1
|
Stoikov II, Antipin IS, Burilov VA, Kurbangalieva AR, Rostovskii NV, Pankova AS, Balova IA, Remizov YO, Pevzner LM, Petrov ML, Vasilyev AV, Averin AD, Beletskaya IP, Nenajdenko VG, Beloglazkina EK, Gromov SP, Karlov SS, Magdesieva TV, Prishchenko AA, Popkov SV, Terent’ev AO, Tsaplin GV, Kustova TP, Kochetova LB, Magdalinova NA, Krasnokutskaya EA, Nyuchev AV, Kuznetsova YL, Fedorov AY, Egorova AY, Grinev VS, Sorokin VV, Ovchinnikov KL, Kofanov ER, Kolobov AV, Rusinov VL, Zyryanov GV, Nosov EV, Bakulev VA, Belskaya NP, Berezkina TV, Obydennov DL, Sosnovskikh VY, Bakhtin SG, Baranova OV, Doroshkevich VS, Raskildina GZ, Sultanova RM, Zlotskii SS, Dyachenko VD, Dyachenko IV, Fisyuk AS, Konshin VV, Dotsenko VV, Ivleva EA, Reznikov AN, Klimochkin YN, Aksenov DA, Aksenov NA, Aksenov AV, Burmistrov VV, Butov GM, Novakov IA, Shikhaliev KS, Stolpovskaya NV, Medvedev SM, Kandalintseva NV, Prosenko OI, Menshchikova EB, Golovanov AA, Khashirova SY. Organic Chemistry in Russian Universities. Achievements of Recent Years. RUSSIAN JOURNAL OF ORGANIC CHEMISTRY 2024; 60:1361-1584. [DOI: 10.1134/s1070428024080013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/10/2024] [Revised: 03/28/2024] [Accepted: 03/31/2024] [Indexed: 01/06/2025]
|
2
|
Roy A, Biswas S, Duari S, Maity S, Mishra AK, Souza ARD, Elsharif AM, Morgon NH, Biswas S. Regioselective Transition Metal-Free Catalytic Ring Opening of 2 H-Azirines by Phenols and Naphthols; One-Pot Access to Benzo- and Naphthofurans. J Org Chem 2023; 88:15580-15588. [PMID: 37933871 DOI: 10.1021/acs.joc.3c01266] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2023]
Abstract
Benzofuran and naphthofuran derivatives are synthesized from readily available phenols and naphthols. Regioselective ring openings of 2H-azirine followed by in situ aromatization using a catalytic amount of Brønsted acid have established the novelty of the methodology. The involvement of a series of 2H-azirines with a variety of phenols, 1-naphthols, and 2-naphthols showed the generality of the protocol. In-depth density functional theory calculations revealed the reaction mechanism with the energies of the intermediates and transition states of a model reaction. An alternate pathway of the mechanism has also been proposed with computer modeling.
Collapse
Affiliation(s)
- Arnab Roy
- Department of Chemistry, University of Calcutta, 92, A. P. C. Road, Kolkata 700 009, West Bengal, India
| | - Subrata Biswas
- Department of Chemistry, University of Calcutta, 92, A. P. C. Road, Kolkata 700 009, West Bengal, India
| | - Surajit Duari
- Department of Chemistry, University of Calcutta, 92, A. P. C. Road, Kolkata 700 009, West Bengal, India
| | - Srabani Maity
- Department of Chemistry, University of Calcutta, 92, A. P. C. Road, Kolkata 700 009, West Bengal, India
| | - Abhishek Kumar Mishra
- Department of Medicinal and Process Chemistry, CSIR-Central Drug Research Institute, Lucknow 226031, Uttar Pradesh, India
| | - Aguinaldo R de Souza
- Department of Chemistry, School of Science, São Paulo State University, Bauru 17033-360, São Paulo, Brazil
| | - Asma M Elsharif
- Department of Chemistry, Imam Abdulrahman Bin Faisal University, P.O. Box 1982, Dammam 31441, Saudi Arabia
| | - Nelson H Morgon
- Department of Physical Chemistry, Institute of Chemistry, Campinas State University, Campinas 13083-970, São Paulo, Brazil
| | - Srijit Biswas
- Department of Chemistry, University of Calcutta, 92, A. P. C. Road, Kolkata 700 009, West Bengal, India
| |
Collapse
|
3
|
Sakharov PA, Rostovskii NV, Khlebnikov AF, Novikov MS. Copper(II)-Catalyzed (3+2) Cycloaddition of 2 H-Azirines to Six-Membered Cyclic Enols as a Route to Pyrrolo[3,2- c]quinolone, Chromeno[3,4- b]pyrrole, and Naphtho[1,8- ef]indole Scaffolds. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27175681. [PMID: 36080448 PMCID: PMC9457675 DOI: 10.3390/molecules27175681] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/16/2022] [Revised: 08/30/2022] [Accepted: 08/31/2022] [Indexed: 11/30/2022]
Abstract
A method for the [2+3] pyrroline annulation to the six-membered non-aromatic enols using 3-aryl-2H-azirines as annulation agents is developed in the current study. The reaction proceeds as a formal (3+2) cycloaddition via the N1-C2 azirine bond cleavage and is catalyzed by both Cu(II) and Cu(I) compounds. The new annulation method can be applied to prepare pyrrolo[3,2-c]quinoline, chromeno[3,4-b]pyrrole, and naphtho[1,8-ef]indole derivatives in good to excellent yields from enols of the quinolin-2-one, 2H-chromen-2-one, and 1H-phenalen-1-one series.
Collapse
|
4
|
Moussaoui O, Bhadane R, Sghyar R, Ilaš J, El Hadrami EM, Chakroune S, Salo‐Ahen OMH. Design, Synthesis, in vitro and in silico Characterization of 2-Quinolone-L-alaninate-1,2,3-triazoles as Antimicrobial Agents. ChemMedChem 2022; 17:e202100714. [PMID: 34978160 PMCID: PMC9305408 DOI: 10.1002/cmdc.202100714] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2021] [Revised: 12/16/2021] [Indexed: 11/07/2022]
Abstract
Due to the ever-increasing antimicrobial resistance there is an urgent need to continuously design and develop novel antimicrobial agents. Inspired by the broad antibacterial activities of various heterocyclic compounds such as 2-quinolone derivatives, we designed and synthesized new methyl-(2-oxo-1,2-dihydroquinolin-4-yl)-L-alaninate-1,2,3-triazole derivatives via 1,3-dipolar cycloaddition reaction of 1-propargyl-2-quinolone-L-alaninate with appropriate azide groups. The synthesized compounds were obtained in good yield ranging from 75 to 80 %. The chemical structures of these novel hybrid molecules were determined by spectroscopic methods and the antimicrobial activity of the compounds was investigated against both bacterial and fungal strains. The tested compounds showed significant antimicrobial activity and weak to moderate antifungal activity. Despite the evident similarity of the quinolone moiety of our compounds with fluoroquinolones, our compounds do not function by inhibiting DNA gyrase. Computational characterization of the compounds shows that they have attractive physicochemical and pharmacokinetic properties and could serve as templates for developing potential antimicrobial agents for clinical use.
Collapse
Affiliation(s)
- Oussama Moussaoui
- Laboratory of Applied Organic ChemistrySidi Mohamed Ben Abdellah University30000FezMorocco
| | - Rajendra Bhadane
- Structural Bioinformatics Laboratory, BiochemistryÅbo Akademi University20520TurkuFinland
- Pharmaceutical Sciences Laboratory, PharmacyÅbo Akademi University20520TurkuFinland
| | - Riham Sghyar
- Laboratory of Applied Organic ChemistrySidi Mohamed Ben Abdellah University30000FezMorocco
| | - Janez Ilaš
- Faculty of PharmacyUniversity of Ljubljana1000LjubljanaSlovenia
| | - El Mestafa El Hadrami
- Laboratory of Applied Organic ChemistrySidi Mohamed Ben Abdellah University30000FezMorocco
| | - Said Chakroune
- Laboratory of Applied Organic ChemistrySidi Mohamed Ben Abdellah University30000FezMorocco
| | - Outi M. H. Salo‐Ahen
- Structural Bioinformatics Laboratory, BiochemistryÅbo Akademi University20520TurkuFinland
- Pharmaceutical Sciences Laboratory, PharmacyÅbo Akademi University20520TurkuFinland
| |
Collapse
|
5
|
Yin H, Wu Y, Gu X, Feng Z, Wang M, Feng D, Wang M, Cheng Z, Wang S. Synthesis of pyrano[3,2- c]quinolones and furo[3,2- c]quinolones via acid-catalyzed tandem reaction of 4-hydroxy-1-methylquinolin-2(1 H)-one and propargylic alcohols. RSC Adv 2022; 12:21066-21078. [PMID: 35919834 PMCID: PMC9302472 DOI: 10.1039/d2ra03416f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2022] [Accepted: 07/17/2022] [Indexed: 11/28/2022] Open
Abstract
Two acid-catalyzed tandem reactions between 4-hydroxy-1-methylquinolin-2(1H)-one and propargylic alcohols are described. Depending mainly on the propargylic alcohol used, these tandem reactions proceed via either a Friedel–Crafts-type allenylation followed by 6-endo-dig cyclization sequence to form pyrano[3,2-c]quinolones or a Friedel–Crafts-type alkylation and 5-exo-dig ring closure sequence to afford furo[3,2-c]quinolones in moderate-to-high yields. The pyrano[3,2-c]quinolones products could be further transformed to tetracyclic 4,9-dihydro-5H-cyclopenta[lmn]phenanthridin-5-one derivatives. Two acid-catalyzed tandem reactions between 4-hydroxy-1-methylquinolin-2(1H)-one and propargylic alcohols are described.![]()
Collapse
Affiliation(s)
- Haiting Yin
- Department of Chemistry, Institute of Synthesis and Application of Medical Materials, Chunhui Scientific Research Interest Group, Wannan Medical College, Wuhu 241002, China
| | - Yunjun Wu
- Department of Chemistry, Institute of Synthesis and Application of Medical Materials, Chunhui Scientific Research Interest Group, Wannan Medical College, Wuhu 241002, China
| | - Xiaoxia Gu
- Department of Chemistry, Institute of Synthesis and Application of Medical Materials, Chunhui Scientific Research Interest Group, Wannan Medical College, Wuhu 241002, China
| | - Zhijun Feng
- Department of Chemistry, Institute of Synthesis and Application of Medical Materials, Chunhui Scientific Research Interest Group, Wannan Medical College, Wuhu 241002, China
| | - Meifang Wang
- Department of Chemistry, Institute of Synthesis and Application of Medical Materials, Chunhui Scientific Research Interest Group, Wannan Medical College, Wuhu 241002, China
- The Key Laboratory of Antiinflammatory and Immune Medicine, Ministry of Education, Anhui Medical University, Hefei 230032, China
| | - Dexiang Feng
- Department of Chemistry, Institute of Synthesis and Application of Medical Materials, Chunhui Scientific Research Interest Group, Wannan Medical College, Wuhu 241002, China
| | - Ming Wang
- Department of Chemistry, Institute of Synthesis and Application of Medical Materials, Chunhui Scientific Research Interest Group, Wannan Medical College, Wuhu 241002, China
| | - Ziyang Cheng
- Department of Chemistry, Institute of Synthesis and Application of Medical Materials, Chunhui Scientific Research Interest Group, Wannan Medical College, Wuhu 241002, China
| | - Shaoyin Wang
- Department of Chemistry, Institute of Synthesis and Application of Medical Materials, Chunhui Scientific Research Interest Group, Wannan Medical College, Wuhu 241002, China
- The Key Laboratory of Antiinflammatory and Immune Medicine, Ministry of Education, Anhui Medical University, Hefei 230032, China
| |
Collapse
|
6
|
Shcherbakov NV, Titov GD, Chikunova EI, Filippov IP, Rostovskii NV, Kukushkin VY, Dubovtsev AY. Modular approach to non-aromatic and aromatic pyrroles through gold-catalyzed [3 + 2] cycloaddition of 2 H-azirines and ynamides. Org Chem Front 2022. [DOI: 10.1039/d2qo01105k] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
The developed modular approach to hard-to-reach non-aromatic 3H- and 2H-pyrroles is based on the integration of 2H-azirines and ynamides.
Collapse
Affiliation(s)
- Nikolay V. Shcherbakov
- Saint Petersburg State University, Universitetskaya Nab. 7/9, 199034 Saint Petersburg, Russian Federation
| | - Gleb D. Titov
- Saint Petersburg State University, Universitetskaya Nab. 7/9, 199034 Saint Petersburg, Russian Federation
| | - Elena I. Chikunova
- Saint Petersburg State University, Universitetskaya Nab. 7/9, 199034 Saint Petersburg, Russian Federation
| | - Ilya P. Filippov
- Saint Petersburg State University, Universitetskaya Nab. 7/9, 199034 Saint Petersburg, Russian Federation
| | - Nikolai V. Rostovskii
- Saint Petersburg State University, Universitetskaya Nab. 7/9, 199034 Saint Petersburg, Russian Federation
| | - Vadim Yu. Kukushkin
- Saint Petersburg State University, Universitetskaya Nab. 7/9, 199034 Saint Petersburg, Russian Federation
- Laboratory of Crystal Engineering of Functional Materials, South Ural State University, 76, Lenin Av., 454080 Chelyabinsk, Russian Federation
| | - Alexey Yu. Dubovtsev
- Saint Petersburg State University, Universitetskaya Nab. 7/9, 199034 Saint Petersburg, Russian Federation
| |
Collapse
|
7
|
Sun S, Huang J, Yuan C, Wang G, Guo D, Wang J. Switchable assembly of substituted pyrimidines and 2 H-imidazoles via Cu( i)-catalysed ring expansion of 2 methoxyl-2 H-azirines. Org Chem Front 2022. [DOI: 10.1039/d2qo00341d] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
The unprecedented switchable synthesis of substituted pyrimidines and 2H-imidazoles via the Cu(i)-catalyzed ring expansion of 2-methoxyl-2H-azirines is described.
Collapse
Affiliation(s)
- Shaofa Sun
- Hubei Key Laboratory of Radiation Chemistry and Functional Materials, Non-power Nuclear Technology Collaborative Innovation Center, School of Nuclear Technology and Chemistry & Biology, Hubei University of Science and Technology, Xianning, 437100, China
| | - Jie Huang
- Hubei Key Laboratory of Radiation Chemistry and Functional Materials, Non-power Nuclear Technology Collaborative Innovation Center, School of Nuclear Technology and Chemistry & Biology, Hubei University of Science and Technology, Xianning, 437100, China
| | - Cheng Yuan
- Hubei Key Laboratory of Radiation Chemistry and Functional Materials, Non-power Nuclear Technology Collaborative Innovation Center, School of Nuclear Technology and Chemistry & Biology, Hubei University of Science and Technology, Xianning, 437100, China
| | - Gangqiang Wang
- Hubei Key Laboratory of Radiation Chemistry and Functional Materials, Non-power Nuclear Technology Collaborative Innovation Center, School of Nuclear Technology and Chemistry & Biology, Hubei University of Science and Technology, Xianning, 437100, China
- School of Pharmaceutical Sciences, South-Central MinZu University, Wuhan, 430074, China
| | - Donghui Guo
- School of Pharmaceutical Sciences, Tsinghua University, Beijing, 100084, China
| | - Jian Wang
- Hubei Key Laboratory of Radiation Chemistry and Functional Materials, Non-power Nuclear Technology Collaborative Innovation Center, School of Nuclear Technology and Chemistry & Biology, Hubei University of Science and Technology, Xianning, 437100, China
- School of Pharmaceutical Sciences, Tsinghua University, Beijing, 100084, China
| |
Collapse
|
8
|
Parhizkari M, Bayat M, Hosseini FS. Simple Synthesis of 2-Amino- N'-(9 H-Fluoren-9-Ylidene)-Hexahydroquinoline-3-Carbohydrazide Derivatives. Polycycl Aromat Compd 2021. [DOI: 10.1080/10406638.2021.1974500] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Affiliation(s)
- Marzieh Parhizkari
- Department of Chemistry, Faculty of Science, Imam Khomeini International University, Qazvin, Iran
| | - Mohammad Bayat
- Department of Chemistry, Faculty of Science, Imam Khomeini International University, Qazvin, Iran
| | - Fahimeh Sadat Hosseini
- Department of Chemistry, Faculty of Science, Imam Khomeini International University, Qazvin, Iran
| |
Collapse
|
9
|
Quintavalla A, Veronesi R, Carboni D, Martinelli A, Zaccheroni N, Mummolo L, Lombardo M. Chemodivergent Photocatalytic Synthesis of Dihydrofurans and β,γ‐Unsaturated Ketones. Adv Synth Catal 2021. [DOI: 10.1002/adsc.202100260] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Affiliation(s)
- Arianna Quintavalla
- Alma Mater Studiorum – University of Bologna Department of Chemistry “G. Ciamician” Via Selmi 2 40126 Bologna Italy
| | - Ruben Veronesi
- Alma Mater Studiorum – University of Bologna Department of Chemistry “G. Ciamician” Via Selmi 2 40126 Bologna Italy
| | - Davide Carboni
- Alma Mater Studiorum – University of Bologna Department of Chemistry “G. Ciamician” Via Selmi 2 40126 Bologna Italy
| | - Ada Martinelli
- Alma Mater Studiorum – University of Bologna Department of Chemistry “G. Ciamician” Via Selmi 2 40126 Bologna Italy
| | - Nelsi Zaccheroni
- Alma Mater Studiorum – University of Bologna Department of Chemistry “G. Ciamician” Via Selmi 2 40126 Bologna Italy
| | - Liviana Mummolo
- Alma Mater Studiorum – University of Bologna Department of Chemistry “G. Ciamician” Via Selmi 2 40126 Bologna Italy
| | - Marco Lombardo
- Alma Mater Studiorum – University of Bologna Department of Chemistry “G. Ciamician” Via Selmi 2 40126 Bologna Italy
| |
Collapse
|
10
|
Nguyen TK, Titov GD, Khoroshilova OV, Kinzhalov MA, Rostovskii NV. Light-induced one-pot synthesis of pyrimidine derivatives from vinyl azides. Org Biomol Chem 2021; 18:4971-4982. [PMID: 32558855 DOI: 10.1039/d0ob00693a] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
A one-pot procedure for the synthesis of tetrasubstituted dihydropyrimidine and pyrimidine derivatives from α-azidocinnamates was developed. The synthesis is based on the finding that the outcome of LED photolysis of α-azidocinnamates depends on the light wavelength employed. Blue light (455 nm) leads to the formation of 2H-azirines only, but violet light (395 nm), UV-A light (365 nm), or sunlight result in the transformation of the in situ formed 2H-azirines to 1,3-diazabicyclo[3.1.0]hex-3-enes. Under basic catalysis (DBU), the latter were isomerized to 1,6-dihydropyrimidines which were oxidized to pyrimidines using DDQ. A successful use of Cs2CO3 as a base and air as an oxidant was also demonstrated.
Collapse
Affiliation(s)
- Tuan K Nguyen
- Saint Petersburg State University, 7/9 Universitetskaya Nab., Saint Petersburg, 199034 Russian Federation.
| | - Gleb D Titov
- Saint Petersburg State University, 7/9 Universitetskaya Nab., Saint Petersburg, 199034 Russian Federation.
| | - Olesya V Khoroshilova
- Saint Petersburg State University, 7/9 Universitetskaya Nab., Saint Petersburg, 199034 Russian Federation.
| | - Mikhail A Kinzhalov
- Saint Petersburg State University, 7/9 Universitetskaya Nab., Saint Petersburg, 199034 Russian Federation.
| | - Nikolai V Rostovskii
- Saint Petersburg State University, 7/9 Universitetskaya Nab., Saint Petersburg, 199034 Russian Federation.
| |
Collapse
|
11
|
Rostovskii NV, Koronatov AN, Sakharov PA, Agafonova AV, Novikov MS, Khlebnikov AF, Rogacheva EV, Kraeva LA. Azirine-containing dipeptides and depsipeptides: synthesis, transformations and antibacterial activity. Org Biomol Chem 2020; 18:9448-9460. [PMID: 33170920 DOI: 10.1039/d0ob02023k] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Azirine-containing dipeptides and depsipeptides with a wide range of substituents have been synthesized in high yields via the Passerini and Ugi multicomponent reactions (MCRs) using 2H-azirine-2-carboxylic acids as the acid component. The obtained MCR adducts have been transformed to lactam-fused aziridines, as well as pyrrole, imidazole, aziridine, and other derivatives, containing the dipeptide or depsipeptide moiety. The azirine-containing depsipeptides exhibit antibacterial activity against the ESKAPE pathogens, especially Gram-positive bacterial strains (E. faecium - MIC 16 μg mL-1, S. aureus - MIC 9 μg mL-1).
Collapse
Affiliation(s)
- Nikolai V Rostovskii
- Saint Petersburg State University, Institute of Chemistry, 7/9 Universitetskaya nab., Saint Petersburg, 199034, Russia.
| | - Alexander N Koronatov
- Saint Petersburg State University, Institute of Chemistry, 7/9 Universitetskaya nab., Saint Petersburg, 199034, Russia.
| | - Pavel A Sakharov
- Saint Petersburg State University, Institute of Chemistry, 7/9 Universitetskaya nab., Saint Petersburg, 199034, Russia.
| | - Anastasiya V Agafonova
- Saint Petersburg State University, Institute of Chemistry, 7/9 Universitetskaya nab., Saint Petersburg, 199034, Russia.
| | - Mikhail S Novikov
- Saint Petersburg State University, Institute of Chemistry, 7/9 Universitetskaya nab., Saint Petersburg, 199034, Russia.
| | - Alexander F Khlebnikov
- Saint Petersburg State University, Institute of Chemistry, 7/9 Universitetskaya nab., Saint Petersburg, 199034, Russia.
| | - Elizaveta V Rogacheva
- Saint Petersburg State University, Institute of Chemistry, 7/9 Universitetskaya nab., Saint Petersburg, 199034, Russia. and Pasteur Institute of Epidemiology and Microbiology, 14 Mira Street, Saint Petersburg, 197101, Russia
| | - Liudmila A Kraeva
- Pasteur Institute of Epidemiology and Microbiology, 14 Mira Street, Saint Petersburg, 197101, Russia
| |
Collapse
|
12
|
Peng Q, Guo D, Zhang B, Liu L, Wang J. Benzotetramisole catalyzed kinetic resolution of 2H-azirines. Chem Commun (Camb) 2020; 56:12427-12430. [PMID: 32939521 DOI: 10.1039/d0cc05379a] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
An unprecedented benzotetramisole (BTM)-catalyzed kinetic resolution for the efficient synthesis of chiral 2H-azirines is described. This protocol provides two chiral isomers in one step with broad scope, good yield and high enantioselectivity. In addition, the optically pure 2H-azirine products have proven to be useful building blocks for further synthetic transformations.
Collapse
Affiliation(s)
- Qiupeng Peng
- School of Pharmaceutical Sciences, Key Laboratory of Bioorganic Phosphorous Chemistry & Chemical Biology (Ministry of Education), Tsinghua University, Beijing, 100084, China.
| | | | | | | | | |
Collapse
|
13
|
Nickel-catalyzed formal [3 + 2]-cycloaddition of 2H-azirines with 1,3-dicarbonyl compounds for the synthesis of pyrroles. Tetrahedron Lett 2020. [DOI: 10.1016/j.tetlet.2020.152319] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
14
|
Sakharov PA, Rostovskii NV, Khlebnikov AF, Novikov MS. Regiodivergent Synthesis of Butenolide-Based α- and β-Amino Acid Derivatives via Base-Controlled Azirine Ring Expansion. Org Lett 2020; 22:3023-3027. [PMID: 32227960 DOI: 10.1021/acs.orglett.0c00793] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
A method for the preparation of 5-aminobutenolides from 2-bromo-2H-azirine-2-carboxylic esters/amides with arylacetic acids has been developed. The reaction regioselectivity can be switched by a change of the basic catalyst, making it possible to prepare both butenolide-based α- and β-amino acid derivatives. The change in the regioselectivity is interpreted in terms of the stability and reactivity of the enolates formed during the SN2' substitution of the bromine in the azirine by the carboxylate ion.
Collapse
Affiliation(s)
- Pavel A Sakharov
- St. Petersburg State University, Institute of Chemistry, 7/9 Universitetskaya nab., St. Petersburg 199034, Russia
| | - Nikolai V Rostovskii
- St. Petersburg State University, Institute of Chemistry, 7/9 Universitetskaya nab., St. Petersburg 199034, Russia
| | - Alexander F Khlebnikov
- St. Petersburg State University, Institute of Chemistry, 7/9 Universitetskaya nab., St. Petersburg 199034, Russia
| | - Mikhail S Novikov
- St. Petersburg State University, Institute of Chemistry, 7/9 Universitetskaya nab., St. Petersburg 199034, Russia
| |
Collapse
|
15
|
Formation of furo[3,2-c]quinolone-2-carbonitriles and 4-oxo-4,5-dihydrofuro[3,2-c]quinolone-2-carboxamides from reaction of quinoline-2,4-diones with 2-[bis(methylthio)methylene]malononitrile. MONATSHEFTE FUR CHEMIE 2020. [DOI: 10.1007/s00706-019-02541-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
16
|
Deng H, Liu TT, Ding ZD, Yang WL, Luo X, Deng WP. Kinetic resolution of 2 H-azirines via Cu( i)-catalyzed asymmetric 1,3-dipolar cycloaddition of azomethine ylides. Org Chem Front 2020. [DOI: 10.1039/d0qo00789g] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
An efficient kinetic resolution of racemic 2H-azirines via copper(i)-catalyzed asymmetric cycloaddition of azomethine ylides was developed and enantioenriched 2H-azirines and 1,3-diazabicyclo[3.1.0]hexane derivatives were obtained simultaneously.
Collapse
Affiliation(s)
- Hua Deng
- School of Pharmacy and Shanghai Key Laboratory of New Drug Design
- East China University of Science and Technology
- Shanghai 200237
- China
| | - Tian-Tian Liu
- School of Pharmacy and Shanghai Key Laboratory of New Drug Design
- East China University of Science and Technology
- Shanghai 200237
- China
| | - Zheng-Dong Ding
- School of Pharmacy and Shanghai Key Laboratory of New Drug Design
- East China University of Science and Technology
- Shanghai 200237
- China
| | - Wu-Lin Yang
- School of Pharmacy and Shanghai Key Laboratory of New Drug Design
- East China University of Science and Technology
- Shanghai 200237
- China
| | - Xiaoyan Luo
- School of Pharmacy and Shanghai Key Laboratory of New Drug Design
- East China University of Science and Technology
- Shanghai 200237
- China
| | - Wei-Ping Deng
- School of Pharmacy and Shanghai Key Laboratory of New Drug Design
- East China University of Science and Technology
- Shanghai 200237
- China
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials
| |
Collapse
|
17
|
Liu Y, Wu J, Qian B, Shang Y. Controllable construction of isoquinolinedione and isocoumarin scaffolds via RhIII-catalyzed C–H annulation of N-tosylbenzamides with diazo compounds. Org Biomol Chem 2019; 17:8768-8777. [DOI: 10.1039/c9ob01789e] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
An efficient protocol for the synthesis of isoquinolinediones by RhIII-catalyzed C–H activation/annulation/decarboxylation of N-tosylbenzamides with diazo compounds is reported.
Collapse
Affiliation(s)
- Yanfei Liu
- Key Laboratory of Functional Molecular Solids (Ministry of Education)
- Anhui Key Laboratory of Molecular Based Materials
- College of Chemistry and Materials Science
- Anhui Normal University
- Wuhu 241002
| | - Jiaping Wu
- Key Laboratory of Functional Molecular Solids (Ministry of Education)
- Anhui Key Laboratory of Molecular Based Materials
- College of Chemistry and Materials Science
- Anhui Normal University
- Wuhu 241002
| | - Baiyang Qian
- Key Laboratory of Functional Molecular Solids (Ministry of Education)
- Anhui Key Laboratory of Molecular Based Materials
- College of Chemistry and Materials Science
- Anhui Normal University
- Wuhu 241002
| | - Yongjia Shang
- Key Laboratory of Functional Molecular Solids (Ministry of Education)
- Anhui Key Laboratory of Molecular Based Materials
- College of Chemistry and Materials Science
- Anhui Normal University
- Wuhu 241002
| |
Collapse
|