1
|
Jin Y, Lee J, Jo W, Yu J, Cho SH. Axially chiral α-boryl-homoallenyl boronic esters as versatile toolbox for accessing centrally and axially chiral molecules. Nat Commun 2024; 15:9239. [PMID: 39455568 PMCID: PMC11511823 DOI: 10.1038/s41467-024-53606-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2024] [Accepted: 10/14/2024] [Indexed: 10/28/2024] Open
Abstract
Axially chiral allenes bearing organoboron groups are highly sought-after building blocks in organic synthesis due to their potential for generating a wide range of axially and centrally chiral molecules. However, the existing methods for preparing axially chiral allenes containing boron group are primarily limited to the synthesis of allenyl boronic esters, and strategies for accessing axially chiral homoallenyl boronic esters are still scarce. Here, we report the general method for synthesizing axially chiral α-boryl-homoallenyl boronic esters through a highly regio- and stereoselective copper-mediated SN2'-addition of newly prepared (diborylalkyl)copper species to chiral propargyl electrophiles. The reaction conditions were optimized to achieve high yields and excellent stereospecificity. The obtained products were successfully transformed into various axially chiral allenes and other chiral molecules by transforming diboron units. The potential for axial-to-central chirality transfer of axially chiral α-boryl-homoallenyl boronic esters is also demonstrated through the stereospecific addition to aldehydes and N-H aldimines, yielding enantioenriched 1,2-oxaborinin-3,5-dienes and 2-aminomethyl-1,3-dienes.
Collapse
Affiliation(s)
- Yonghoon Jin
- Department of Chemistry, Pohang University of Science and Technology (POSTECH), Pohang, 37673, Republic of Korea
| | - Junseok Lee
- Department of Chemistry, Pohang University of Science and Technology (POSTECH), Pohang, 37673, Republic of Korea
| | - Woohyun Jo
- Department of Chemistry, Pohang University of Science and Technology (POSTECH), Pohang, 37673, Republic of Korea
| | - Jeongwoo Yu
- Department of Chemistry, Pohang University of Science and Technology (POSTECH), Pohang, 37673, Republic of Korea
| | - Seung Hwan Cho
- Department of Chemistry, Pohang University of Science and Technology (POSTECH), Pohang, 37673, Republic of Korea.
- Institute for Convergence Research and Education in Advanced Technology (I-CREATE), Yonsei University, Seoul, 03722, Republic of Korea.
| |
Collapse
|
2
|
Liu S, Qian YS, Xu JL, Xu L, Xu YH. Copper-Catalyzed Regio- and Stereoselective Three-Component Coupling of Allenyl Ethers with gem-Dichlorocyclobutenones and B 2pin 2. Org Lett 2023. [PMID: 37289963 DOI: 10.1021/acs.orglett.3c01515] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
The three-component coupling method for regio- and stereoselective difunctionalization of allenes with allenyl ethers, bis(pinacolato)diboron, and gem-dichlorocyclobutenones as electrophiles was reported, yielding a variety of highly functionalized cyclobutenone products tethering with an alkenylborate fragment. The polysubstituted cyclobutenone products also underwent diverse transformations.
Collapse
Affiliation(s)
- Shuai Liu
- Department of Chemistry, University of Science and Technology of China, Hefei 230026, P. R. China
| | - Yi-Sen Qian
- Department of Chemistry, University of Science and Technology of China, Hefei 230026, P. R. China
| | - Jian-Lin Xu
- Department of Chemistry, University of Science and Technology of China, Hefei 230026, P. R. China
| | - Lei Xu
- Department of Chemistry, University of Science and Technology of China, Hefei 230026, P. R. China
| | - Yun-He Xu
- Department of Chemistry, University of Science and Technology of China, Hefei 230026, P. R. China
| |
Collapse
|
3
|
Duan M, Wang Y, Zhu S. Nickel-catalyzed asymmetric 1,2-alkynylboration of vinylarenes. Tetrahedron Lett 2022. [DOI: 10.1016/j.tetlet.2022.154247] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
4
|
Wang X, Chen X, Lin W, Li P, Li W. Recent Advances in Organocatalytic Enantioselective Synthesis of Axially Chiral Allenes. Adv Synth Catal 2022. [DOI: 10.1002/adsc.202200085] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Affiliation(s)
- Xing Wang
- Department of Medicinal Chemistry School of Pharmacy Qingdao University 308 Ningxia Road Qingdao Shandong 266021 People's Republic of China
| | - Xuling Chen
- Shenzhen Grubbs Institute and Department of Chemistry Guangdong Provincial Key Laboratory of Catalysis College of Science Southern University of Science and Technology 1088 Xueyuan Blvd., Nanshan District Shenzhen Guangdong 518055 People's Republic of China
| | - Wei Lin
- Department of Medicinal Chemistry School of Pharmacy Qingdao University 308 Ningxia Road Qingdao Shandong 266021 People's Republic of China
| | - Pengfei Li
- Shenzhen Grubbs Institute and Department of Chemistry Guangdong Provincial Key Laboratory of Catalysis College of Science Southern University of Science and Technology 1088 Xueyuan Blvd., Nanshan District Shenzhen Guangdong 518055 People's Republic of China
| | - Wenjun Li
- Department of Medicinal Chemistry School of Pharmacy Qingdao University 308 Ningxia Road Qingdao Shandong 266021 People's Republic of China
| |
Collapse
|
5
|
Wu Y, Wu L, Zhang ZM, Xu B, Liu Y, Zhang J. Enantioselective difunctionalization of alkenes by a palladium-catalyzed Heck/borylation sequence. Chem Sci 2022; 13:2021-2025. [PMID: 35308863 PMCID: PMC8848999 DOI: 10.1039/d1sc06229h] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2021] [Accepted: 01/20/2022] [Indexed: 01/26/2023] Open
Abstract
A palladium catalyzed enantioselective Heck/borylation reaction of alkene-tethered aryl iodides was realized, delivering a variety of 2,3-dihydrobenzofuranyl boronic esters in high yield with excellent enantioselectivity. Asymmetric synthesis of chromane boronic ester, indane boronic ester and indoline boronic ester was also accomplished. The protocol offers an efficient access to the corresponding chiral benzocyclic boronic esters, which are notably important chemical motifs in synthetic transformations. A palladium catalyzed enantioselective Heck/borylation reaction of alkene-tethered aryl iodides was realized, delivering a variety of 2,3-dihydrobenzofuranyl boronic esters in high yield with excellent enantioselectivity.![]()
Collapse
Affiliation(s)
- Yuanqi Wu
- Jilin Provincial Key Laboratory of Carbon Fiber Development and Application, College of Chemistry and Life Science, Advanced Institute of Materials Science, Changchun University of Technology Changchun 130012 P. R. China
| | - Lizuo Wu
- Jilin Provincial Key Laboratory of Carbon Fiber Development and Application, College of Chemistry and Life Science, Advanced Institute of Materials Science, Changchun University of Technology Changchun 130012 P. R. China
| | - Zhan-Ming Zhang
- Department of Chemistry, Fudan University 2005 Songhu Road Shanghai 200438 P. R. China
| | - Bing Xu
- Department of Chemistry, Fudan University 2005 Songhu Road Shanghai 200438 P. R. China
| | - Yu Liu
- Jilin Provincial Key Laboratory of Carbon Fiber Development and Application, College of Chemistry and Life Science, Advanced Institute of Materials Science, Changchun University of Technology Changchun 130012 P. R. China
| | - Junliang Zhang
- Department of Chemistry, Fudan University 2005 Songhu Road Shanghai 200438 P. R. China
| |
Collapse
|
6
|
Xiao W, Wu J. Recent advances in the metal-catalyzed asymmetric synthesis of chiral allenes. Org Chem Front 2022. [DOI: 10.1039/d2qo00994c] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
Recent advances in the metal-catalyzed asymmetric synthesis of chiral allenes are summarized. This review is categorized based on the starting material, including alkynes, racemic allenes, and conjugated dienes.
Collapse
Affiliation(s)
- Wei Xiao
- School of Pharmaceutical and Chemical Engineering & Institute for Advanced Studies, Taizhou University, 1139 Shifu Avenue, Taizhou 318000, China
| | - Jie Wu
- School of Pharmaceutical and Chemical Engineering & Institute for Advanced Studies, Taizhou University, 1139 Shifu Avenue, Taizhou 318000, China
- State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, 345 Lingling Road, Shanghai 200032, China
- School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang 453007, China
| |
Collapse
|
7
|
Miura H, Toyomasu T, Nishio H, Shishido T. Gold-catalyzed thioetherification of allyl, benzyl, and propargyl phosphates. Catal Sci Technol 2022. [DOI: 10.1039/d1cy02085d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Supported gold catalysts showed high activity for thioetherification of various phosphates. The surface of gold nanoparticles supported on ZrO2 served as a source for active cationic Au species.
Collapse
Affiliation(s)
- Hiroki Miura
- Department of Applied Chemistry for Environment, Graduate School of Urban Environmental Sciences, Tokyo Metropolitan University, 1-1 Minami-Osawa, Hachioji, Tokyo 192-0397, Japan
- Research Center for Hydrogen Energy-based Society, Tokyo Metropolitan University, 1-1 Minami-Osawa, Hachioji, Tokyo 192-0397, Japan
- Element Strategy Initiative for Catalysts & Batteries, Kyoto University, Katsura, Nishikyo-ku, Kyoto 615-8520, Japan
| | - Tomoya Toyomasu
- Department of Applied Chemistry for Environment, Graduate School of Urban Environmental Sciences, Tokyo Metropolitan University, 1-1 Minami-Osawa, Hachioji, Tokyo 192-0397, Japan
| | - Hidenori Nishio
- Department of Applied Chemistry for Environment, Graduate School of Urban Environmental Sciences, Tokyo Metropolitan University, 1-1 Minami-Osawa, Hachioji, Tokyo 192-0397, Japan
| | - Tetsuya Shishido
- Department of Applied Chemistry for Environment, Graduate School of Urban Environmental Sciences, Tokyo Metropolitan University, 1-1 Minami-Osawa, Hachioji, Tokyo 192-0397, Japan
- Research Center for Hydrogen Energy-based Society, Tokyo Metropolitan University, 1-1 Minami-Osawa, Hachioji, Tokyo 192-0397, Japan
- Element Strategy Initiative for Catalysts & Batteries, Kyoto University, Katsura, Nishikyo-ku, Kyoto 615-8520, Japan
| |
Collapse
|
8
|
Yu SH, Gong TJ, Fu Y. Synthesis of conjugated bisallenes by cooperative Cu/Pd-catalysed borylallenylation of 2-trifluoromethyl-1,3-enynes. Chem Commun (Camb) 2022; 58:12871-12874. [DOI: 10.1039/d2cc03745a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
We report a cooperative Cu/Pd-catalysed borylallenylation of 2-trifluoromethyl-1,3-enynes with diboron reagents and propargylic carbonates access to a series of conjugated bisallenes with excellent functional group compatibility.
Collapse
Affiliation(s)
- Shang-Hai Yu
- Hefei National Research Center for Physical Sciences at the Microscale, CAS Key Laboratory of Urban Pollutant Conversion, Anhui Province Key Laboratory of Biomass Clean Energy, University of Science and Technology of China, Hefei 230026, China
- Institute of Energy, Hefei Comprehensive National Science Center, Hefei, Anhui 230031, P. R. China
| | - Tian-Jun Gong
- Hefei National Research Center for Physical Sciences at the Microscale, CAS Key Laboratory of Urban Pollutant Conversion, Anhui Province Key Laboratory of Biomass Clean Energy, University of Science and Technology of China, Hefei 230026, China
- Institute of Energy, Hefei Comprehensive National Science Center, Hefei, Anhui 230031, P. R. China
| | - Yao Fu
- Hefei National Research Center for Physical Sciences at the Microscale, CAS Key Laboratory of Urban Pollutant Conversion, Anhui Province Key Laboratory of Biomass Clean Energy, University of Science and Technology of China, Hefei 230026, China
- Institute of Energy, Hefei Comprehensive National Science Center, Hefei, Anhui 230031, P. R. China
| |
Collapse
|
9
|
Wang Y, Scrivener SG, Zuo XD, Wang R, Palermo PN, Murphy E, Durham AC, Wang YM. Iron-Catalyzed Contrasteric Functionalization of Allenic C(sp 2)-H Bonds: Synthesis of α-Aminoalkyl 1,1-Disubstituted Allenes. J Am Chem Soc 2021; 143:14998-15004. [PMID: 34491051 DOI: 10.1021/jacs.1c07512] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
An iron-catalyzed C-H functionalization of simple monosubstituted allenes is reported. An efficient protocol for this process was made possible by the use of a newly developed electron-rich and sterically hindered cationic cyclopentadienyliron dicarbonyl complex as the catalyst and N-sulfonyl hemiaminal ether reagents as precursors to iminium ion electrophiles. Under optimized conditions, the use of a mild, functional-group-tolerant base enabled the conversion of a range of monoalkyl allenes to their allenylic sulfonamido 1,1-disubstituted derivatives, a previously unreported and contrasteric regiochemical outcome for the C-H functionalization of electronically unbiased and directing-group-free allenes.
Collapse
Affiliation(s)
- Yidong Wang
- Department of Chemistry, University of Pittsburgh, Pittsburgh, Pennsylvania 15260, United States
| | - Sarah G Scrivener
- Department of Chemistry, University of Pittsburgh, Pittsburgh, Pennsylvania 15260, United States
| | - Xiao-Dong Zuo
- Department of Chemistry, University of Pittsburgh, Pittsburgh, Pennsylvania 15260, United States
| | - Ruihan Wang
- Department of Chemistry, University of Pittsburgh, Pittsburgh, Pennsylvania 15260, United States
| | - Philip N Palermo
- Department of Chemistry, University of Pittsburgh, Pittsburgh, Pennsylvania 15260, United States
| | - Ethan Murphy
- Department of Chemistry, University of Pittsburgh, Pittsburgh, Pennsylvania 15260, United States
| | - Austin C Durham
- Department of Chemistry, University of Pittsburgh, Pittsburgh, Pennsylvania 15260, United States
| | - Yi-Ming Wang
- Department of Chemistry, University of Pittsburgh, Pittsburgh, Pennsylvania 15260, United States
| |
Collapse
|
10
|
Yu W, Han J, Fang D, Wang M, Liao J. Palladium-Catalyzed Linear Hydrothiocarbonylation of Unactivated Terminal Alkenes: Synthesis of Aliphatic Thioesters. Org Lett 2021; 23:2482-2487. [PMID: 33711895 DOI: 10.1021/acs.orglett.1c00406] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
A Pd-catalyzed hydrothiocarbonylation of unactivated terminal alkenes is presented. According to this protocol, aliphatic thioesters were synthesized with exclusive linear selectivity under mild reaction conditions. Good to excellent yields (up to 91% yield), broad substrate scope, broad functional group tolerance, and utility of the method demonstrated the advantages of this protocol.
Collapse
Affiliation(s)
- Wangzhi Yu
- Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu 610041, P.R. China.,University of Chinese Academy of Sciences, Beijing 100049, P.R. China
| | - Jian Han
- College of Chemical Engineering, Sichuan University, Chengdu 610065, China
| | - Dongmei Fang
- Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu 610041, P.R. China.,University of Chinese Academy of Sciences, Beijing 100049, P.R. China
| | - Min Wang
- Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu 610041, P.R. China.,University of Chinese Academy of Sciences, Beijing 100049, P.R. China
| | - Jian Liao
- Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu 610041, P.R. China.,University of Chinese Academy of Sciences, Beijing 100049, P.R. China.,College of Chemical Engineering, Sichuan University, Chengdu 610065, China
| |
Collapse
|
11
|
Yang Z, Li P, Lu H, Li G. Copper-Catalyzed Asymmetric Borylacylation of Styrene and Indene Derivatives. J Org Chem 2021; 86:4616-4624. [PMID: 33689325 DOI: 10.1021/acs.joc.1c00031] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
The enantioselective copper-catalyzed borylacylation of aryl olefins with acyl chlorides and bis-(pinacolato)diboron is reported. This three-component reaction involves an enantioselective syn-borylcupration of the aryl olefin, followed by a nucleophilic attack on the acyl chloride. This reaction proceeds with a 2 mol % catalyst loading and is generally completed within 30 min at room temperature. Because the boron moiety can be converted into versatile functional groups and the carbonyl group is a ubiquitous functional group, the resulting chiral β-borylated ketones are versatile intermediates in organic synthesis.
Collapse
Affiliation(s)
- Zhen Yang
- Institute of Chemistry and BioMedical Sciences, Jiangsu Key Laboratory of Advanced Organic Materials, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210093, China
| | - Peiyuan Li
- Institute of Chemistry and BioMedical Sciences, Jiangsu Key Laboratory of Advanced Organic Materials, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210093, China
| | - Hongjian Lu
- Institute of Chemistry and BioMedical Sciences, Jiangsu Key Laboratory of Advanced Organic Materials, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210093, China
| | - Guigen Li
- Institute of Chemistry and BioMedical Sciences, Jiangsu Key Laboratory of Advanced Organic Materials, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210093, China.,Department of Chemistry and Biochemistry, Texas Tech University, Lubbock, Texas 79409-1061, United States
| |
Collapse
|
12
|
Kanti Das K, Manna S, Panda S. Transition metal catalyzed asymmetric multicomponent reactions of unsaturated compounds using organoboron reagents. Chem Commun (Camb) 2021; 57:441-459. [PMID: 33350405 DOI: 10.1039/d0cc06460b] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Asymmetric multicomponent reactions allow stitching several functional groups in an enantioselective and atom economical manner. The introduction of boron-based reagents as a multicomponent coupling partner has its own merits. In addition to being non-toxic and highly stable, organoboron compounds can be easily converted to other functional groups in a stereoselective manner. In the last decade several transition metal catalyzed asymmetric multicomponent strategies have been evolved using boron based reagents. This review will discuss the merits and scope of multicomponent strategies based on their difference in the reaction mechanism and transition metals involved.
Collapse
Affiliation(s)
- Kanak Kanti Das
- Department of Chemistry, Indian Institute of Technology Kharagpur, Kharagpur 721302, India.
| | | | | |
Collapse
|
13
|
Whyte A, Torelli A, Mirabi B, Zhang A, Lautens M. Copper-Catalyzed Borylative Difunctionalization of π-Systems. ACS Catal 2020. [DOI: 10.1021/acscatal.0c02758] [Citation(s) in RCA: 89] [Impact Index Per Article: 17.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Affiliation(s)
- Andrew Whyte
- Davenport Research Laboratories, Department of Chemistry, University of Toronto, 80 St. George Street, Toronto, Ontario M5S 3H6, Canada
| | - Alexa Torelli
- Davenport Research Laboratories, Department of Chemistry, University of Toronto, 80 St. George Street, Toronto, Ontario M5S 3H6, Canada
| | - Bijan Mirabi
- Davenport Research Laboratories, Department of Chemistry, University of Toronto, 80 St. George Street, Toronto, Ontario M5S 3H6, Canada
| | - Anji Zhang
- Davenport Research Laboratories, Department of Chemistry, University of Toronto, 80 St. George Street, Toronto, Ontario M5S 3H6, Canada
| | - Mark Lautens
- Davenport Research Laboratories, Department of Chemistry, University of Toronto, 80 St. George Street, Toronto, Ontario M5S 3H6, Canada
| |
Collapse
|
14
|
Fortunato M, Gimbert Y, Rousset E, Lameiras P, Martinez A, Gatard S, Plantier-Royon R, Jaroschik F. Diastereoselective Synthesis of Axially Chiral Xylose-Derived 1,3-Disubstituted Alkoxyallenes: Scope, Structure, and Mechanism. J Org Chem 2020; 85:10681-10694. [DOI: 10.1021/acs.joc.0c01240] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Affiliation(s)
- Moustapha Fortunato
- Institut de Chimie Moléculaire de Reims, UMR CNRS 7312, Université de Reims Champagne-Ardenne, 51687 Reims, France
| | - Yves Gimbert
- Département de Chimie Moléculaire, UMR CNRS 5250, Université Grenoble Alpes, 38058 Grenoble, France
| | - Elodie Rousset
- Institut de Chimie Moléculaire de Reims, UMR CNRS 7312, Université de Reims Champagne-Ardenne, 51687 Reims, France
| | - Pedro Lameiras
- Institut de Chimie Moléculaire de Reims, UMR CNRS 7312, Université de Reims Champagne-Ardenne, 51687 Reims, France
| | - Agathe Martinez
- Institut de Chimie Moléculaire de Reims, UMR CNRS 7312, Université de Reims Champagne-Ardenne, 51687 Reims, France
| | - Sylvain Gatard
- Institut de Chimie Moléculaire de Reims, UMR CNRS 7312, Université de Reims Champagne-Ardenne, 51687 Reims, France
| | - Richard Plantier-Royon
- Institut de Chimie Moléculaire de Reims, UMR CNRS 7312, Université de Reims Champagne-Ardenne, 51687 Reims, France
| | | |
Collapse
|
15
|
Li QH, Jiang X, Wu K, Luo RQ, Liang M, Zhang ZH, Huang ZY. Research Progress on the Catalytic Enantioselective Synthesis of Axially Chiral Allenes by Chiral Organocatalysts. CURR ORG CHEM 2020. [DOI: 10.2174/1385272824666200306094427] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Chiral allenes are important structural scaffolds found in many natural products
and drugs, and in addition, they also serve as building blocks for many organic transformations.
The conventional methods for preparing chiral allenes rely on the resolution of
racemic allenes and the chirality transfer between non-racemic propargylic derivatives and
nucleophilic reagents. In recent years, the synthesis of chiral allenes by asymmetric catalysis
has been achieved fruitful results. Among them, enantioselective synthesis of chiral
allenes with chiral organic catalysts is particularly prominent. In this paper, the research
progress of enantioselective synthesis of chiral allenes catalyzed by chiral organic catalysts
in recent years is reviewed, including various reaction systems and synthesis applications.
Collapse
Affiliation(s)
- Qing Han Li
- College of Chemistry and Environmental Protection Engineering, Southwest Minzu University, Chengdu, China
| | - Xin Jiang
- College of Chemistry and Environmental Protection Engineering, Southwest Minzu University, Chengdu, China
| | - Kun Wu
- College of Chemistry and Environmental Protection Engineering, Southwest Minzu University, Chengdu, China
| | - Rui Qiang Luo
- College of Chemistry and Environmental Protection Engineering, Southwest Minzu University, Chengdu, China
| | - Meng Liang
- College of Chemistry and Environmental Protection Engineering, Southwest Minzu University, Chengdu, China
| | - Zhi Hao Zhang
- College of Chemistry and Environmental Protection Engineering, Southwest Minzu University, Chengdu, China
| | - Zhe Yao Huang
- College of Chemistry and Environmental Protection Engineering, Southwest Minzu University, Chengdu, China
| |
Collapse
|
16
|
Wang H, Luo H, Zhang ZM, Zheng WF, Yin Y, Qian H, Zhang J, Ma S. Pd-Catalyzed Enantioselective Syntheses of Trisubstituted Allenes via Coupling of Propargylic Benzoates with Organoboronic Acids. J Am Chem Soc 2020; 142:9763-9771. [DOI: 10.1021/jacs.0c02876] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Huanan Wang
- Research Center for Molecular Recognition and Synthesis, Department of Chemistry, Fudan University, 220 Handan Lu, Shanghai 200433, PR China
| | - Hongwen Luo
- Research Center for Molecular Recognition and Synthesis, Department of Chemistry, Fudan University, 220 Handan Lu, Shanghai 200433, PR China
| | - Zhan-Ming Zhang
- Research Center for Molecular Recognition and Synthesis, Department of Chemistry, Fudan University, 220 Handan Lu, Shanghai 200433, PR China
| | - Wei-Feng Zheng
- Research Center for Molecular Recognition and Synthesis, Department of Chemistry, Fudan University, 220 Handan Lu, Shanghai 200433, PR China
| | - Yu Yin
- Research Center for Molecular Recognition and Synthesis, Department of Chemistry, Fudan University, 220 Handan Lu, Shanghai 200433, PR China
| | - Hui Qian
- Research Center for Molecular Recognition and Synthesis, Department of Chemistry, Fudan University, 220 Handan Lu, Shanghai 200433, PR China
| | - Junliang Zhang
- Research Center for Molecular Recognition and Synthesis, Department of Chemistry, Fudan University, 220 Handan Lu, Shanghai 200433, PR China
- State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, 345 Lingling Lu, Shanghai 200032, PR China
| | - Shengming Ma
- Research Center for Molecular Recognition and Synthesis, Department of Chemistry, Fudan University, 220 Handan Lu, Shanghai 200433, PR China
- State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, 345 Lingling Lu, Shanghai 200032, PR China
| |
Collapse
|
17
|
Yu SH, Gong TJ, Fu Y. Three-Component Borylallenylation of Alkynes: Access to Densely Boryl-Substituted Ene-allenes. Org Lett 2020; 22:2941-2945. [PMID: 32250638 DOI: 10.1021/acs.orglett.0c00643] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
Ene-allenes serve as versatile building blocks in organic synthesis, and the development of their efficient preparation is valuable. Herein the synthesis of boryl-substituted ene-allenes utilizing a Cu/Pd-catalyzed borylallenylation of alkynes with propargylic carbonates and bis(pinacolato)diboron is reported. Densely (tetra-, penta-, and hexa-) substituted ene-allenes were synthesized in acceptable yield with high regio- and stereoselectivity. More important molecule structures can be obtained by subsequent modifications.
Collapse
Affiliation(s)
- Shang-Hai Yu
- Hefei National Laboratory for Physical Sciences at the Microscale, CAS Key Laboratory of Urban Pollutant Conversion, Anhui Province Key Laboratory of Biomass Clean Energy, iChEM, University of Science and Technology of China, Hefei 230026, China
| | - Tian-Jun Gong
- Hefei National Laboratory for Physical Sciences at the Microscale, CAS Key Laboratory of Urban Pollutant Conversion, Anhui Province Key Laboratory of Biomass Clean Energy, iChEM, University of Science and Technology of China, Hefei 230026, China
| | - Yao Fu
- Hefei National Laboratory for Physical Sciences at the Microscale, CAS Key Laboratory of Urban Pollutant Conversion, Anhui Province Key Laboratory of Biomass Clean Energy, iChEM, University of Science and Technology of China, Hefei 230026, China
| |
Collapse
|
18
|
Colomer I, Ureña M, Viso A, Fernández de la Pradilla R. Sulfinyl-Mediated Stereoselective Functionalization of Acyclic Conjugated Dienes. Chemistry 2020; 26:4620-4632. [PMID: 31994765 DOI: 10.1002/chem.201905742] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2019] [Indexed: 01/16/2023]
Abstract
The chemo- and stereocontrolled functionalization of conjugated sulfinyl dienes in a cascade process that involves a conjugate addition, diastereoselective protonation and a [2,3]-sigmatropic rearrangement is reported. Enantioenriched 1,4-diol and 1,4-aminoalcohol derivatives are obtained in a very straightforward manner. Further functionalization of these structures, including highly stereoselective epoxidation, dihydroxylation and the stereodivergent synthesis of several polyols in a controlled fashion is described.
Collapse
Affiliation(s)
- Ignacio Colomer
- Instituto de Química Orgánica General, IQOG-CSIC, Juan de la Cierva 3, 28006, Madrid, Spain
| | - Mercedes Ureña
- Instituto de Química Orgánica General, IQOG-CSIC, Juan de la Cierva 3, 28006, Madrid, Spain
| | - Alma Viso
- Instituto de Química Orgánica General, IQOG-CSIC, Juan de la Cierva 3, 28006, Madrid, Spain
| | | |
Collapse
|
19
|
Mateos-Gil J, Mondal A, Castiñeira Reis M, Feringa BL. Synthesis and Functionalization of Allenes by Direct Pd-Catalyzed Organolithium Cross-Coupling. Angew Chem Int Ed Engl 2020; 59:7823-7829. [PMID: 32078230 DOI: 10.1002/anie.201913132] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2019] [Revised: 01/30/2020] [Indexed: 02/06/2023]
Abstract
A palladium-catalyzed cross-coupling between in situ generated allenyl/propargyl-lithium species and aryl bromides to yield highly functionalized allenes is reported. The direct and selective formation of allenic products preventing the corresponding isomeric propargylic product is accomplished by the choice of SPhos or XPhos based Pd catalysts. The methodology avoids the prior transmetalation to other transition metals or reverse approaches that required prefunctionalization of substrates with leaving groups, resulting in a fast and efficient approach for the synthesis of tri- and tetrasubstituted allenes. Experimental and theoretical studies on the mechanism show catalyst control of selectivity in this allene formation.
Collapse
Affiliation(s)
- Jaime Mateos-Gil
- Stratingh Institute for Chemistry, University of Groningen, Nijenborgh 4, 9747AG, Groningen, The Netherlands
| | - Anirban Mondal
- Stratingh Institute for Chemistry, University of Groningen, Nijenborgh 4, 9747AG, Groningen, The Netherlands
| | - Marta Castiñeira Reis
- Stratingh Institute for Chemistry, University of Groningen, Nijenborgh 4, 9747AG, Groningen, The Netherlands
| | - Ben L Feringa
- Stratingh Institute for Chemistry, University of Groningen, Nijenborgh 4, 9747AG, Groningen, The Netherlands
| |
Collapse
|
20
|
Mateos‐Gil J, Mondal A, Castiñeira Reis M, Feringa BL. Synthesis and Functionalization of Allenes by Direct Pd‐Catalyzed Organolithium Cross‐Coupling. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.201913132] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Jaime Mateos‐Gil
- Stratingh Institute for Chemistry University of Groningen Nijenborgh 4 9747AG Groningen The Netherlands
| | - Anirban Mondal
- Stratingh Institute for Chemistry University of Groningen Nijenborgh 4 9747AG Groningen The Netherlands
| | - Marta Castiñeira Reis
- Stratingh Institute for Chemistry University of Groningen Nijenborgh 4 9747AG Groningen The Netherlands
| | - Ben L. Feringa
- Stratingh Institute for Chemistry University of Groningen Nijenborgh 4 9747AG Groningen The Netherlands
| |
Collapse
|
21
|
Skotnitzki J, Kremsmair A, Keefer D, Schüppel F, Le Cacher de Bonneville B, de Vivie-Riedle R, Knochel P. Regio- and diastereoselective reactions of chiral secondary alkylcopper reagents with propargylic phosphates: preparation of chiral allenes. Chem Sci 2020; 11:5328-5332. [PMID: 34122991 PMCID: PMC8159386 DOI: 10.1039/c9sc05982b] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
The diastereoselective SN2′-substitution of secondary alkylcopper reagents with propargylic phosphates enables the preparation of stereodefined alkylallenes. By using enantiomerically enriched alkylcopper reagents and enantioenriched propargylic phosphates as electrophiles anti-SN2′-substitutions were performend leading to α-chiral allenes in good yields with excellent regioselectivity and retention of configuration. DFT-calculations were performed to rationalize the structure of these alkylcopper reagents in various solvents, emphasizing their configurational stability in THF. The diastereoselective SN2′-substitution of secondary alkylcopper reagents with propargylic phosphates enables the preparation of stereodefined alkylallenes.![]()
Collapse
Affiliation(s)
- Juri Skotnitzki
- Department of Chemistry
- Ludwig-Maximilians-Universitaet
- 81377 München
- Germany
| | | | - Daniel Keefer
- Department of Chemistry
- Ludwig-Maximilians-Universitaet
- 81377 München
- Germany
| | - Franziska Schüppel
- Department of Chemistry
- Ludwig-Maximilians-Universitaet
- 81377 München
- Germany
| | | | | | - Paul Knochel
- Department of Chemistry
- Ludwig-Maximilians-Universitaet
- 81377 München
- Germany
| |
Collapse
|
22
|
Sun Y, Zhou Y, Shi Y, Del Pozo J, Torker S, Hoveyda AH. Copper-Hydride-Catalyzed Enantioselective Processes with Allenyl Boronates. Mechanistic Nuances, Scope, and Utility in Target-Oriented Synthesis. J Am Chem Soc 2019; 141:12087-12099. [PMID: 31314510 DOI: 10.1021/jacs.9b05465] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
Synthesis of complex bioactive molecules is substantially facilitated by transformations that efficiently and stereoselectively generate polyfunctional compounds. Designing such processes is hardly straightforward, however, especially when the desired route runs counter to the inherently favored reactivity profiles. Furthermore, in addition to being efficient and stereoselective, it is crucial that the products generated can be easily and stereodivergently modified. Here, we introduce a catalytic process that delivers versatile and otherwise difficult-to-access organoboron entities by combining an allenylboronate, a hydride, and an allylic phosphate. Two unique selectivity problems had to be solved: avoiding rapid side reaction of a Cu-H complex with an allylic phosphate, while promoting its addition to an allenylboronate as opposed to the commonly utilized boron-copper exchange. The utility of the approach is demonstrated by applications to concise preparation of the linear fragment of pumiliotoxin B (myotonic, cardiotonic) and enantioselective synthesis and structure confirmation of netamine C, a member of a family of anti-tumor and anti-malarial natural products. Completion of the latter routes required the following noteworthy developments: (1) a two-step all-catalytic sequence for conversion of a terminal alkene to a monosubstituted alkyne; (2) a catalytic SN2'- and enantioselective allylic substitution method involving a mild alkylzinc halide reagent; and (3) a diastereoselective [3+2]-cycloaddition to assemble the polycyclic structure of a guanidyl polycyclic natural product.
Collapse
Affiliation(s)
- Yu Sun
- Department of Chemistry, Merkert Chemistry Center , Boston College , Chestnut Hill , Massachusetts 02467 , United States
| | - Yuebiao Zhou
- Department of Chemistry, Merkert Chemistry Center , Boston College , Chestnut Hill , Massachusetts 02467 , United States
| | - Ying Shi
- Department of Chemistry, Merkert Chemistry Center , Boston College , Chestnut Hill , Massachusetts 02467 , United States
| | - Juan Del Pozo
- Department of Chemistry, Merkert Chemistry Center , Boston College , Chestnut Hill , Massachusetts 02467 , United States
| | - Sebastian Torker
- Supramolecular Science and Engineering Institute , University of Strasbourg , CNRS, 67000 Strasbourg , France
| | - Amir H Hoveyda
- Department of Chemistry, Merkert Chemistry Center , Boston College , Chestnut Hill , Massachusetts 02467 , United States.,Supramolecular Science and Engineering Institute , University of Strasbourg , CNRS, 67000 Strasbourg , France
| |
Collapse
|
23
|
Han JT, Yun J. Asymmetric synthesis of α-chiral β-hydroxy allenes: copper-catalyzed γ-selective borylative coupling of vinyl arenes and propargyl phosphates. Chem Commun (Camb) 2019; 55:9813-9816. [PMID: 31360939 DOI: 10.1039/c9cc04165f] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Copper-catalyzed enantioselective coupling of vinyl arenes with bis(pinacolato)diboron (B2pin2) and propargylic phosphates is presented.
Collapse
Affiliation(s)
- Jung Tae Han
- Department of Chemistry
- Sungkyunkwan University
- Suwon 16419
- Korea
| | - Jaesook Yun
- Department of Chemistry
- Sungkyunkwan University
- Suwon 16419
- Korea
| |
Collapse
|