1
|
Chowdhury R, Dubey AK, Ghosh R. Synthesis of Functionalized Organosilicon Compounds/Distal Ketones via Ring-Opening Giese Addition of Cycloalkanols under Organophotocatalytic Conditions. J Org Chem 2024; 89:7187-7200. [PMID: 38669476 DOI: 10.1021/acs.joc.4c00600] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/28/2024]
Abstract
Visible-light-induced organophotocatalyzed ring-opening followed by remote Giese addition of tertiary cycloalkanols with β-silylmethylene malonates has been developed under mild reaction conditions for the synthesis of organosilicon compounds, bearing a ketone group distally substituted with a silyl group with an additional dialkyl malonate functional handle in moderate to good yields (34-72%). The protocol also worked well with diverse Michael acceptors, such as alkylidene/benzylidene malonates, trifluoro methylidene malonate, benzylidene malononitrile, α-cyano-enone, and α-cyano vinyl sulfone, and delivered desired valuable distally functionalized ketones. To showcase the potential of the method, various synthetic transformations of the obtained product were also demonstrated.
Collapse
Affiliation(s)
- Raghunath Chowdhury
- Bio-Organic Division, Bhabha Atomic Research Centre, Trombay, Mumbai 400085, India
- Homi Bhabha National Institute, Anushaktinagar, Mumbai 400094, India
| | - Akhil K Dubey
- Bio-Organic Division, Bhabha Atomic Research Centre, Trombay, Mumbai 400085, India
| | - Rajib Ghosh
- Radiation and Photochemistry Division, Bhabha Atomic Research Centre, Trombay, Mumbai 400085, India
- Homi Bhabha National Institute, Anushaktinagar, Mumbai 400094, India
| |
Collapse
|
2
|
An Z, Miao M, Sun F, Lan XB, Yu JQ, Guo X, Zhang J. Copper-catalyzed oxidative cyclization of 2-(1 H-pyrrol-1-yl)aniline and alkylsilyl peroxides: a route to pyrrolo[1,2- a]quinoxalines. Org Biomol Chem 2024; 22:2370-2374. [PMID: 38416487 DOI: 10.1039/d3ob01934a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/29/2024]
Abstract
An efficient method was developed for the one-pot construction of pyrrolo[1,2-a]quinoxalines via a Cu(II)-catalyzed domino reaction between 2-(1H-pyrrol-1-yl)anilines and alkylsilyl peroxides. This reaction proceeds through C-C bond cleavage and new C-C and C-N bond formation. A mechanistic study suggests that alkyl radical species participate in the cascade reaction.
Collapse
Affiliation(s)
- Zhenyu An
- College of Pharmacy, Key Laboratory of Protection, Development and Utilization of Medicinal Resources in Liupanshan Area, Ministry of Education, Ningxia Medical University, Yinchuan, Ningxia Hui Autonomous Region, China.
| | - Man Miao
- College of Pharmacy, Key Laboratory of Protection, Development and Utilization of Medicinal Resources in Liupanshan Area, Ministry of Education, Ningxia Medical University, Yinchuan, Ningxia Hui Autonomous Region, China.
| | - Fengkai Sun
- College of Pharmacy, Key Laboratory of Protection, Development and Utilization of Medicinal Resources in Liupanshan Area, Ministry of Education, Ningxia Medical University, Yinchuan, Ningxia Hui Autonomous Region, China.
| | - Xiao-Bing Lan
- College of Pharmacy, Key Laboratory of Protection, Development and Utilization of Medicinal Resources in Liupanshan Area, Ministry of Education, Ningxia Medical University, Yinchuan, Ningxia Hui Autonomous Region, China.
| | - Jian-Qiang Yu
- College of Pharmacy, Key Laboratory of Protection, Development and Utilization of Medicinal Resources in Liupanshan Area, Ministry of Education, Ningxia Medical University, Yinchuan, Ningxia Hui Autonomous Region, China.
| | - Xiaoli Guo
- College of Pharmacy, Key Laboratory of Protection, Development and Utilization of Medicinal Resources in Liupanshan Area, Ministry of Education, Ningxia Medical University, Yinchuan, Ningxia Hui Autonomous Region, China.
| | - Jian Zhang
- College of Pharmacy, Key Laboratory of Protection, Development and Utilization of Medicinal Resources in Liupanshan Area, Ministry of Education, Ningxia Medical University, Yinchuan, Ningxia Hui Autonomous Region, China.
- Medicinal Chemistry and Bioinformatics Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| |
Collapse
|
3
|
Liu C, Wang J, Liu X, Feng J, Du D. NHC-catalyzed radical acylation of cycloalkyl silyl peroxides to access 1,6-,1,7-, and 1,8-diketones. Chem Commun (Camb) 2023; 59:13175-13178. [PMID: 37850247 DOI: 10.1039/d3cc04765b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2023]
Abstract
An unprecedented N-heterocyclic carbene (NHC)-catalyzed radical acylation of cycloalkyl silyl peroxides was developed using readily available aldehydes as the acylating agents. This protocol provides an exceptionally useful method for the efficient and rapid synthesis of long-chain 1,6-/1,7-/1,8-diketones, especially unsymmetrical ones. This strategy also has the advantages of mild conditions, good functional group compatibility, and potential applications in the late-stage functionalization of aldehydes with bioactive fragments and in the construction of long-chain complex bioactive molecules.
Collapse
Affiliation(s)
- Chaolei Liu
- State Key Laboratory of Natural Medicines, School of Science, China Pharmaceutical University, Nanjing 210009, P. R. China.
| | - Jingyi Wang
- State Key Laboratory of Natural Medicines, School of Science, China Pharmaceutical University, Nanjing 210009, P. R. China.
| | - Xinlong Liu
- State Key Laboratory of Natural Medicines, School of Science, China Pharmaceutical University, Nanjing 210009, P. R. China.
| | - Jie Feng
- State Key Laboratory of Natural Medicines, School of Science, China Pharmaceutical University, Nanjing 210009, P. R. China.
| | - Ding Du
- State Key Laboratory of Natural Medicines, School of Science, China Pharmaceutical University, Nanjing 210009, P. R. China.
| |
Collapse
|
4
|
Abstract
Organic peroxides are becoming popular intermediates for novel chemical transformations. The weak O-O bond is readily reduced by transition metals, including iron and copper, to initiate a radical cascade process that breaks C-C bonds. Great potential exists for the rapid generation of complexity, originating from the ability to couple the resulting free radicals with a wide range of partners. First, this review article discusses the history and synthesis of organic peroxides, providing the context necessary to understand this methodology. Then, it highlights 91 examples of recent applications of the radical functionalization of C-C bonds accessed through the transition metal-mediated reduction of organic peroxides. Finally, we provide some comments about safety when working with organic peroxides.
Collapse
Affiliation(s)
- Jeremy H. Dworkin
- Department of Chemistry and Biochemistry, University of California, Los Angeles, CA 90095-1569, USA
| | - Brady W. Dehnert
- Department of Chemistry and Biochemistry, University of California, Los Angeles, CA 90095-1569, USA
| | - Ohyun Kwon
- Department of Chemistry and Biochemistry, University of California, Los Angeles, CA 90095-1569, USA
| |
Collapse
|
5
|
Zhou M, Lu H, Wang Z, Kato T, Liu Y, Maruoka K. Synthesis of 1,3‑dicarbonyl compounds bearing hetero-substituted α-quaternary carbon via Fe(II)-catalyzed alkylation with alkylsilyl peroxides. Tetrahedron Lett 2022. [DOI: 10.1016/j.tetlet.2022.154176] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
6
|
Lu H, Zhou C, Wang Z, Kato T, Liu Y, Maruoka K. Fe-Catalyzed Three-Component Coupling Reaction of α,β,γ,δ-Unsaturated Carbonyl Compounds and Conjugate Dienes with Alkylsilyl Peroxides and Nucleophiles. J Org Chem 2022; 87:8824-8834. [PMID: 35731735 DOI: 10.1021/acs.joc.2c00885] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
An Fe(OTf)2-catalyzed three-component coupling reaction of α,β,γ,δ-unsaturated carbonyl compounds with alkylsilyl peroxides in the presence of certain heteronucleophiles (ROH and indole) is realized under mild reaction conditions. A variety of α,β,γ,δ-diene carbonyl substrates with different substituents were successfully employable via combination with several different alkylsilyl peroxides. This new approach is also applicable to the double functionalization of diene substrates.
Collapse
Affiliation(s)
- Hanbin Lu
- School of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou 510006, China
| | - Canhua Zhou
- School of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou 510006, China
| | - Zhe Wang
- School of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou 510006, China
| | - Terumasa Kato
- School of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou 510006, China.,Guangdong Provincial Key Laboratory of Plant Resources Biorefinery, Guangdong University of Technology, Guangzhou 510006, China.,Graduate School of Pharmaceutical Sciences, Kyoto University, Sakyo 606-8501, Kyoto, Japan
| | - Yan Liu
- School of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou 510006, China.,Guangdong Provincial Key Laboratory of Plant Resources Biorefinery, Guangdong University of Technology, Guangzhou 510006, China
| | - Keiji Maruoka
- School of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou 510006, China.,Guangdong Provincial Key Laboratory of Plant Resources Biorefinery, Guangdong University of Technology, Guangzhou 510006, China.,Graduate School of Pharmaceutical Sciences, Kyoto University, Sakyo 606-8501, Kyoto, Japan
| |
Collapse
|
7
|
Dong H, Lin Z, Wang C. Nickel-Catalyzed Allylic Defluorinative Cross-Electrophile Coupling with Cycloalkyl Silyl Peroxides as the Alkyl Source. J Org Chem 2021; 87:892-903. [PMID: 34958214 DOI: 10.1021/acs.joc.1c02674] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Herein we demonstrate the first successful application of cycloalkyl silyl peroxides (CSP) as an electrophilic coupling partner in the cross-electrophile coupling reaction. Diverse CSP are efficiently cross-coupled with an array of α-trifluoromethyl alkenes under the catalysis of nickel with the assistance of zinc as the reducing agent. This method allows the use of unstrained CSP as the carbonyl-containing alkyl source in the allylic defluorinative reaction, to access a variety of gem-difluoroalkenes bearing a pendent ketone moiety with high functionality tolerance.
Collapse
Affiliation(s)
- Haiyan Dong
- Department of Chemistry, University of Science and Technology of China, Hefei, Anhui 230026, PR China
| | - Zhiyang Lin
- Department of Chemistry, University of Science and Technology of China, Hefei, Anhui 230026, PR China
| | - Chuan Wang
- Department of Chemistry, University of Science and Technology of China, Hefei, Anhui 230026, PR China.,Center for Excellence in Molecular Synthesis of CAS, Hefei, Anhui 230026, PR China
| |
Collapse
|
8
|
Bose SK, Mao L, Kuehn L, Radius U, Nekvinda J, Santos WL, Westcott SA, Steel PG, Marder TB. First-Row d-Block Element-Catalyzed Carbon-Boron Bond Formation and Related Processes. Chem Rev 2021; 121:13238-13341. [PMID: 34618418 DOI: 10.1021/acs.chemrev.1c00255] [Citation(s) in RCA: 135] [Impact Index Per Article: 33.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Organoboron reagents represent a unique class of compounds because of their utility in modern synthetic organic chemistry, often affording unprecedented reactivity. The transformation of the carbon-boron bond into a carbon-X (X = C, N, and O) bond in a stereocontrolled fashion has become invaluable in medicinal chemistry, agrochemistry, and natural products chemistry as well as materials science. Over the past decade, first-row d-block transition metals have become increasingly widely used as catalysts for the formation of a carbon-boron bond, a transformation traditionally catalyzed by expensive precious metals. This recent focus on alternative transition metals has enabled growth in fundamental methods in organoboron chemistry. This review surveys the current state-of-the-art in the use of first-row d-block element-based catalysts for the formation of carbon-boron bonds.
Collapse
Affiliation(s)
- Shubhankar Kumar Bose
- Centre for Nano and Material Sciences (CNMS), Jain University, Jain Global Campus, Bangalore-562112, India
| | - Lujia Mao
- Key Laboratory of Tropical Translational Medicine of Ministry of Education, Hainan Key Laboratory for Research and Development of Tropical Herbs, School of Pharmacy, Hainan Medical University, 571199 Haikou, Hainan, P. R. China
| | - Laura Kuehn
- Institute of Inorganic Chemistry and Institute for Sustainable Chemistry & Catalysis with Boron, Julius-Maximilians-Universität Würzburg, Am Hubland, 97074 Würzburg, Germany
| | - Udo Radius
- Institute of Inorganic Chemistry and Institute for Sustainable Chemistry & Catalysis with Boron, Julius-Maximilians-Universität Würzburg, Am Hubland, 97074 Würzburg, Germany
| | - Jan Nekvinda
- Department of Chemistry, Virginia Tech, Blacksburg, Virginia 24061, United States
| | - Webster L Santos
- Department of Chemistry, Virginia Tech, Blacksburg, Virginia 24061, United States
| | - Stephen A Westcott
- Department of Chemistry and Biochemistry, Mount Allison University, Sackville, NB E4L 1G8, Canada
| | - Patrick G Steel
- Department of Chemistry, University of Durham, Science Laboratories South Road, Durham DH1 3LE, U.K
| | - Todd B Marder
- Institute of Inorganic Chemistry and Institute for Sustainable Chemistry & Catalysis with Boron, Julius-Maximilians-Universität Würzburg, Am Hubland, 97074 Würzburg, Germany
| |
Collapse
|
9
|
Zhou C, Lv J, Xu W, Lu H, Kato T, Liu Y, Maruoka K. Highly Selective Monoalkylation of Active Methylene and Related Derivatives using Alkylsilyl Peroxides by a Catalytic CuI‐DMAP System. ASIAN J ORG CHEM 2021. [DOI: 10.1002/ajoc.202100440] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- Canhua Zhou
- School of Chemical Engineering and Light Industry Guangdong University of Technology Guangzhou 510006 P. R. China
| | - Jiamin Lv
- School of Chemical Engineering and Light Industry Guangdong University of Technology Guangzhou 510006 P. R. China
| | - Weiping Xu
- School of Chemical Engineering and Light Industry Guangdong University of Technology Guangzhou 510006 P. R. China
| | - Hanbin Lu
- School of Chemical Engineering and Light Industry Guangdong University of Technology Guangzhou 510006 P. R. China
| | - Terumasa Kato
- School of Chemical Engineering and Light Industry Guangdong University of Technology Guangzhou 510006 P. R. China
- Guangdong Provincial Key Laboratory of Plant Resources Biorefinery Guangdong University of Technology Guangzhou 510006 P. R. China
- Graduate School of Pharmaceutical Sciences Kyoto University Sakyo Kyoto 606-8501 Japan
| | - Yan Liu
- School of Chemical Engineering and Light Industry Guangdong University of Technology Guangzhou 510006 P. R. China
- Guangdong Provincial Key Laboratory of Plant Resources Biorefinery Guangdong University of Technology Guangzhou 510006 P. R. China
| | - Keiji Maruoka
- School of Chemical Engineering and Light Industry Guangdong University of Technology Guangzhou 510006 P. R. China
- Guangdong Provincial Key Laboratory of Plant Resources Biorefinery Guangdong University of Technology Guangzhou 510006 P. R. China
- Graduate School of Pharmaceutical Sciences Kyoto University Sakyo Kyoto 606-8501 Japan
| |
Collapse
|
10
|
Matsumoto A, Shiozaki Y, Sakurai S, Maruoka K. Synthesis of Functionalized Aliphatic Acid Esters via the Generation of Alkyl Radicals from Silylperoxyacetals. Chem Asian J 2021; 16:2431-2434. [PMID: 34278735 DOI: 10.1002/asia.202100723] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Revised: 07/16/2021] [Indexed: 12/28/2022]
Abstract
We describe a catalytic method for the synthesis of a variety of functionalized aliphatic acid esters using silylperoxyacetals, which are versatile alkyl radical precursors with a terminal ester moiety. In the presence of an appropriate transition-metal catalyst, the in situ generation of alkyl radicals and the subsequent bond-forming process proceeds smoothly to afford synthetically valuable aliphatic acid derivatives. The present method can be applied to the efficient synthesis of a pharmaceutically important 1,1-diarylalkane motif. In addition, a novel strategy for the synthesis of structurally diverse hydroxy acid derivatives via a C-O bond formation process that utilizes TEMPO has been developed.
Collapse
Affiliation(s)
- Akira Matsumoto
- Graduate School of Pharmaceutical Sciences, Kyoto University, Sakyo, 606-8501, Kyoto, Japan
| | - Yoko Shiozaki
- Department of Chemistry, Graduate School of Science, Kyoto University, Sakyo, 606-8502, Kyoto, Japan
| | - Shunya Sakurai
- Department of Chemistry, Graduate School of Science, Kyoto University, Sakyo, 606-8502, Kyoto, Japan
| | - Keiji Maruoka
- Graduate School of Pharmaceutical Sciences, Kyoto University, Sakyo, 606-8501, Kyoto, Japan.,Department of Chemistry, Graduate School of Science, Kyoto University, Sakyo, 606-8502, Kyoto, Japan.,School of Chemical Engineering and Light Industry, Guangdong University of Technology, 510006, Guangzhou, P. R. China
| |
Collapse
|
11
|
In-situ-generation of alkylsilyl peroxides from alkyl hydroperoxides and their subsequent copper-catalyzed functionalization with organosilicon compounds. Tetrahedron Lett 2021. [DOI: 10.1016/j.tetlet.2021.153144] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
12
|
Li T, Wu Y, Duan W, Ma Y. Silylative aromatization of p-quinone methides under metal and solvent free conditions. RSC Adv 2021; 11:17860-17864. [PMID: 35480172 PMCID: PMC9033227 DOI: 10.1039/d1ra03193g] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2021] [Accepted: 05/12/2021] [Indexed: 11/30/2022] Open
Abstract
A base-mediated silylation reaction leading to benzyl silanes has been developed. Under transition-metal and solvent free conditions, the silylation of a wide array of p-quinone methides is achieved using a Cs2CO3 catalyst in yields up to 96%. Carboxylation of the as-obtained organosilane with gaseous CO2 provides a new synthetic protocol for the preparation of carboxylic acid. A novel and efficient synthetic protocol is reported for the synthesis of benzyl silanes from readily available silylborane and p-quinone methides using 5% cesium carbonate under solvent-free conditions.![]()
Collapse
Affiliation(s)
- Tingting Li
- Department of Chemistry, Shandong University Shanda South Road No. 27 Jinan 250100 P. R. China
| | - Yuzhu Wu
- Department of Chemistry, Shandong University Shanda South Road No. 27 Jinan 250100 P. R. China
| | - Wenzeng Duan
- School of Chemistry and Chemical Engineering, Liaocheng University Liaocheng 252000 P. R. China
| | - Yudao Ma
- Department of Chemistry, Shandong University Shanda South Road No. 27 Jinan 250100 P. R. China
| |
Collapse
|
13
|
Lv J, Xu W, Lu H, Kato T, Liu Y, Maruoka K. The copper-catalyzed selective monoalkylation of active methylene compounds with alkylsilyl peroxides. Org Biomol Chem 2021; 19:2658-2662. [PMID: 33687416 DOI: 10.1039/d1ob00075f] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
A novel method for a mild copper-catalyzed selective monoalkylation of active methylene compounds with various alkylsilyl peroxides has been developed. The reaction has a broad substrate scope and our mechanistic studies suggest the participation of radical species in this alkylation reaction.
Collapse
Affiliation(s)
- Jiamin Lv
- School of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou 510006, China.
| | | | | | | | | | | |
Collapse
|
14
|
Xu W, Liu Y, Kato T, Maruoka K. The Formation of C-C or C-N Bonds via the Copper-Catalyzed Coupling of Alkylsilyl Peroxides and Organosilicon Compounds: A Route to Perfluoroalkylation. Org Lett 2021; 23:1809-1813. [PMID: 33625231 DOI: 10.1021/acs.orglett.1c00215] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
The copper-catalyzed selective cleavage of alkylsilyl peroxides and the subsequent formation of carbon-carbon or carbon-nitrogen bonds with organosilicon compounds are described. The reaction proceeds under mild conditions and exhibits a broad substrate scope with respect to both cyclic and acyclic alkylsilyl peroxides in combination with carbon and nitrogen sources. In particular, this approach enables the facile radical perfluoroalkylation using commercially available perfluoroalkyltrimethylsilanes. Our mechanistic studies suggest that the reaction should proceed via a free-radical process.
Collapse
Affiliation(s)
- Weiping Xu
- School of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou 510006, China
| | - Yan Liu
- School of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou 510006, China
| | - Terumasa Kato
- School of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou 510006, China
| | - Keiji Maruoka
- School of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou 510006, China.,Graduate School of Pharmaceutical Sciences, Kyoto University, Sakyo, Kyoto 606-8501, Japan
| |
Collapse
|
15
|
Matsumoto A, Maruoka K. Development of Organosilicon Peroxides as Practical Alkyl Radical Precursors and Their Applications to Transition Metal Catalysis. BULLETIN OF THE CHEMICAL SOCIETY OF JAPAN 2021. [DOI: 10.1246/bcsj.20200321] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Affiliation(s)
- Akira Matsumoto
- Graduate School of Pharmaceutical Sciences, Kyoto University, Sakyo, Kyoto 606-8501, Japan
| | - Keiji Maruoka
- Graduate School of Pharmaceutical Sciences, Kyoto University, Sakyo, Kyoto 606-8501, Japan
| |
Collapse
|
16
|
Feng JJ, Mao W, Zhang L, Oestreich M. Activation of the Si–B interelement bond related to catalysis. Chem Soc Rev 2021; 50:2010-2073. [DOI: 10.1039/d0cs00965b] [Citation(s) in RCA: 52] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Covering the past seven years, this review comprehensively summarises the latest progress in the preparation and application of Si–B reagents, including the discussion of relevant reaction mechanisms.
Collapse
Affiliation(s)
- Jian-Jun Feng
- Institut für Chemie
- Technische Universität Berlin
- 10623 Berlin
- Germany
- College of Chemistry and Chemical Engineering
| | - Wenbin Mao
- Institut für Chemie
- Technische Universität Berlin
- 10623 Berlin
- Germany
| | - Liangliang Zhang
- Institut für Chemie
- Technische Universität Berlin
- 10623 Berlin
- Germany
| | - Martin Oestreich
- Institut für Chemie
- Technische Universität Berlin
- 10623 Berlin
- Germany
| |
Collapse
|
17
|
Sakurai S, Kano T, Maruoka K. Cu-Catalyzed O-alkylation of phenol derivatives with alkylsilyl peroxides. Chem Commun (Camb) 2021; 57:81-84. [DOI: 10.1039/d0cc07305a] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
A Cu-catalyzed O-alkylation of phenol derivatives using alkylsilyl peroxides as alkyl radical precursors is described.
Collapse
Affiliation(s)
- Shunya Sakurai
- Department of Chemistry
- Graduate School of Science
- Kyoto University
- Sakyo
- Japan
| | - Taichi Kano
- Department of Chemistry
- Graduate School of Science
- Kyoto University
- Sakyo
- Japan
| | - Keiji Maruoka
- Department of Chemistry
- Graduate School of Science
- Kyoto University
- Sakyo
- Japan
| |
Collapse
|
18
|
Tsuzuki S, Sakurai S, Matsumoto A, Kano T, Maruoka K. Ni-Catalyzed C(sp 2)-H alkylation of N-quinolylbenzamides using alkylsilyl peroxides as structurally diverse alkyl sources. Chem Commun (Camb) 2021; 57:7942-7945. [PMID: 34286742 DOI: 10.1039/d1cc02983e] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
A Ni-catalyzed direct C-H alkylation of N-quinolylbenzamides using alkylsilyl peroxides as alkyl-radical precursors is described. The reaction forms a new C(sp3)-C(sp2) bond via the selective cleavage of both C(sp3)-C(sp3) and C(sp2)-H bonds. This transformation shows a high functional-group tolerance and, due to the structural diversity of alkylsilyl peroxides, a wide range of alkyl chains including functional groups and complex structures can be introduced at the ortho-position of readily available N-quinolylbenzamide derivatives. Mechanistic studies suggest that the reaction involves a radical mechanism.
Collapse
Affiliation(s)
- Saori Tsuzuki
- Department of Chemistry, Graduate School of Science, Kyoto University, Sakyo, Kyoto 606-8502, Japan.
| | - Shunya Sakurai
- Department of Chemistry, Graduate School of Science, Kyoto University, Sakyo, Kyoto 606-8502, Japan.
| | - Akira Matsumoto
- Graduate School of Pharmaceutical Sciences, Kyoto University, Sakyo, Kyoto 606-8501, Japan
| | - Taichi Kano
- Department of Chemistry, Graduate School of Science, Kyoto University, Sakyo, Kyoto 606-8502, Japan. and Department of Applied Chemistry, Graduate School of Engineering, Tokyo University of Agriculture and Technology, Koganei, Tokyo 184-8588, Japan
| | - Keiji Maruoka
- Department of Chemistry, Graduate School of Science, Kyoto University, Sakyo, Kyoto 606-8502, Japan. and Graduate School of Pharmaceutical Sciences, Kyoto University, Sakyo, Kyoto 606-8501, Japan and School of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou 510006, China
| |
Collapse
|
19
|
Sakurai S, Matsumoto A, Kano T, Maruoka K. Cu-Catalyzed Enantioselective Alkylarylation of Vinylarenes Enabled by Chiral Binaphthyl-BOX Hybrid Ligands. J Am Chem Soc 2020; 142:19017-19022. [PMID: 33017146 DOI: 10.1021/jacs.0c09008] [Citation(s) in RCA: 56] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Transition-metal-catalyzed radical relay coupling reactions have recently emerged as one of the most powerful methods to achieve difunctionalization of olefins. However, there has been limited success in applying this method to asymmetric catalysis using an effective chiral ligand. Herein we report the Cu-catalyzed enantioselective alkylarylation of vinylarenes using alkylsilyl peroxides as alkyl radical sources. This reaction proceeds under practical reaction conditions and affords chiral 1,1-diarylalkane structures that are found in a variety of bioactive molecules. Notably, a highly enantioselective reaction was accomplished by combining chiral bis(oxazoline) ligands with chiral binaphthyl scaffolds.
Collapse
Affiliation(s)
- Shunya Sakurai
- Department of Chemistry, Graduate School of Science, Kyoto University, Sakyo, Kyoto 606-8502, Japan
| | - Akira Matsumoto
- Graduate School of Pharmaceutical Sciences, Kyoto University, Sakyo, Kyoto 606-8501, Japan
| | - Taichi Kano
- Department of Chemistry, Graduate School of Science, Kyoto University, Sakyo, Kyoto 606-8502, Japan
| | - Keiji Maruoka
- Department of Chemistry, Graduate School of Science, Kyoto University, Sakyo, Kyoto 606-8502, Japan.,Graduate School of Pharmaceutical Sciences, Kyoto University, Sakyo, Kyoto 606-8501, Japan.,School of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou 510006, China
| |
Collapse
|
20
|
Shu C, Madhavachary R, Noble A, Aggarwal VK. Photoinduced Fragmentation Borylation of Cyclic Alcohols and Hemiacetals. Org Lett 2020; 22:7213-7218. [PMID: 32903015 DOI: 10.1021/acs.orglett.0c02513] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Chao Shu
- School of Chemistry, University of Bristol, Cantock’s Close, Bristol BS8 1TS, U.K
| | | | - Adam Noble
- School of Chemistry, University of Bristol, Cantock’s Close, Bristol BS8 1TS, U.K
| | - Varinder K. Aggarwal
- School of Chemistry, University of Bristol, Cantock’s Close, Bristol BS8 1TS, U.K
| |
Collapse
|
21
|
Chen L, Yang JC, Xu P, Zhang JJ, Duan XH, Guo L. Nickel-catalyzed Suzuki Coupling of Cycloalkyl Silyl Peroxides with Boronic Acids. J Org Chem 2020; 85:7515-7525. [DOI: 10.1021/acs.joc.0c00250] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- Lei Chen
- Department of Chemistry, School of Science, Xi’an Key Laboratory of Sustainable Energy Material Chemistry, and MOE Key Laboratory for Nonequilibrium Synthesis and Modulation of Condensed Matter, Xi’an Jiaotong University, Xi’an 710049, P. R. China
| | - Jun-Cheng Yang
- Department of Chemistry, School of Science, Xi’an Key Laboratory of Sustainable Energy Material Chemistry, and MOE Key Laboratory for Nonequilibrium Synthesis and Modulation of Condensed Matter, Xi’an Jiaotong University, Xi’an 710049, P. R. China
| | - Pengfei Xu
- Department of Chemistry, School of Science, Xi’an Key Laboratory of Sustainable Energy Material Chemistry, and MOE Key Laboratory for Nonequilibrium Synthesis and Modulation of Condensed Matter, Xi’an Jiaotong University, Xi’an 710049, P. R. China
| | - Jun-Jie Zhang
- Department of Chemistry, School of Science, Xi’an Key Laboratory of Sustainable Energy Material Chemistry, and MOE Key Laboratory for Nonequilibrium Synthesis and Modulation of Condensed Matter, Xi’an Jiaotong University, Xi’an 710049, P. R. China
| | - Xin-Hua Duan
- Department of Chemistry, School of Science, Xi’an Key Laboratory of Sustainable Energy Material Chemistry, and MOE Key Laboratory for Nonequilibrium Synthesis and Modulation of Condensed Matter, Xi’an Jiaotong University, Xi’an 710049, P. R. China
- State Key Laboratory of Applied Organic Chemistry, Lanzhou University, Lanzhou 730000, P. R. China
| | - Li−Na Guo
- Department of Chemistry, School of Science, Xi’an Key Laboratory of Sustainable Energy Material Chemistry, and MOE Key Laboratory for Nonequilibrium Synthesis and Modulation of Condensed Matter, Xi’an Jiaotong University, Xi’an 710049, P. R. China
| |
Collapse
|
22
|
Shiozaki Y, Sakurai S, Sakamoto R, Matsumoto A, Maruoka K. Iron-Catalyzed Radical Cleavage/C-C Bond Formation of Acetal-Derived Alkylsilyl Peroxides. Chem Asian J 2020; 15:573-576. [PMID: 32017369 DOI: 10.1002/asia.201901695] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2019] [Revised: 01/15/2020] [Indexed: 12/12/2022]
Abstract
A novel radical-based approach for the iron-catalyzed selective cleavage of acetal-derived alkylsilyl peroxides, followed by the formation of a carbon-carbon bond is reported. The reaction proceeds under mild reaction conditions and exhibits a broad substrate scope with respect to the acetal moiety and the carbon electrophile. Mechanistic studies suggest that the present reaction proceeds through a free-radical process involving carbon radicals generated by the homolytic cleavage of a carbon-carbon bond within the acetal moiety. A synthetic application of this method to sugar-derived alkylsilyl peroxides is also described.
Collapse
Affiliation(s)
- Yoko Shiozaki
- Department of Chemistry Graduate School of Science, Kyoto University Sakyo, Kyoto, 606-8502, Japan
| | - Shunya Sakurai
- Department of Chemistry Graduate School of Science, Kyoto University Sakyo, Kyoto, 606-8502, Japan
| | - Ryu Sakamoto
- Department of Chemistry Graduate School of Science, Kyoto University Sakyo, Kyoto, 606-8502, Japan
| | - Akira Matsumoto
- Graduate School of Pharmaceutical Sciences, Kyoto University Sakyo, Kyoto, 606-8501, Japan
| | - Keiji Maruoka
- Department of Chemistry Graduate School of Science, Kyoto University Sakyo, Kyoto, 606-8502, Japan.,Graduate School of Pharmaceutical Sciences, Kyoto University Sakyo, Kyoto, 606-8501, Japan.,School of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou, 510006, China
| |
Collapse
|
23
|
Sakurai S, Tsuzuki S, Sakamoto R, Maruoka K. Cu-Catalyzed Generation of Alkyl Radicals from Alkylsilyl Peroxides and Subsequent C(sp 3)-C(sp 2) Cross-Coupling with Arylboronic Acids. J Org Chem 2020; 85:3973-3980. [PMID: 31939666 DOI: 10.1021/acs.joc.9b03294] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
This work describes a novel and practical method for the Cu-catalyzed C(sp3)-C(sp2) cross-coupling of alkylsilyl peroxides with arylboronic acids. The reductive cleavage of the O-O bond of alkylsilyl peroxides and the desired cross-coupling reactions to afford alkyl-substituted aromatic rings proceed smoothly at room temperature promoted by simple Cu-based catalysts and do not require activation by visible light. The results of mechanistic investigations support a radical-mediated C(sp3)-C(sp2) bond formation via β-scission of the alkoxy radicals generated from the alkylsilyl peroxides.
Collapse
Affiliation(s)
- Shunya Sakurai
- Department of Chemistry, Graduate School of Science, Kyoto University, Sakyo, Kyoto 606-8502, Japan
| | - Saori Tsuzuki
- Department of Chemistry, Graduate School of Science, Kyoto University, Sakyo, Kyoto 606-8502, Japan
| | - Ryu Sakamoto
- Department of Chemistry, Graduate School of Science, Kyoto University, Sakyo, Kyoto 606-8502, Japan
| | - Keiji Maruoka
- Department of Chemistry, Graduate School of Science, Kyoto University, Sakyo, Kyoto 606-8502, Japan.,Graduate School of Pharmaceutical Sciences, Kyoto University, Sakyo, Kyoto 606-8501, Japan.,School of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou 510006, China
| |
Collapse
|
24
|
Yang S, Gao P, Suo MT, Gao SX, Duan XH, Guo LN. Copper-catalyzed alkylarylation of vinylarenes with cycloalkylsilyl peroxides and boronic acids. Chem Commun (Camb) 2020; 56:10714-10717. [DOI: 10.1039/d0cc04439c] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
A mild and efficient copper-catalyzed alkylarylation of vinylarenes with cycloalkylsilyl peroxides and boronic acids is described.
Collapse
Affiliation(s)
- Shuo Yang
- Department of Chemistry
- School of Chemistry
- Xi’an Key Laboratory of Sustainable Energy Material Chemistry, and MOE Key Laboratory for Nonequilibrium Synthesis and Modulation of Condensed Matter
- Xi’an Jiaotong University
- Xi’an 710049
| | - Pin Gao
- Department of Chemistry
- School of Chemistry
- Xi’an Key Laboratory of Sustainable Energy Material Chemistry, and MOE Key Laboratory for Nonequilibrium Synthesis and Modulation of Condensed Matter
- Xi’an Jiaotong University
- Xi’an 710049
| | - Meng-Ting Suo
- Department of Chemistry
- School of Chemistry
- Xi’an Key Laboratory of Sustainable Energy Material Chemistry, and MOE Key Laboratory for Nonequilibrium Synthesis and Modulation of Condensed Matter
- Xi’an Jiaotong University
- Xi’an 710049
| | - Shu-Xin Gao
- Department of Chemistry
- School of Chemistry
- Xi’an Key Laboratory of Sustainable Energy Material Chemistry, and MOE Key Laboratory for Nonequilibrium Synthesis and Modulation of Condensed Matter
- Xi’an Jiaotong University
- Xi’an 710049
| | - Xin-Hua Duan
- Department of Chemistry
- School of Chemistry
- Xi’an Key Laboratory of Sustainable Energy Material Chemistry, and MOE Key Laboratory for Nonequilibrium Synthesis and Modulation of Condensed Matter
- Xi’an Jiaotong University
- Xi’an 710049
| | - Li-Na Guo
- Department of Chemistry
- School of Chemistry
- Xi’an Key Laboratory of Sustainable Energy Material Chemistry, and MOE Key Laboratory for Nonequilibrium Synthesis and Modulation of Condensed Matter
- Xi’an Jiaotong University
- Xi’an 710049
| |
Collapse
|
25
|
Kidonakis M, Fragkiadakis M, Stratakis M. β-Borylation of conjugated carbonyl compounds with silylborane or bis(pinacolato)diboron catalyzed by Au nanoparticles. Org Biomol Chem 2020; 18:8921-8927. [DOI: 10.1039/d0ob01806f] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
β-Borylation occurs in the Au/TiO2-catalysed reaction between the silylborane Me2PhSiBpin and conjugated carbonyl compounds, in contrast to the so far known analogous reaction catalysed by other metals, where β-silylation occurs instead.
Collapse
|
26
|
Gao P, Wu H, Yang JC, Guo L. Iron-Catalyzed Decarboxylative Olefination of Unstrained Carbon–Carbon Bonds Relying on Alkoxyl Radical Induced Cascade. Org Lett 2019; 21:7104-7108. [DOI: 10.1021/acs.orglett.9b02675] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Pin Gao
- Department of Chemistry, School of Science, Xi’an Key Laboratory of Sustainable Energy Material Chemistry, and MOE Key Laboratory for Nonequilibrium Synthesis and Modulation of Condensed Matter, Xi’an Jiaotong University, Xi’an 710049, China
| | - Hao Wu
- Department of Chemistry, School of Science, Xi’an Key Laboratory of Sustainable Energy Material Chemistry, and MOE Key Laboratory for Nonequilibrium Synthesis and Modulation of Condensed Matter, Xi’an Jiaotong University, Xi’an 710049, China
| | - Jun-Cheng Yang
- Department of Chemistry, School of Science, Xi’an Key Laboratory of Sustainable Energy Material Chemistry, and MOE Key Laboratory for Nonequilibrium Synthesis and Modulation of Condensed Matter, Xi’an Jiaotong University, Xi’an 710049, China
| | - Li−Na Guo
- Department of Chemistry, School of Science, Xi’an Key Laboratory of Sustainable Energy Material Chemistry, and MOE Key Laboratory for Nonequilibrium Synthesis and Modulation of Condensed Matter, Xi’an Jiaotong University, Xi’an 710049, China
| |
Collapse
|
27
|
Yang JC, Chen L, Yang F, Li P, Guo LN. Copper-catalyzed borylation of cycloalkylsilyl peroxides via radical C–C bond cleavage. Org Chem Front 2019. [DOI: 10.1039/c9qo00472f] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
A mild copper-catalyzed radical C–C bond cleavage/borylation of cycloalkylsilyl peroxides is described. A range of four to eight, and even twelve-membered substrates were compatible, offering rapid access to keto-functionalized alkyl boronic esters.
Collapse
Affiliation(s)
- Jun-Cheng Yang
- Department of Chemistry
- School of Science
- Xi'an Key Laboratory of Sustainable Energy Material Chemistry
- and MOE Key Laboratory for Nonequilibrium Synthesis and Modulation of Condensed Matter
- Xi'an Jiaotong University
| | - Lei Chen
- Department of Chemistry
- School of Science
- Xi'an Key Laboratory of Sustainable Energy Material Chemistry
- and MOE Key Laboratory for Nonequilibrium Synthesis and Modulation of Condensed Matter
- Xi'an Jiaotong University
| | - Fan Yang
- Department of Chemistry
- School of Science
- Xi'an Key Laboratory of Sustainable Energy Material Chemistry
- and MOE Key Laboratory for Nonequilibrium Synthesis and Modulation of Condensed Matter
- Xi'an Jiaotong University
| | - Pengfei Li
- Center for Organic Chemistry
- Frontier Institute of Science and Technology
- Xi'an Jiaotong University
- Xi'an 710054
- China
| | - Li-Na Guo
- Department of Chemistry
- School of Science
- Xi'an Key Laboratory of Sustainable Energy Material Chemistry
- and MOE Key Laboratory for Nonequilibrium Synthesis and Modulation of Condensed Matter
- Xi'an Jiaotong University
| |
Collapse
|