hydrogen atom transfer (HAT), (ii) desaturation via I2 complexation, and (iii) vicinal amino-iodination of an in situ generated allyl imidate. The synthetic utility of this double C-H functionalization is illustrated by conversion of aliphatic alcohols to a diverse collection of α,β,γ substituted products bearing heteroatoms on three adjacent carbons. The radical-polar crossover mechanism is supported by various experimental probes, including isotopic labeling, intermediate validation, and kinetic studies.
Collapse
Affiliation(s)
- Allen F Prusinowski
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus, Ohio 43210, United States
| | - Raymond K Twumasi
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus, Ohio 43210, United States
| | - Ethan A Wappes
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus, Ohio 43210, United States
| | - David A Nagib
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus, Ohio 43210, United States
| |
Collapse
|
23
|
Chen AD, Herbort JH, Wappes EA, Nakafuku KM, Mustafa DN, Nagib DA. Radical cascade synthesis of azoles via tandem hydrogen atom transfer. Chem Sci 2020; 11:2479-2486. [PMID: 34084413 PMCID: PMC8157396 DOI: 10.1039/c9sc06239d] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2019] [Accepted: 01/24/2020] [Indexed: 12/12/2022] Open
Abstract
A radical cascade strategy for the modular synthesis of five-membered heteroarenes (e.g. oxazoles, imidazoles) from feedstock reagents (e.g. alcohols, amines, nitriles) has been developed. This double C-H oxidation is enabled by in situ generated imidate and acyloxy radicals, which afford regio- and chemo-selective β C-H bis-functionalization. The broad synthetic utility of this tandem hydrogen atom transfer (HAT) approach to access azoles is included, along with experiments and computations that provide insight into the selectivity and mechanism of both HAT events.
Collapse
Affiliation(s)
- Andrew D Chen
- Department of Chemistry and Biochemistry, The Ohio State University Columbus OH 43210 USA
| | - James H Herbort
- Department of Chemistry and Biochemistry, The Ohio State University Columbus OH 43210 USA
| | - Ethan A Wappes
- Department of Chemistry and Biochemistry, The Ohio State University Columbus OH 43210 USA
| | - Kohki M Nakafuku
- Department of Chemistry and Biochemistry, The Ohio State University Columbus OH 43210 USA
| | - Darsheed N Mustafa
- Department of Chemistry and Biochemistry, The Ohio State University Columbus OH 43210 USA
| | - David A Nagib
- Department of Chemistry and Biochemistry, The Ohio State University Columbus OH 43210 USA
| |
Collapse
|
24
|
Zhou X, Ding H, Chen P, Liu L, Sun Q, Wang X, Wang P, Lv Z, Li M. Radical Dehydroxymethylative Fluorination of Carbohydrates and Divergent Transformations of the Resulting Reverse Glycosyl Fluorides. Angew Chem Int Ed Engl 2020; 59:4138-4144. [PMID: 31850616 DOI: 10.1002/anie.201914557] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2019] [Indexed: 12/22/2022]
Abstract
A mild and convenient method for the synthesis of reverse glycosyl fluorides (RGFs) has been developed that is based on the silver-promoted radical dehydroxymethylative fluorination of carbohydrates. A salient feature of the reaction is that furanoid and pyranoid carbohydrates furnish structurally diverse RGFs bearing a wide variety of functional groups in good to excellent yields. Intramolecular hydrogen atom transfer experiments revealed that the reaction involves an underexploited radical fluorination that proceeds via β-fragmentation of sugar-derived primary alkoxyl radicals. Structurally divergent RGFs were obtained by catalytic C-F bond activation, and our method thus offers a concise and efficient strategy for the synthesis of reverse glycosides by late-stage diversification of RGFs. The potential of this method is showcased by the preparation and diversification of sotagliflozin, leading to the discovery of a promising SGLT2 inhibitor candidate.
Collapse
Affiliation(s)
- Xin Zhou
- School of Medicine and Pharmacy, Key Laboratory of Marine Medicine, Chinese Ministry of Education, Ocean University of China, 5 Yushan Road, Qingdao, 266003, P. R. China
| | - Han Ding
- School of Medicine and Pharmacy, Key Laboratory of Marine Medicine, Chinese Ministry of Education, Ocean University of China, 5 Yushan Road, Qingdao, 266003, P. R. China
| | - Pengwei Chen
- School of Medicine and Pharmacy, Key Laboratory of Marine Medicine, Chinese Ministry of Education, Ocean University of China, 5 Yushan Road, Qingdao, 266003, P. R. China.,Hainan Key Laboratory for Research and Development of Natural Products from Li Folk Medicine, Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Haikou, 571101, P. R. China
| | - Li Liu
- School of Medicine and Pharmacy, Key Laboratory of Marine Medicine, Chinese Ministry of Education, Ocean University of China, 5 Yushan Road, Qingdao, 266003, P. R. China
| | - Qikai Sun
- School of Medicine and Pharmacy, Key Laboratory of Marine Medicine, Chinese Ministry of Education, Ocean University of China, 5 Yushan Road, Qingdao, 266003, P. R. China
| | - Xianyang Wang
- School of Medicine and Pharmacy, Key Laboratory of Marine Medicine, Chinese Ministry of Education, Ocean University of China, 5 Yushan Road, Qingdao, 266003, P. R. China
| | - Peng Wang
- School of Medicine and Pharmacy, Key Laboratory of Marine Medicine, Chinese Ministry of Education, Ocean University of China, 5 Yushan Road, Qingdao, 266003, P. R. China
| | - Zhihua Lv
- School of Medicine and Pharmacy, Key Laboratory of Marine Medicine, Chinese Ministry of Education, Ocean University of China, 5 Yushan Road, Qingdao, 266003, P. R. China.,Laboratory for Marine Drugs and Bioproducts, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266237, P. R. China
| | - Ming Li
- School of Medicine and Pharmacy, Key Laboratory of Marine Medicine, Chinese Ministry of Education, Ocean University of China, 5 Yushan Road, Qingdao, 266003, P. R. China.,Laboratory for Marine Drugs and Bioproducts, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266237, P. R. China
| |
Collapse
|
25
|
Zhou X, Ding H, Chen P, Liu L, Sun Q, Wang X, Wang P, Lv Z, Li M. Radical Dehydroxymethylative Fluorination of Carbohydrates and Divergent Transformations of the Resulting Reverse Glycosyl Fluorides. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.201914557] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Affiliation(s)
- Xin Zhou
- School of Medicine and Pharmacy Key Laboratory of Marine Medicine Chinese Ministry of Education Ocean University of China 5 Yushan Road Qingdao 266003 P. R. China
| | - Han Ding
- School of Medicine and Pharmacy Key Laboratory of Marine Medicine Chinese Ministry of Education Ocean University of China 5 Yushan Road Qingdao 266003 P. R. China
| | - Pengwei Chen
- School of Medicine and Pharmacy Key Laboratory of Marine Medicine Chinese Ministry of Education Ocean University of China 5 Yushan Road Qingdao 266003 P. R. China
- Hainan Key Laboratory for Research and Development of Natural Products from Li Folk Medicine Institute of Tropical Bioscience and Biotechnology Chinese Academy of Tropical Agricultural Sciences Haikou 571101 P. R. China
| | - Li Liu
- School of Medicine and Pharmacy Key Laboratory of Marine Medicine Chinese Ministry of Education Ocean University of China 5 Yushan Road Qingdao 266003 P. R. China
| | - Qikai Sun
- School of Medicine and Pharmacy Key Laboratory of Marine Medicine Chinese Ministry of Education Ocean University of China 5 Yushan Road Qingdao 266003 P. R. China
| | - Xianyang Wang
- School of Medicine and Pharmacy Key Laboratory of Marine Medicine Chinese Ministry of Education Ocean University of China 5 Yushan Road Qingdao 266003 P. R. China
| | - Peng Wang
- School of Medicine and Pharmacy Key Laboratory of Marine Medicine Chinese Ministry of Education Ocean University of China 5 Yushan Road Qingdao 266003 P. R. China
| | - Zhihua Lv
- School of Medicine and Pharmacy Key Laboratory of Marine Medicine Chinese Ministry of Education Ocean University of China 5 Yushan Road Qingdao 266003 P. R. China
- Laboratory for Marine Drugs and Bioproducts Qingdao National Laboratory for Marine Science and Technology Qingdao 266237 P. R. China
| | - Ming Li
- School of Medicine and Pharmacy Key Laboratory of Marine Medicine Chinese Ministry of Education Ocean University of China 5 Yushan Road Qingdao 266003 P. R. China
- Laboratory for Marine Drugs and Bioproducts Qingdao National Laboratory for Marine Science and Technology Qingdao 266237 P. R. China
| |
Collapse
|
26
|
Nakafuku KM, Twumasi RK, Vanitcha A, Wappes EA, Namitharan K, Bekkaye M, Nagib DA. Development of an Imine Chaperone for Selective C-H Functionalization of Alcohols via Radical Relay. J Org Chem 2019; 84:13065-13072. [PMID: 31513401 PMCID: PMC6948922 DOI: 10.1021/acs.joc.9b02052] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
The design of a radical relay chaperone to promote selective C-H functionalizations is described. A saccharin-based imine was found to be uniquely suited to effect C-H amination of alcohols via an in situ generated hemiaminal. This radical chaperone facilitates the mild generation of an N-centered radical while also directing its regioselective H atom transfer (HAT) to the β carbon of an alcohol. Upon β C-H halogenation, aminocyclization, and reductive cleavage, an NH2 is formally added vicinal to an alcohol. The development, synthetic utility, and chemo-, regio-, and stereoselectivity of this imine chaperone-mediated C-H amination is presented herein.
Collapse
Affiliation(s)
- Kohki M Nakafuku
- Department of Chemistry and Biochemistry , The Ohio State University , Columbus , Ohio 43210 , United States
| | - Raymond K Twumasi
- Department of Chemistry and Biochemistry , The Ohio State University , Columbus , Ohio 43210 , United States
| | - Avassaya Vanitcha
- Department of Chemistry and Biochemistry , The Ohio State University , Columbus , Ohio 43210 , United States
| | - Ethan A Wappes
- Department of Chemistry and Biochemistry , The Ohio State University , Columbus , Ohio 43210 , United States
| | - Kayambu Namitharan
- Department of Chemistry and Biochemistry , The Ohio State University , Columbus , Ohio 43210 , United States
| | - Mathieu Bekkaye
- Department of Chemistry and Biochemistry , The Ohio State University , Columbus , Ohio 43210 , United States
| | - David A Nagib
- Department of Chemistry and Biochemistry , The Ohio State University , Columbus , Ohio 43210 , United States
| |
Collapse
|
27
|
Shaw M, Kumar A. Additive‐Free Gold(III)‐Catalyzed Stereoselective Synthesis of 2‐Deoxyglycosides Using Phenylpropiolate Glycosides as Donors. Chem Asian J 2019; 14:4651-4658. [DOI: 10.1002/asia.201900888] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2019] [Revised: 08/05/2019] [Indexed: 11/07/2022]
Affiliation(s)
- Mukta Shaw
- Department of ChemistryIndian Institute of Technology Patna, Bihta 801106 Bihar India
| | - Amit Kumar
- Department of ChemistryIndian Institute of Technology Patna, Bihta 801106 Bihar India
| |
Collapse
|
28
|
Thakur R, Jaiswal Y, Kumar A. Imidates: an emerging synthon for N-heterocycles. Org Biomol Chem 2019; 17:9829-9843. [DOI: 10.1039/c9ob01899a] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
This review highlights the recent application of imidates as building blocks for the synthesis of saturated and un-saturated N-heterocycles via C–N annulation reactions under acid/base/metal-catalyzed/radical-mediated reaction conditions.
Collapse
Affiliation(s)
- Rima Thakur
- Department of Chemistry
- National Institute of Technology
- Patna
- India
| | - Yogesh Jaiswal
- Department of Chemistry
- Indian Institute of Technology Patna
- Bihta
- India
| | - Amit Kumar
- Department of Chemistry
- Indian Institute of Technology Patna
- Bihta
- India
| |
Collapse
|