1
|
Xu X, Huang X, Xu W. Marine actinomycetes-derived angucyclines and angucyclinones with biosynthesis and activity--past 10 years (2014-2023). Eur J Med Chem 2025; 283:117161. [PMID: 39700875 DOI: 10.1016/j.ejmech.2024.117161] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2024] [Revised: 11/01/2024] [Accepted: 12/09/2024] [Indexed: 12/21/2024]
Abstract
Actinomycete bacteria derived from marine environments are a good source of natural products with diverse biological activities such as cytotoxicity, antiviral, and antimicrobial actions. This review summarizes 191 angucyclines and angucyclinones derived from marine actinomycetes reported in the literature from 2014 to 2023 and introduced the latest developments in actinomycete-silenced biosynthetic gene cluster activation, including heterologous recombination and in situ activation. The key role of redox post-modifications in the biosynthetic process of atypical angucyclines. This review provides insights into the discovery and biosynthesis of valuable angucyclines and angucyclinones from marine-associated actinomycetes and potential lead compounds for the research and development of new drugs.
Collapse
Affiliation(s)
- Xiao Xu
- The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao, 266000, China; Institute of Regenerative Medicine and Laboratory Technology Innovation, Qingdao University, Qingdao, Shandong, 266071, China.
| | - Xiaofei Huang
- Key Laboratory of Marine Drugs, Chinese Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, Qingdao, 266003, China.
| | - Wenhua Xu
- The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao, 266000, China; Institute of Regenerative Medicine and Laboratory Technology Innovation, Qingdao University, Qingdao, Shandong, 266071, China.
| |
Collapse
|
2
|
Fu XZ, Zhang SM, Wang GF, Yang QL, Guo L, Pescitelli G, Xie ZP. Atypical Angucyclinones with Ring Expansion and Cleavage from a Marine Streptomyces sp. J Org Chem 2022; 87:15998-16010. [PMID: 36395479 DOI: 10.1021/acs.joc.2c02134] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
A unique ring C-expanded angucyclinone, oxemycin A (1), and seven new ring-cleavage derivatives (2-5 and 9-11) were isolated from the marine actinomycete Streptomyces pratensis KCB-132, together with eight known analogues (6-8 and 12-16). Their structures were elucidated by spectroscopic analyses, single-crystal X-ray diffractions, and NMR and ECD calculations. Among these atypical angucyclinones, compound 1 represented the first seven-membered ketoester in the angucyclinone family, which sheds light on the origin of fragmented angucyclinones with C-ring cleavage at C-12/C-12a in the Baeyer-Villiger hypothesis, such as 2-4, while the related "nonoxidized" analogues 5-8 seem to originate from a diverse pathway within the Grob fragmentation hypothesis. Additionally, we have succeeded in the challenging separation of elmenols E and F (12) into their four stereoisomers, which remained stable in aprotic solvents but rapidly racemized under protic conditions. Furthermore, the absolute configurations of LS1924 and its isomers (14 and 15) were assigned by ECD calculations for the first time. Surprisingly, these two bicyclic acetals are susceptible to hydrolysis in solution, resulting in fragmented derivatives 17 and 18 with C-ring cleavage between C-6a and C-7. Compared with ring C-modified angucyclinones, ring A-cleaved 11 was more active to multiple resistant "ESKAPE" pathogens with MIC values ranging from 4.7 to 37.5 μg/mL.
Collapse
Affiliation(s)
- Xin-Zhen Fu
- School of Pharmacy, Binzhou Medical University, Yantai 264003, China
| | - Shu-Min Zhang
- School of Pharmacy, Binzhou Medical University, Yantai 264003, China
| | - Guang-Fei Wang
- College of Life Sciences, Yantai University, Yantai 264003, China
| | - Qiao-Li Yang
- College of Life Sciences, Yantai University, Yantai 264003, China
| | - Lin Guo
- School of Pharmacy, Binzhou Medical University, Yantai 264003, China
| | - Gennaro Pescitelli
- Dipartimento di Chimica e Chimica Industriale, Università di Pisa, Via Moruzzi 13, 56124 Pisa, Italy
| | - Ze-Ping Xie
- School of Pharmacy, Binzhou Medical University, Yantai 264003, China
| |
Collapse
|
3
|
Hu Y, Chen S, Yang F, Dong S. Marine Indole Alkaloids-Isolation, Structure and Bioactivities. Mar Drugs 2021; 19:658. [PMID: 34940657 PMCID: PMC8708922 DOI: 10.3390/md19120658] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2021] [Revised: 11/19/2021] [Accepted: 11/22/2021] [Indexed: 11/30/2022] Open
Abstract
Indole alkaloids are heterocyclic natural products with extensive pharmacological activities. As an important source of lead compounds, many clinical drugs have been derived from natural indole compounds. Marine indole alkaloids, from unique marine environments with high pressure, high salt and low temperature, exhibit structural diversity with various bioactivities, which attracts the attention of drug researchers. This article is a continuation of the previous two comprehensive reviews and covers the literature on marine indole alkaloids published from 2015 to 2021, with 472 new or structure-revised compounds categorized by sources into marine microorganisms, invertebrates, and plant-derived. The structures and bioactivities demonstrated in this article will benefit the synthesis and pharmacological activity study for marine indole alkaloids on their way to clinical drugs.
Collapse
Affiliation(s)
| | | | | | - Shuai Dong
- Key Laboratory of Tropical Biological Resources of Ministry of Education, School of Pharmaceutical Sciences, Hainan University, Haikou 570228, China; (Y.H.); (S.C.); (F.Y.)
| |
Collapse
|
4
|
Guo L, Yang Q, Wang G, Zhang S, Liu M, Pan X, Pescitelli G, Xie Z. Ring D-Modified and Highly Reduced Angucyclinones From Marine Sediment-Derived Streptomyces sp. Front Chem 2021; 9:756962. [PMID: 34712650 PMCID: PMC8546756 DOI: 10.3389/fchem.2021.756962] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2021] [Accepted: 09/02/2021] [Indexed: 11/28/2022] Open
Abstract
Angucyclines and angucyclinones represent the largest family of type II PKS-engineered natural products. Chemical analysis of a marine Streptomyces sp. KCB-132 yielded three new members, actetrophenone A (1) and actetrophenols A–B (2–3). Their structures were elucidated by NMR spectroscopy, X-ray crystallography and CD calculations. Actetrophenone A (1) is the first representative of a novel-type angucyclinone bearing a nonaromatic D-ring. Actetrophenol A (2) features a highly reduced and aromatized four-ring system, which is unprecedented for natural products. While (Ra)- and (Sa)-actetrophenol B (3) bear an unprecedented N-acetyltryptamine-substituted tetraphene core skeleton, this is the first report of a pair of atropisomeric isomers in the angucyclinone family. Actetrophenol A (2) exhibits remarkable antibiotic activity, notably including potent activity to multiple resistant Staphylococcus aureus and Enterococcus faecium with MIC values of 4 μg/ml, in contrast, the positive control antimicrobial agent penicillin was inactive up to 32 μg/ml.
Collapse
Affiliation(s)
- Lin Guo
- School of Pharmacy, Binzhou Medical University, Yantai, China
| | - Qiaoli Yang
- College of Life Sciences, Yantai University, Yantai, China
| | - Guangfei Wang
- College of Life Sciences, Yantai University, Yantai, China
| | - Shumin Zhang
- School of Pharmacy, Binzhou Medical University, Yantai, China
| | - Ming Liu
- School of Pharmacy, Binzhou Medical University, Yantai, China
| | - Xiaohong Pan
- School of Pharmacy, Binzhou Medical University, Yantai, China
| | - Gennaro Pescitelli
- Dipartimento di Chimica e Chimica Industriale, Università di Pisa, Pisa, Italy
| | - Zeping Xie
- School of Pharmacy, Binzhou Medical University, Yantai, China
| |
Collapse
|
5
|
Liu T, Ma X, Yu J, Yang W, Wang G, Wang Z, Ge Y, Song J, Han H, Zhang W, Yang D, Liu X, Ma M. Rational generation of lasso peptides based on biosynthetic gene mutations and site-selective chemical modifications. Chem Sci 2021; 12:12353-12364. [PMID: 34603665 PMCID: PMC8480316 DOI: 10.1039/d1sc02695j] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2021] [Accepted: 08/10/2021] [Indexed: 12/14/2022] Open
Abstract
Lasso peptides are a unique family of natural products whose structures feature a specific threaded fold, which confers these peptides the resistance to thermal and proteolytic degradation. This stability gives lasso peptides excellent pharmacokinetic properties, which together with their diverse reported bioactivities have garnered extensive attention because of their drug development potential. Notably, the threaded fold has proven quite inaccessible by chemical synthesis, which has hindered efficient generation of structurally diverse lasso peptides. We herein report the discovery of a new lasso peptide stlassin (1) by gene activation based on a Streptomyces heterologous expression system. Site-directed mutagenesis on the precursor peptide-encoding gene is carried out systematically, generating 17 stlassin derivatives (2–17 and 21) with residue-replacements at specific positions of 1. The solution NMR structures of 1, 3, 4, 14 and 16 are determined, supporting structural comparisons that ultimately enabled the rational production of disulfide bond-containing derivatives 18 and 19, whose structures do not belong to any of the four classes currently used to classify lasso peptides. Several site-selective chemical modifications are first applied on 16 and 21, efficiently generating new derivatives (20, 22–27) whose structures bear various decorations beyond the peptidyl monotonicity. The high production yields of these stlassin derivatives facilitate biological assays, which show that 1, 4, 16, 20, 21 and 24 possess antagonistic activities against the binding of lipopolysaccharides to toll-like receptor 4 (TLR4). These results demonstrate proof-of-concept for the combined mutational/chemical generation of lasso peptide libraries to support drug lead development. A new class II lasso peptide stlassin (1) was discovered and stlassin derivatives (2–27) were rationally generated by biosynthetic gene mutations and site-selective chemical modifications, expanding the structural diversity of lasso peptides.![]()
Collapse
Affiliation(s)
- Tan Liu
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University 38 Xueyuan Road, Haidian District Beijing 100191 China
| | - Xiaojie Ma
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University 38 Xueyuan Road, Haidian District Beijing 100191 China
| | - Jiahui Yu
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University 38 Xueyuan Road, Haidian District Beijing 100191 China
| | - Wensheng Yang
- School of Medicine, Tongji University 1239 Siping Road Shanghai 200092 China
| | - Guiyang Wang
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University 38 Xueyuan Road, Haidian District Beijing 100191 China
| | - Zhengdong Wang
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University 38 Xueyuan Road, Haidian District Beijing 100191 China
| | - Yuanjie Ge
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University 38 Xueyuan Road, Haidian District Beijing 100191 China
| | - Juan Song
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University 38 Xueyuan Road, Haidian District Beijing 100191 China
| | - Hua Han
- School of Medicine, Tongji University 1239 Siping Road Shanghai 200092 China
| | - Wen Zhang
- School of Medicine, Tongji University 1239 Siping Road Shanghai 200092 China
| | - Donghui Yang
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University 38 Xueyuan Road, Haidian District Beijing 100191 China
| | - Xuehui Liu
- CAS Research Platform for Protein Sciences, Institute of Biophysics, Chinese Academy of Sciences 15 Datun Road, Chao-yang District Beijing 100101 China
| | - Ming Ma
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University 38 Xueyuan Road, Haidian District Beijing 100191 China
| |
Collapse
|
6
|
Yu J, Song J, Chi C, Liu T, Geng T, Cai Z, Dong W, Shi C, Ma X, Zhang Z, Ma X, Xing B, Jin H, Zhang L, Dong S, Yang D, Ma M. Functional Characterization and Crystal Structure of the Bifunctional Thioesterase Catalyzing Epimerization and Cyclization in Skyllamycin Biosynthesis. ACS Catal 2021. [DOI: 10.1021/acscatal.1c03064] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Affiliation(s)
- Jiahui Yu
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, 38 Xueyuan Road, Haidian District, Beijing 100191, China
| | - Juan Song
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, 38 Xueyuan Road, Haidian District, Beijing 100191, China
| | - Changbiao Chi
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, 38 Xueyuan Road, Haidian District, Beijing 100191, China
| | - Tan Liu
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, 38 Xueyuan Road, Haidian District, Beijing 100191, China
| | - Tongtong Geng
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, 38 Xueyuan Road, Haidian District, Beijing 100191, China
| | - Zonghui Cai
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, 38 Xueyuan Road, Haidian District, Beijing 100191, China
| | - Weidong Dong
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, 38 Xueyuan Road, Haidian District, Beijing 100191, China
| | - Cheng Shi
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, 38 Xueyuan Road, Haidian District, Beijing 100191, China
| | - Xueyang Ma
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, 38 Xueyuan Road, Haidian District, Beijing 100191, China
| | - Zhongyi Zhang
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, 38 Xueyuan Road, Haidian District, Beijing 100191, China
| | - Xiaojie Ma
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, 38 Xueyuan Road, Haidian District, Beijing 100191, China
| | - Baiying Xing
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, 38 Xueyuan Road, Haidian District, Beijing 100191, China
| | - Hongwei Jin
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, 38 Xueyuan Road, Haidian District, Beijing 100191, China
| | - Liangren Zhang
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, 38 Xueyuan Road, Haidian District, Beijing 100191, China
| | - Suwei Dong
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, 38 Xueyuan Road, Haidian District, Beijing 100191, China
| | - Donghui Yang
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, 38 Xueyuan Road, Haidian District, Beijing 100191, China
| | - Ming Ma
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, 38 Xueyuan Road, Haidian District, Beijing 100191, China
| |
Collapse
|
7
|
Xiao H, Wang G, Wang Z, Kuang Y, Song J, Jin J, Ye M, Yang D, Ma M. Generation of Unusual Aromatic Polyketides by Incorporation of Phenylamine Analogues into a C-Ring-Cleaved Angucyclinone. Molecules 2021; 26:molecules26071959. [PMID: 33807235 PMCID: PMC8038006 DOI: 10.3390/molecules26071959] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2021] [Revised: 03/25/2021] [Accepted: 03/26/2021] [Indexed: 11/16/2022] Open
Abstract
Angucyclinones are aromatic polyketides that possess impressive structural diversity and significant biological activities. The structural diversity of these natural products is attributed to various enzymatic or nonenzymatic modifications on their tetracyclic benz(a)anthracene skeleton. Previously, we discovered an unusual phenylamine-incorporated angucyclinone (1) from a marine Streptomyces sp. PKU-MA00218, and identified that it was produced from the nonenzymatic conversion of a C-ring-cleaved angucyclinone (2) with phenylamine. In this study, we tested the nonenzymatic conversion of 2 with more phenylamine analogues, to expand the utility of this feasible conversion in unusual angucyclinones generation. The (3-ethynyl)phenylamine and disubstituted analogues including (3,4-dimethyl)phenylamine, (3,4-methylenedioxy)phenylamine, and (4-bromo-3-methyl)phenylamine were used in the conversion of 2, which was isolated from the fermentation of Streptomyces sp. PKU-MA00218. All four phenylamine analogues were incorporated into 2 efficiently under mild conditions, generating new compounds 3–6. The activation of 3–6 on nuclear factor erythroid 2-related factor 2 (Nrf2) transcription were tested, which showed that 4 possessing a dimethyl-substitution gave most potent activity. These results evidenced that disubstitutions on phenylamine can be roughly tolerated in the nonenzymatic reactions with 2, suggesting extended applications of more disubstituted phenylamines incorporation to generate new bioactive angucyclinones in the future.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | - Ming Ma
- Correspondence: (D.Y.); (M.M.)
| |
Collapse
|
8
|
Mikhaylov AA, Ikonnikova VA, Solyev PN. Disclosing biosynthetic connections and functions of atypical angucyclinones with a fragmented C-ring. Nat Prod Rep 2021; 38:1506-1517. [PMID: 33480893 DOI: 10.1039/d0np00082e] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
This review on atypical angucyclinones possessing an aromatic cleavage of the C-ring covers literature between 1995 and early 2020.The unusual framework of the middle C-ring, "broken" as a result of biotransformations and oxidations in vivo and bearing an sp3-C connection, is of interest for biosynthetic investigations. The reported 39 natural compounds (55 including stereoisomers) have been analyzed and arranged into three structural groups. The biosynthetic origin of all these compounds has been thoroughly reviewed and revised, based on the found connections with oxidized angucyclinone structures. The data on biological activities has been summarized. Careful consideration of the origin of the structure allowed us to outline a hypothesis on the biological function as well as prospective applications of such atypical angucyclinones.
Collapse
Affiliation(s)
- Andrey A Mikhaylov
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry of the Russian Academy of Sciences, 16/10 Miklukho-Maklaya St., Moscow, 117997, Russia.
| | | | | |
Collapse
|
9
|
Carroll AR, Copp BR, Davis RA, Keyzers RA, Prinsep MR. Marine natural products. Nat Prod Rep 2021; 38:362-413. [PMID: 33570537 DOI: 10.1039/d0np00089b] [Citation(s) in RCA: 220] [Impact Index Per Article: 55.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
This review covers the literature published in 2019 for marine natural products (MNPs), with 719 citations (701 for the period January to December 2019) referring to compounds isolated from marine microorganisms and phytoplankton, green, brown and red algae, sponges, cnidarians, bryozoans, molluscs, tunicates, echinoderms, mangroves and other intertidal plants and microorganisms. The emphasis is on new compounds (1490 in 440 papers for 2019), together with the relevant biological activities, source organisms and country of origin. Pertinent reviews, biosynthetic studies, first syntheses, and syntheses that led to the revision of structures or stereochemistries, have been included. Methods used to study marine fungi and their chemical diversity have also been discussed.
Collapse
Affiliation(s)
- Anthony R Carroll
- School of Environment and Science, Griffith University, Gold Coast, Australia. and Griffith Institute for Drug Discovery, Griffith University, Brisbane, Australia
| | - Brent R Copp
- School of Chemical Sciences, University of Auckland, Auckland, New Zealand
| | - Rohan A Davis
- Griffith Institute for Drug Discovery, Griffith University, Brisbane, Australia and School of Enivironment and Science, Griffith University, Brisbane, Australia
| | - Robert A Keyzers
- Centre for Biodiscovery, School of Chemical and Physical Sciences, Victoria University of Wellington, Wellington, New Zealand
| | - Michèle R Prinsep
- Chemistry, School of Science, University of Waikato, Hamilton, New Zealand
| |
Collapse
|
10
|
Guo L, Zhang L, Yang Q, Xu B, Fu X, Liu M, Li Z, Zhang S, Xie Z. Antibacterial and Cytotoxic Bridged and Ring Cleavage Angucyclinones From a Marine Streptomyces sp. Front Chem 2020; 8:586. [PMID: 32850626 PMCID: PMC7417440 DOI: 10.3389/fchem.2020.00586] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2020] [Accepted: 06/08/2020] [Indexed: 11/21/2022] Open
Abstract
Chemical investigation of a marine-derived Streptomyces sp. KCB-132, cultivated in liquid ISP2 medium, had led to the discovery of three C-ring cleavage angucyclinone N-heterocycles, pratensilins A–C, with a novel spiro indolinone-naphthofuran skeleton. Addition of 50 μM LaCl3 to the same medium and subsequent chemical analysis of this strain returned a new member of this rare class, pratensilin D (1), along with two new angucyclinone derivatives, featuring ether-bridged (2) and A-ring cleavage (3) structural properties. Their structures and absolute configurations were assigned by spectroscopic analysis, single-crystal X-ray diffractions, and equivalent circulating density (ECD) calculations. (+)- and (–)-1, a pair of enantiomeric nitrogen-containing angucyclinones, exhibited different strengths of antibacterial and cytotoxic activities.
Collapse
Affiliation(s)
- Lin Guo
- School of Pharmacy, Binzhou Medical University, Yantai, China
| | - Lu Zhang
- School of Pharmacy, Binzhou Medical University, Yantai, China
| | - Qiaoli Yang
- College of Life Sciences, Yantai University, Yantai, China
| | - Bo Xu
- College of Life Sciences, Yantai University, Yantai, China
| | - Xinzhen Fu
- School of Pharmacy, Binzhou Medical University, Yantai, China
| | - Ming Liu
- School of Pharmacy, Binzhou Medical University, Yantai, China
| | - Zhi Li
- School of Pharmacy, Binzhou Medical University, Yantai, China
| | - Shumin Zhang
- School of Pharmacy, Binzhou Medical University, Yantai, China
| | - Zeping Xie
- School of Pharmacy, Binzhou Medical University, Yantai, China
| |
Collapse
|
11
|
Zhang S, Zhang L, Fu X, Li Z, Guo L, Kou L, Liu M, Xie Z. (+)- and (−)-actinoxocine, and actinaphthorans A–B, C-ring expansion and cleavage angucyclinones from a marine-derived Streptomyces sp. Org Chem Front 2019. [DOI: 10.1039/c9qo01154d] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A pair of enantiomeric C-ring expansion angucyclinones with an unprecedented epoxybenzo[f]naphtho[1,8-bc]oxocine carbon skeleton, and two unique C-ring cleavage analogues, were isolated from a marine-derived Streptomyces sp.
Collapse
Affiliation(s)
- Shumin Zhang
- School of Pharmacy
- Binzhou Medical University
- Yantai 264003
- China
| | - Lu Zhang
- School of Pharmacy
- Binzhou Medical University
- Yantai 264003
- China
| | - Xinzhen Fu
- School of Pharmacy
- Binzhou Medical University
- Yantai 264003
- China
| | - Zhi Li
- School of Pharmacy
- Binzhou Medical University
- Yantai 264003
- China
| | - Lin Guo
- School of Pharmacy
- Binzhou Medical University
- Yantai 264003
- China
| | - Lijuan Kou
- School of Pharmacy
- Binzhou Medical University
- Yantai 264003
- China
| | - Ming Liu
- School of Pharmacy
- Binzhou Medical University
- Yantai 264003
- China
| | - Zeping Xie
- School of Pharmacy
- Binzhou Medical University
- Yantai 264003
- China
| |
Collapse
|