1
|
Khan ZA, Singh VK. Asymmetric Organocatalytic Diels-Alder Reaction of Olefinic Azlactones with Unsaturated Thiazolones: Access to Spirocyclohexenone Thiazolone Skeletons. J Org Chem 2024; 89:15271-15281. [PMID: 39387656 DOI: 10.1021/acs.joc.4c02088] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/15/2024]
Abstract
Chiral bifunctional thiourea-catalyzed Diels-Alder reaction between olefinic azlactones and alkylidene thiazolone derivatives is reported here for the first time. The asymmetric Diels-Alder reaction delivers vicinal tertiary-quaternary stereocenters in spirocyclohexenone thiazolones in moderate to high yields and good stereochemical outcomes. The protocol can be adapted to a broad array of substrates. Moreover, the reaction is scaled up, and the chiral spirocyclohexenone thiazolone was converted into valuable spirocyclic-1,2-amidoalcohol highlighting the synthetic utility of our methodology.
Collapse
Affiliation(s)
- Zahid Ahmad Khan
- Department of Chemistry, Indian Institute of Technology Kanpur, Kanpur, Uttar Pradesh 208016, India
| | - Vinod K Singh
- Department of Chemistry, Indian Institute of Technology Kanpur, Kanpur, Uttar Pradesh 208016, India
| |
Collapse
|
2
|
Jiang D, Yan S, Wen L, Fan F. Access to Functionalized Cyclohex-2-enones from a Multicomponent Cascade Reaction of Readily Available Alkynes, Ketones, and Ethyl Acetoacetate. J Org Chem 2024; 89:5857-5860. [PMID: 38566575 DOI: 10.1021/acs.joc.3c02913] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/04/2024]
Abstract
The synthesis of cyclohex-2-enone derivatives is a topic of current interest in organic chemistry. A novel three-component cascade reaction of alkynes with ketones and ethyl acetoacetate has been uncovered. This process provides di- and trisubstituted cyclohex-2-enones in good yields with excellent functional group tolerance. A variety of terminal alkynes and a wide range of aryl, alkyl, and cyclic ketones are viable in this transformation. Successful scale-up preparation and synthetic transformations have demonstrated the potential of this simple operating protocol.
Collapse
Affiliation(s)
- Dahong Jiang
- School of Chemistry, Guangdong University of Petrochemical Technology, Maoming 525011, China
| | - Simin Yan
- School of Chemistry, Guangdong University of Petrochemical Technology, Maoming 525011, China
| | - Liting Wen
- School of Chemistry, Guangdong University of Petrochemical Technology, Maoming 525011, China
| | - Fang Fan
- School of Biology and Food Engineering, Guangdong University of Petrochemical Technology, Maoming 525011, China
| |
Collapse
|
3
|
Waser M, Winter M, Mairhofer C. (Thio)urea containing chiral ammonium salt catalysts. CHEM REC 2022:e202200198. [PMID: 36175162 DOI: 10.1002/tcr.202200198] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2022] [Revised: 08/25/2022] [Indexed: 11/08/2022]
Abstract
(Thio)-urea-containing bifunctional quaternary ammonium salts emerged as powerful non-covalently interacting organocatalysts over the course of the last decade. The most commonly employed catalysts in this field are either based on Cinchona alkaloids, α-amino acids, or trans-cyclohexane-1,2-diamine. Our group has been heavily engaged in the design and use of such catalysts, i. e. trans-cyclohexane-1,2-diamine-based ones for around 10 years now, and it is therefore the intention of this short personal account to provide an overview of the, at least in our opinion, most significant and pioneering achievements in this field by looking on catalyst design and asymmetric method development, with a special focus on our own contributions.
Collapse
Affiliation(s)
- Mario Waser
- Institute of Organic Chemistry, Johannes Kepler University Linz, Altenbergerstrasse 69, 4040, Linz, Austria
| | - Michael Winter
- Institute of Organic Chemistry, Johannes Kepler University Linz, Altenbergerstrasse 69, 4040, Linz, Austria
| | - Christopher Mairhofer
- Institute of Organic Chemistry, Johannes Kepler University Linz, Altenbergerstrasse 69, 4040, Linz, Austria
| |
Collapse
|
4
|
Li TH, Niu C, Du DM. Enantioselective synthesis of isoxazole-containing spirooxindole tetrahydroquinolines via squaramide-catalysed cascade reactions. Org Biomol Chem 2022; 20:5582-5588. [PMID: 35796306 DOI: 10.1039/d2ob00864e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A class of o-sulfonylaminostyryl isoxazole synthons were designed and demonstrated to be useful building blocks in asymmetric cascade aza-Michael/Michael reaction with 3-olefinic oxindoles. This squaramide-catalysed cascade reaction afforded structurally complex isoxazole-containing spirooxindole tetrahydroquinolines bearing three contiguous stereocenters in good to excellent yields (up to 99%) with high diastereoselectivities (up to >20 : 1 dr) and enantioselectivities (up to 88% ee). Moreover, the gram-scale synthesis and synthetic transformations were also demonstrated.
Collapse
Affiliation(s)
- Tong-Hao Li
- Key Laboratory of Medical Molecule Science & Pharmaceutics Engineering (Ministry of Industry and Information Technology), School of Chemistry and Chemical Engineering, Beijing Institute of Technology, No.5 Zhongguancun South Street, Beijing 100081, People's Republic of China..
| | - Cheng Niu
- Key Laboratory of Medical Molecule Science & Pharmaceutics Engineering (Ministry of Industry and Information Technology), School of Chemistry and Chemical Engineering, Beijing Institute of Technology, No.5 Zhongguancun South Street, Beijing 100081, People's Republic of China..
| | - Da-Ming Du
- Key Laboratory of Medical Molecule Science & Pharmaceutics Engineering (Ministry of Industry and Information Technology), School of Chemistry and Chemical Engineering, Beijing Institute of Technology, No.5 Zhongguancun South Street, Beijing 100081, People's Republic of China..
| |
Collapse
|
5
|
Asymmetric Phase Transfer Catalysed Michael Addition of γ-Butenolide and N-Boc-Pyrrolidone to 4-Nitro-5-styrylisoxazoles. Catalysts 2022. [DOI: 10.3390/catal12060634] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/10/2022] Open
Abstract
Herein we report the addition of acidic γ-butenolide and N-Boc-pyrrolidone to 4-nitro-5-styrylisoxazoles, a popular class of cinnamic ester synthetic equivalent. The reactions proceeded under the catalysis of Cinchona-based phase-transfer catalysts. Functionalised γ-butenolides were obtained in good isolated yields and moderate enantioselectivity (up to 74% ee).
Collapse
|
6
|
Li TH, Du DM. Asymmetric synthesis of isoxazole and trifluoromethyl-containing 3,2'-pyrrolidinyl dispirooxindoles via squaramide-catalysed [3 + 2] cycloaddition reactions. Org Biomol Chem 2022; 20:817-823. [PMID: 35005763 DOI: 10.1039/d1ob02350k] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
A highly efficient squaramide-catalysed asymmetric domino Michael/Mannich [3 + 2] cycloaddition of 3-methyl-4-nitro-5-isatylidenyl-isoxazoles and N-2,2,2-trifluoroethylisatin ketimines was developed. A new class of complex and diverse-skeleton isoxazole and trifluoromethyl-containing 3,2'-pyrrolidinyl dispirooxindoles bearing four contiguous stereogenic centers including two adjacent spiro quaternary stereocentres were obtained in good to excellent yields (up to 99%) with excellent diastereoselectivities (>20 : 1 dr, in all cases) and enantioselectivities (up to 96% ee). Moreover, the potential utilities of the protocol have been demonstrated by gram-scale synthesis and further transformation experiments.
Collapse
Affiliation(s)
- Tong-Hao Li
- School of Chemistry and Chemical Engineering, Beijing Institute of Technology, No.5 Zhongguancun South Street, Beijing 100081, People's Republic of China.
| | - Da-Ming Du
- School of Chemistry and Chemical Engineering, Beijing Institute of Technology, No.5 Zhongguancun South Street, Beijing 100081, People's Republic of China.
| |
Collapse
|
7
|
Zhu B, Sun H, Fan H, Wang M, Guo F, Zhai Y, Zhu G, Chang J. Asymmetric Brønsted base-catalyzed aza-Michael addition and [3 + 2] cycloaddition reactions of N-ester acylhydrazones and enones. Org Chem Front 2022. [DOI: 10.1039/d2qo01527g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
We reported the first enantioselective Brønsted base-catalyzed aza-Michael addition and stepwise cascade [3+2] cycloaddition between acylhydrazones and unsaturated ketones. The enantio-enriched aza-Michael adducts can be transformed into 2-pyrazolines.
Collapse
Affiliation(s)
- Bo Zhu
- NMPA Key Laboratory for Research and Evaluation of Innovative Drug, Henan Key Laboratory of Organic Functional Molecule and Drug Innovation, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, Henan, 453007, P. R. China
| | - Huili Sun
- NMPA Key Laboratory for Research and Evaluation of Innovative Drug, Henan Key Laboratory of Organic Functional Molecule and Drug Innovation, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, Henan, 453007, P. R. China
| | - Huihui Fan
- NMPA Key Laboratory for Research and Evaluation of Innovative Drug, Henan Key Laboratory of Organic Functional Molecule and Drug Innovation, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, Henan, 453007, P. R. China
| | - Mengqi Wang
- NMPA Key Laboratory for Research and Evaluation of Innovative Drug, Henan Key Laboratory of Organic Functional Molecule and Drug Innovation, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, Henan, 453007, P. R. China
| | - Fangyuan Guo
- NMPA Key Laboratory for Research and Evaluation of Innovative Drug, Henan Key Laboratory of Organic Functional Molecule and Drug Innovation, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, Henan, 453007, P. R. China
| | - Yubing Zhai
- NMPA Key Laboratory for Research and Evaluation of Innovative Drug, Henan Key Laboratory of Organic Functional Molecule and Drug Innovation, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, Henan, 453007, P. R. China
| | - Gongming Zhu
- NMPA Key Laboratory for Research and Evaluation of Innovative Drug, Henan Key Laboratory of Organic Functional Molecule and Drug Innovation, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, Henan, 453007, P. R. China
| | - Junbiao Chang
- NMPA Key Laboratory for Research and Evaluation of Innovative Drug, Henan Key Laboratory of Organic Functional Molecule and Drug Innovation, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, Henan, 453007, P. R. China
| |
Collapse
|
8
|
Hussain Y, Tamanna, Sharma M, Kumar A, Chauhan P. Recent development in asymmetric organocatalytic domino reactions involving 1,6-addition as a key step. Org Chem Front 2022. [DOI: 10.1039/d1qo01561c] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
This article highlights the significant development in stereoselective domino reactions involving 1,6-addition as a crucial step.
Collapse
Affiliation(s)
- Yaseen Hussain
- Department of Chemistry, Indian Institute of Technology Jammu, Jagti, NH-44, Nagrota Bypass, Jammu, 181221, J&K, India
| | - Tamanna
- Department of Chemistry, Indian Institute of Technology Jammu, Jagti, NH-44, Nagrota Bypass, Jammu, 181221, J&K, India
| | - Manisha Sharma
- Department of Chemistry, Indian Institute of Technology Jammu, Jagti, NH-44, Nagrota Bypass, Jammu, 181221, J&K, India
| | - Akshay Kumar
- Department of Chemistry, DAV University, Pathankot – Jalandhar Road, Jalandhar 144001, Punjab, India
| | - Pankaj Chauhan
- Department of Chemistry, Indian Institute of Technology Jammu, Jagti, NH-44, Nagrota Bypass, Jammu, 181221, J&K, India
| |
Collapse
|
9
|
Vinylogous and Arylogous Stereoselective Base-Promoted Phase-Transfer Catalysis. Catalysts 2021. [DOI: 10.3390/catal11121545] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Vinylogous enolate and enolate-type carbanions, generated by deprotonation of α,β-unsaturated compounds and characterized by delocalization of the negative charge over two or more carbon atoms, are extensively used in organic synthesis, enabling functionalization and C–C bond formation at remote positions. Similarly, reactions with electrophiles at benzylic and heterobenzylic position are performed through generation of arylogous and heteroarylogous enolate-type nucleophiles. Although widely exploited in metal-catalysis and organocatalysis, it is only in recent years that the vinylogy and arylogy principles have been translated fruitfully in phase-transfer catalyzed processes. This review provides an overview of the methods developed to date, involving vinylogous and (hetero)arylogous carbon nucleophiles under phase-transfer catalytic conditions, highlighting main mechanistic aspects.
Collapse
|
10
|
Nagaraju S, Sathish K, Kashinath D. Applications of 3,5‐Dialkyl‐4‐nitroisoxazoles and Their Derivatives in Organic Synthesis
#. ChemistrySelect 2021. [DOI: 10.1002/slct.202101719] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Sakkani Nagaraju
- Department of Chemistry National Institute of Technology Warangal-506 004 India 2677
| | - Kota Sathish
- Department of Chemistry National Institute of Technology Warangal-506 004 India 2677
| | - Dhurke Kashinath
- Department of Chemistry National Institute of Technology Warangal-506 004 India 2677
| |
Collapse
|
11
|
Oiarbide M, Palomo C. Extended Enolates: Versatile Intermediates for Asymmetric C-H Functionalization via Noncovalent Catalysis. Chemistry 2021; 27:10226-10246. [PMID: 33961323 PMCID: PMC8361983 DOI: 10.1002/chem.202100756] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2021] [Indexed: 12/22/2022]
Abstract
Catalyst-controlled functionalization of unmodified carbonyl compounds is a relevant operation in organic synthesis, especially when high levels of site- and stereoselectivity can be attained. This objective is now within reach for some subsets of enolizable substrates using various types of activation mechanisms. Recent contributions to this area include enantioselective transformations that proceed via transiently generated noncovalent di(tri)enolate-catalyst coordination species. While relatively easier to form than simple enolate congeners, di(tri)enolates are ambifunctional in nature and so control of the reaction regioselectivity becomes an issue. This Minireview discusses in some detail this and other problems, and how noncovalent activation approaches based on metallic and metal free catalysts have been developed to advance the field.
Collapse
Affiliation(s)
- Mikel Oiarbide
- Departamento de Química Orgánica IUniversidad del País Vasco UPV/EHUManuel Lardizabal 320018San SebastiánSpain
| | - Claudio Palomo
- Departamento de Química Orgánica IUniversidad del País Vasco UPV/EHUManuel Lardizabal 320018San SebastiánSpain
| |
Collapse
|
12
|
Cao D, Chen G, Chen D, Xia Z, Li Z, Wang Y, Xu D, Yang J. Synthesis of 4-Hydroxycarbazole Derivatives by Benzannulation of 3-Nitroindoles with Alkylidene Azlactones. ACS OMEGA 2021; 6:16969-16979. [PMID: 34250355 PMCID: PMC8264937 DOI: 10.1021/acsomega.1c01992] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/14/2021] [Accepted: 06/14/2021] [Indexed: 05/05/2023]
Abstract
A general synthesis of 4-hydroxylcarbazoles by domino vinylogous conjugate addition/cyclization/elimination/aromatization of easily prepared 3-nitroindoles with alkylidene azlactones under mild and transition-metal-free conditions has been developed. This method was also applicable to other nitrosubstituted benzofused heterocycles such as 3-nitrobenzothiophene, 2-nitrobenzothiophene, and 2-nitrobenzofuran. The valuable tetracyclic carbazole derivatives, such as 6H-oxazolo[4,5-c]carbazole and 3,6-dihydro-2H-oxazolo[4,5-c]carbazol-2-one, were readily prepared from the product, demonstrating synthetic utility of this method.
Collapse
|
13
|
Enantiodivergent synthesis of tricyclic chromans: Remote nucleophilic groups switch selectivity in catalytic asymmetric cascade reactions of trifunctional substrates. GREEN SYNTHESIS AND CATALYSIS 2021. [DOI: 10.1016/j.gresc.2021.04.002] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
|
14
|
Wu HC, Wang C, Chen YH, Liu YK. Asymmetric organocatalytic vinylogous Michael addition triggered triple-cascade reactions of 2-hydroxycinnamaldehydes and vinylogous nucleophiles: construction of benzofused oxabicyclo[3.3.1]nonane scaffolds. Chem Commun (Camb) 2021; 57:1762-1765. [PMID: 33470263 DOI: 10.1039/d0cc07761e] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
An organocatalytic vinylogous Michael addition triggered triple-cascade reaction has been developed. 2-Hydroxycinnamaldehydes worked under iminium activation with either acyclic or cyclic ketone-derived α,α-dicyanoalkenes, yielding the benzofused oxabicyclo[3.3.1]nonanes bearing one quaternary stereocenter with excellent stereoselectivities.
Collapse
Affiliation(s)
- Hui-Chun Wu
- Molecular Synthesis Center & Key Laboratory of Marine Drugs, Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, 5 Yushan Road, Qingdao 266003, China.
| | - Chen Wang
- Molecular Synthesis Center & Key Laboratory of Marine Drugs, Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, 5 Yushan Road, Qingdao 266003, China.
| | - Ying-Han Chen
- Molecular Synthesis Center & Key Laboratory of Marine Drugs, Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, 5 Yushan Road, Qingdao 266003, China.
| | - Yan-Kai Liu
- Molecular Synthesis Center & Key Laboratory of Marine Drugs, Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, 5 Yushan Road, Qingdao 266003, China. and Laboratory for Marine Drugs and Bioproducts of Qingdao National Laboratory for Marine Science and Technology, Qingdao 266003, China
| |
Collapse
|
15
|
Liao J, Dong J, Xu J, Wang W, Wu Y, Hou Y, Guo H. Phosphine-Catalyzed [3 + 2] Annulation of Morita–Baylis–Hillman Carbonates with Isoxazole-Based Alkenes. J Org Chem 2021; 86:2090-2099. [DOI: 10.1021/acs.joc.0c01948] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Jianning Liao
- Department of Chemistry, China Agricultural University, Beijing 100193, China
| | - Jipan Dong
- Department of Chemistry, China Agricultural University, Beijing 100193, China
| | - Jiaqing Xu
- Department of Chemistry, China Agricultural University, Beijing 100193, China
| | - Wei Wang
- College of Public Health, Zhengzhou University, Zhengzhou 450001, China
| | - Yongjun Wu
- College of Public Health, Zhengzhou University, Zhengzhou 450001, China
| | - Yuxia Hou
- Department of Chemistry, China Agricultural University, Beijing 100193, China
| | - Hongchao Guo
- Department of Chemistry, China Agricultural University, Beijing 100193, China
| |
Collapse
|
16
|
Tyszka-Gumkowska A, Jurczak J. Divergent synthesis of pyrrolidine and glutamic acid derivatives using a macrocyclic phase-transfer catalyst under high-pressure conditions. Org Chem Front 2021. [DOI: 10.1039/d1qo01198g] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The reactivity of the glycine ketimine ester with α,β-unsaturated ketones in the presence of macrocyclic hybrid phase-transfer catalysts under high pressure conditions has been investigated.
Collapse
Affiliation(s)
- Agata Tyszka-Gumkowska
- Institute of Organic Chemistry, Polish Academy of Sciences, Kasprzaka 44/52, 01-224 Warsaw, Poland
| | - Janusz Jurczak
- Institute of Organic Chemistry, Polish Academy of Sciences, Kasprzaka 44/52, 01-224 Warsaw, Poland
| |
Collapse
|
17
|
Zhu B, Yang T, Gu Y, Zhu S, Zhu G, Chang J. Enantioselective organocatalytic amination of 2-perfluoroalkyl-oxazol-5(2H)-ones towards the synthesis of chiral N,O-aminals with perfluoroalkyl and amino groups. Org Chem Front 2021. [DOI: 10.1039/d1qo00569c] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
The first highly enantioselective amination at the C-2 position of oxazol-5(2H)-ones has been presented. Two efficient relay asymmetric transformation processes were successfully utilized to synthesize chiral N,O-aminals with a quaternary center.
Collapse
Affiliation(s)
- Bo Zhu
- NMPA Key Laboratory for Research and Evaluation of Innovative Drug
- Henan Key Laboratory of Organic Functional Molecule and Drug Innovation
- School of Chemistry and Chemical Engineering
- Henan Normal University
- Xinxiang
| | - Tianxiao Yang
- NMPA Key Laboratory for Research and Evaluation of Innovative Drug
- Henan Key Laboratory of Organic Functional Molecule and Drug Innovation
- School of Chemistry and Chemical Engineering
- Henan Normal University
- Xinxiang
| | - Yingxin Gu
- NMPA Key Laboratory for Research and Evaluation of Innovative Drug
- Henan Key Laboratory of Organic Functional Molecule and Drug Innovation
- School of Chemistry and Chemical Engineering
- Henan Normal University
- Xinxiang
| | - Shuping Zhu
- NMPA Key Laboratory for Research and Evaluation of Innovative Drug
- Henan Key Laboratory of Organic Functional Molecule and Drug Innovation
- School of Chemistry and Chemical Engineering
- Henan Normal University
- Xinxiang
| | - Gongming Zhu
- NMPA Key Laboratory for Research and Evaluation of Innovative Drug
- Henan Key Laboratory of Organic Functional Molecule and Drug Innovation
- School of Chemistry and Chemical Engineering
- Henan Normal University
- Xinxiang
| | - Junbiao Chang
- NMPA Key Laboratory for Research and Evaluation of Innovative Drug
- Henan Key Laboratory of Organic Functional Molecule and Drug Innovation
- School of Chemistry and Chemical Engineering
- Henan Normal University
- Xinxiang
| |
Collapse
|
18
|
A flexible strategy for the synthesis of bifunctional 6′-(thio)-urea containing Cinchona alkaloid ammonium salts. Tetrahedron 2020. [DOI: 10.1016/j.tet.2019.130816] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
19
|
Li L, Yang T, Zhang T, Zhu B, Chang J. Organocatalytic Asymmetric Tandem Cyclization/Michael Addition via Oxazol-5(2 H)-One Formation: Access to Perfluoroalkyl-Containing N, O-Acetal Derivatives. J Org Chem 2020; 85:12294-12303. [PMID: 32893624 DOI: 10.1021/acs.joc.0c01545] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Herein, we report a convenient organocatalytic asymmetric tandem cyclization/Michael addition protocol for the synthesis of diastereomerically pure and highly enantioenriched perfluoroalkyl-containing N,O-acetal derivatives starting from racemic N-perfluoroacyl amino acids under mild conditions. This efficient atom economic reaction leads to highly enantioselective and diastereoselective construction of N,O-acetal derivatives containing oxazolone and perfluoroalkyl moieties containing vicinal quaternary and tertiary stereocenters (up to 97% yield, up to 96% ee, and up to >20:1 dr).
Collapse
Affiliation(s)
- Luyao Li
- Henan Key Laboratory of Organic Functional Molecule and Drug Innovation, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, Henan 453007, P. R. China
| | - Tianxiao Yang
- Henan Key Laboratory of Organic Functional Molecule and Drug Innovation, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, Henan 453007, P. R. China
| | - Tao Zhang
- Henan Key Laboratory of Organic Functional Molecule and Drug Innovation, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, Henan 453007, P. R. China
| | - Bo Zhu
- Henan Key Laboratory of Organic Functional Molecule and Drug Innovation, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, Henan 453007, P. R. China
| | - Junbiao Chang
- Henan Key Laboratory of Organic Functional Molecule and Drug Innovation, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, Henan 453007, P. R. China
| |
Collapse
|
20
|
Joshi H, Yadav A, Das A, Singh VK. Organocatalytic Asymmetric Hetero-Diels–Alder Reaction of in Situ Generated Dienes: Access to α,β-Unsaturated δ-Lactones Featuring CF3-Substituted Quaternary Stereocenter. J Org Chem 2020; 85:3202-3212. [DOI: 10.1021/acs.joc.9b03076] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Harshit Joshi
- Department of Chemistry, Indian Institute of Technology Kanpur, Kanpur 208016, UP, India
| | - Ankit Yadav
- Department of Chemistry, Indian Institute of Technology Kanpur, Kanpur 208016, UP, India
| | - Arko Das
- Department of Chemistry, Indian Institute of Technology Kanpur, Kanpur 208016, UP, India
| | - Vinod K. Singh
- Department of Chemistry, Indian Institute of Technology Kanpur, Kanpur 208016, UP, India
| |
Collapse
|
21
|
Li L, Zhu B, Fan H, Jiang Z, Chang J. Direct organocatalytic asymmetric Michael reaction of fluorine hemiaminal-type nucleophile to 4-nitro-5-styrylisoxazoles. Org Chem Front 2020. [DOI: 10.1039/d0qo00348d] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Herein, we report a chiral bifunctional thiourea catalyzed asymmetric Michael addition reaction between 2-(trifluoromethyl)oxazol-5(2H)-one as a direct C-2-position nucleophile to 4-nitro-5-styrylisoxazoles for the first time.
Collapse
Affiliation(s)
- Luyao Li
- Henan Key Laboratory of Organic Functional Molecule and Drug Innovation
- School of Chemistry and Chemical Engineering
- Henan Normal University
- Xinxiang
- P. R. China
| | - Bo Zhu
- Henan Key Laboratory of Organic Functional Molecule and Drug Innovation
- School of Chemistry and Chemical Engineering
- Henan Normal University
- Xinxiang
- P. R. China
| | - Huihui Fan
- Henan Key Laboratory of Organic Functional Molecule and Drug Innovation
- School of Chemistry and Chemical Engineering
- Henan Normal University
- Xinxiang
- P. R. China
| | - Zhiyong Jiang
- Henan Key Laboratory of Organic Functional Molecule and Drug Innovation
- School of Chemistry and Chemical Engineering
- Henan Normal University
- Xinxiang
- P. R. China
| | - Junbiao Chang
- Henan Key Laboratory of Organic Functional Molecule and Drug Innovation
- School of Chemistry and Chemical Engineering
- Henan Normal University
- Xinxiang
- P. R. China
| |
Collapse
|
22
|
Xu X, He Y, Zhou J, Li X, Zhu B, Chang J. Organocatalytic Asymmetric Michael Addition of Pyrazol-5-ones to β-Trifluoromethyl-α,β-unsaturated Ketones: Stereocontrolled Construction of Vicinal Quaternary and Tertiary Stereocenters. J Org Chem 2019; 85:574-584. [DOI: 10.1021/acs.joc.9b02676] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Xinyao Xu
- Henan Key Laboratory of Organic Functional Molecule and Drug Innovation, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, Henan 453007, P. R. China
| | - Yanmin He
- Henan Key Laboratory of Organic Functional Molecule and Drug Innovation, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, Henan 453007, P. R. China
| | - Jingqi Zhou
- Henan Key Laboratory of Organic Functional Molecule and Drug Innovation, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, Henan 453007, P. R. China
| | - Xinjuan Li
- Henan Key Laboratory of Organic Functional Molecule and Drug Innovation, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, Henan 453007, P. R. China
| | - Bo Zhu
- Henan Key Laboratory of Organic Functional Molecule and Drug Innovation, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, Henan 453007, P. R. China
| | - Junbiao Chang
- Henan Key Laboratory of Organic Functional Molecule and Drug Innovation, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, Henan 453007, P. R. China
| |
Collapse
|
23
|
Xiao BX, Shi CH, Liang SY, Jiang B, Du W, Chen YC. Remote Friedel–Crafts Reaction with α-Heteroaryl-Substituted Cyclic Ketones via HOMO Activation of Lewis Bases. Org Lett 2019; 21:7554-7557. [PMID: 31469571 DOI: 10.1021/acs.orglett.9b02827] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Ben-Xian Xiao
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Ministry of Education and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu 610041, China
| | - Chong-Hui Shi
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Ministry of Education and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu 610041, China
| | - Shu-Yuan Liang
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Ministry of Education and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu 610041, China
| | - Bo Jiang
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Ministry of Education and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu 610041, China
| | - Wei Du
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Ministry of Education and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu 610041, China
| | - Ying-Chun Chen
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Ministry of Education and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu 610041, China
- College of Pharmacy, Third Military Medical University, Shapingba, Chongqing 400038, China
| |
Collapse
|