1
|
Bertus P, Caillé J. Advances in the Synthesis of Cyclopropylamines. Chem Rev 2025; 125:3242-3377. [PMID: 40048498 DOI: 10.1021/acs.chemrev.4c00674] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/27/2025]
Abstract
Cyclopropylamines are an important subclass of substituted cyclopropanes that combine the unique electronic and steric properties of cyclopropanes with the presence of a donor nitrogen atom. In addition to their presence in a diverse array of biologically active compounds, cyclopropylamines are utilized as important synthetic intermediates, particularly in ring-opening or cycloaddition reactions. Consequently, the synthesis of these compounds has constituted a significant research topic, as evidenced by the abundant published synthetic methods. In addition to the widely used Curtius rearrangement, classical cyclopropanation methods have been adapted to integrate a nitrogen function (Simmons-Smith reaction, metal-catalyzed reaction of diazo compounds on olefins, Michael-initiated ring-closure reactions) with significant advances in enantioselective synthesis. More recently, specific methods have been developed for the preparation of the aminocyclopropane moiety (Kulinkovich reactions applied to amides and nitriles, addition to cyclopropenes, metal-catalyzed reactions involving C-H functionalization, ...). The topic of this review is to present the different methods for the preparation of cyclopropylamine derivatives, with the aim of covering the methodological advances as best as possible, highlighting their scope, their stereochemical aspects and future trends.
Collapse
Affiliation(s)
- Philippe Bertus
- Institut des Molécules et Matériaux du Mans, IMMM, CNRS UMR 6283, Le Mans Université, 72000 Le Mans, France
| | - Julien Caillé
- Institut de Chimie Organique et Analytique, ICOA, CNRS UMR 7311, University of Orléans, 45100 Orléans, France
| |
Collapse
|
2
|
Bakkiyaraj M, Anbarasan P. Catalytic Enantioselective [4+1]-Annulation of Carboxylic Acids with Cyclopropenes. Org Lett 2025; 27:1638-1643. [PMID: 39939118 DOI: 10.1021/acs.orglett.4c04827] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/14/2025]
Abstract
An efficient asymmetric synthesis of 3-vinylphthalides has been accomplished through rhodium-catalyzed [4+1]-annulation of arylcarboxylic acids with cyclopropenes involving C-H bond functionalization. The method exhibited excellent compatibility for various functional groups and offered diverse substituted 3-vinylphthalides in excellent yield and enantioselectivity. Synthetic application and control experiments were also performed to demonstrate the utility and understand the reaction pathway.
Collapse
Affiliation(s)
- Marimuthu Bakkiyaraj
- Department of Chemistry, Indian Institute of Technology Madras, Chennai-600036, India
| | - Pazhamalai Anbarasan
- Department of Chemistry, Indian Institute of Technology Madras, Chennai-600036, India
| |
Collapse
|
3
|
Suthar S, Mondal KC. Open shell versus closed shell bonding interaction in cyclopropane derivatives: EDA-NOCV analyses. J Comput Chem 2023; 44:2184-2211. [PMID: 37530758 DOI: 10.1002/jcc.27190] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Revised: 06/19/2023] [Accepted: 06/21/2023] [Indexed: 08/03/2023]
Abstract
Cyclopropane ring is a very common motif in organic/bio-organic compounds. The chemical bonding of this strained ring is taught to all chemistry students. This three-membered cyclic, C3 ring is quite reactive which has attracted both, synthetic and theoretical chemists to rationalize/correlate its stability and bonding with its reactivity and physical properties over a century. There are a few bonding models (mainly the Bent-Bond model and Walsh model) of this C3 ring that are debated to date. Herein, we have carried out energy decomposition analysis coupled with natural orbital for chemical valence (EDA-NOCV) to study the two most reactive bonds of cyclopropane rings of 49 different organic compounds containing different functional groups to obtain a much deeper bonding insight toward a more general bonding model of this class of compounds. The EDA-NOCV analyses of fragment orbitals and susequent bond formation revealed that the nature of the CC bond of the cyclopropane (splitting two bonds at a time out of three CC bonds) ring is preferred to form two dative covalent CC bonds (between a singlet olefin-fragment and an excited singlet carbene-fragment with a vacant sp2 orbital and a filled p-orbital) for the majority (37/49) of compounds over two covalent electron sharing bonds in some (7/49) compounds (between an excited triplet olefin and triplet carbene), while a few (5/49) compounds show flexibility to adopt either the electron sharing or dative covalent bond as both are equally possible. The effects of functional groups on the nature of chemical bond in cyclopropane rings have been studied in detail. Our bonding analyses are in line with the QTAIM analyses which produce small negative values of the Laplacian, significantly positive values of bond ellipticity, and accumulation of electron densities around the ring critical point of C3 -rings. These corresponding QTAIM parameters of C3 -rings are quite different for CC single bonds of normal hydrocarbons as expected. The chemical bonding in the majority of cyclopropane rings can be very similar to those of metal-olefin systems.
Collapse
Affiliation(s)
- Sonam Suthar
- Department of Chemistry, Indian Institute of Technology Madras, Chennai, India
| | | |
Collapse
|
4
|
Yang Y, Zhu Y, Yin L, Cheng L, Wang C, Li Y. Brønsted-Acid-Promoted Selective C2-N1 Ring-Expansion Reaction of Indoles toward Cyclopenta[ b]quinolines. Org Lett 2022; 24:966-970. [PMID: 35044190 DOI: 10.1021/acs.orglett.1c04332] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
A novel Brønsted-acid-promoted selective C2-N1 ring-expansion reaction of indoles has been developed that provides a rapid and efficient protocol for the preparation of fused quinolines. A variety of corresponding quinolines were obtained in high yields. Controlled experiments revealed that C2-spiroindolenines might be intermediates of this C2-N1 ring-expansion reaction. The notable advantages of this process include excellent yields, good functional group tolerance, and operational simplicity.
Collapse
Affiliation(s)
- Yajie Yang
- School of Chemistry and Molecular Engineering, East China Normal University, 500 Dongchuan Road, Shanghai 200241, China
| | - Yilin Zhu
- School of Chemistry and Molecular Engineering, East China Normal University, 500 Dongchuan Road, Shanghai 200241, China
| | - Liqiang Yin
- School of Chemistry and Molecular Engineering, East China Normal University, 500 Dongchuan Road, Shanghai 200241, China
| | - Lu Cheng
- School of Chemistry and Molecular Engineering, East China Normal University, 500 Dongchuan Road, Shanghai 200241, China
| | - Chengyu Wang
- School of Chemistry and Chemical Engineering, Linyi University, Shuangling Road, Linyi, Shandong 276000, China
| | - Yanzhong Li
- School of Chemistry and Molecular Engineering, East China Normal University, 500 Dongchuan Road, Shanghai 200241, China.,Key Laboratory of Polar Materials and Devices, Ministry of Education, East China Normal University, 500 Dongchuan Road, Shanghai 200241, China
| |
Collapse
|
5
|
Huang XL, Cheng YZ, You SL. Visible-light enabled synthesis of cyclopropane-fused indolines via dearomatization of indoles. Org Chem Front 2022. [DOI: 10.1039/d2qo01174c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
An efficient synthesis of methylene-unsubstituted cyclopropane-fused indolines via photoredox catalyzed dearomative cyclopropanation of indole derivatives was developed. A broad range of indoles bearing a variety of functional groups were compatible...
Collapse
|
6
|
Ni C, Chen G, Li X, Zhao H, Yu L. Synthesis and application of indole esters derivatives containing acrylamide group as antifouling agents. Chem Phys Lett 2021. [DOI: 10.1016/j.cplett.2021.138994] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
7
|
Yadagiri D, Anbarasan P. Catalytic Functionalization of Metallocarbenes Derived from α-Diazocarbonyl Compounds and Their Precursors. CHEM REC 2021; 21:3872-3883. [PMID: 34448345 DOI: 10.1002/tcr.202100167] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2021] [Revised: 08/14/2021] [Indexed: 11/12/2022]
Abstract
Short and efficient synthesis of heterocyclic compounds are highly desirable in synthetic organic chemistry. It is a dream approach to accomplish these syntheses from readily available starting materials in a single step. In this personal account, we discuss our contribution in the synthesis of heterocyclic compounds and beyond from N-sulfonyl-1,2,3-triazoles and α-diazocarbonyl compounds, which are the precursors for α-imino (carbonyl) metal carbenes in the presence of transition metal catalysts. Functionalization of α-imino(carbonyl) metal carbenes has been achieved through in-situ generated metal-stabilized ylides followed by either intramolecular trapping by non-polar bonds, rearrangement, cycloaddition, or 1,3-insertion fashion, which led to the efficient synthesis of various synthetically important intermediates and heterocyclic compounds.
Collapse
Affiliation(s)
- Dongari Yadagiri
- Department of Chemistry, Indian Institute of Technology Roorkee, Roorkee, 247667, India
| | - Pazhamalai Anbarasan
- Department of Chemistry, Indian Institute of Technology Madras, Chennai, 600036, India
| |
Collapse
|
8
|
Alavi S, Lin JB, Grover HK. Copper-Catalyzed Annulation of Indolyl α-Diazocarbonyl Compounds Leads to Structurally Rearranged Carbazoles. Org Lett 2021; 23:5559-5564. [PMID: 34197126 DOI: 10.1021/acs.orglett.1c01965] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Indolyl α-diazocarbonyl compounds have proven to be effective starting materials for the construction of various 2,3-ring fused indole frameworks. Activation of the diazo functional group under metal catalysis generates a spiro-cyclic indolenine-type intermediate which rearranges to provide two distinct carbazoles upon oxidation. The current study investigates the effects of the catalyst as well as the substituents on the migratory group involved in controlling the selectivity of the rearrangement.
Collapse
Affiliation(s)
- Sima Alavi
- Department of Chemistry, Memorial University of Newfoundland, St. John's, Newfoundland A1B 3X7, Canada
| | - Jian-Bin Lin
- C-CART, CREAIT Network, Memorial University of Newfoundland, St. John's, Newfoundland A1B 3X7, Canada
| | - Huck K Grover
- Department of Chemistry, Memorial University of Newfoundland, St. John's, Newfoundland A1B 3X7, Canada
| |
Collapse
|
9
|
Reddy PM, Ramachandran K, Anbarasan P. Palladium-catalyzed diastereoselective synthesis of 2,2,3-trisubstituted dihydrobenzofurans via intramolecular trapping of O-ylides with activated alkenes. J Catal 2021. [DOI: 10.1016/j.jcat.2021.02.032] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
|
10
|
Sakamoto K, Ikawa Y, Yoshimura T, Matsuo J. Brønsted Acid‐Catalyzed Cyclopropanation of Indoles Using α‐Aryl‐α‐diazoacetates. European J Org Chem 2021. [DOI: 10.1002/ejoc.202001531] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Affiliation(s)
- Kenta Sakamoto
- Division of Pharmaceutical Sciences, Graduate School of Medical Sciences Kanazawa University Kakuma-machi, Kanazawa 920-1192 Japan
| | - Yuya Ikawa
- Division of Pharmaceutical Sciences, Graduate School of Medical Sciences Kanazawa University Kakuma-machi, Kanazawa 920-1192 Japan
| | - Tomoyuki Yoshimura
- Division of Pharmaceutical Sciences, Graduate School of Medical Sciences Kanazawa University Kakuma-machi, Kanazawa 920-1192 Japan
| | - Jun‐ichi Matsuo
- Division of Pharmaceutical Sciences, Graduate School of Medical Sciences Kanazawa University Kakuma-machi, Kanazawa 920-1192 Japan
| |
Collapse
|
11
|
Ji X, Zhang Z, Wang Y, Han Y, Peng H, Li F, Liu L. Catalyst-free synthesis of α,α-disubstituted carboxylic acid derivatives under ambient conditions via a Wolff rearrangement reaction. Org Chem Front 2021. [DOI: 10.1039/d1qo01265g] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
Herein, a hexafluoroisopropanol (HFIP)-promoted Wolff rearrangement reaction was developed, delivering various α,α-disubstituted carboxylic acid derivatives in good to excellent yields.
Collapse
Affiliation(s)
- Xin Ji
- School of Chemistry and Molecular Engineering, East China Normal University, 500 Dongchuan Road, Shanghai, 200241, P. R. China
| | - Zhikun Zhang
- School of Chemistry and Molecular Engineering, East China Normal University, 500 Dongchuan Road, Shanghai, 200241, P. R. China
| | - Yuzhu Wang
- School of Chemistry and Molecular Engineering, East China Normal University, 500 Dongchuan Road, Shanghai, 200241, P. R. China
| | - Yazhe Han
- School of Chemistry and Molecular Engineering, East China Normal University, 500 Dongchuan Road, Shanghai, 200241, P. R. China
| | - Huiling Peng
- School of Chemistry and Molecular Engineering, East China Normal University, 500 Dongchuan Road, Shanghai, 200241, P. R. China
| | - Fangzhu Li
- School of Chemistry and Molecular Engineering, East China Normal University, 500 Dongchuan Road, Shanghai, 200241, P. R. China
| | - Lu Liu
- School of Chemistry and Molecular Engineering, East China Normal University, 500 Dongchuan Road, Shanghai, 200241, P. R. China
- Shanghai Engineering Research Center of Molecular Therapeutics and New Drug Development, East China Normal University, Shanghai 200062, P. R. China
| |
Collapse
|
12
|
Liu J, Xu G, Tang S, Chen Q, Sun J. Site-Selective Functionalization of 7-Azaindoles via Carbene Transfer and Isolation of N-Aromatic Zwitterions. Org Lett 2020; 22:9376-9380. [DOI: 10.1021/acs.orglett.0c03653] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Affiliation(s)
- Junheng Liu
- Jiangsu Key Laboratory of Advanced Catalytic Materials & Technology, School of Petrochemical Engineering, Changzhou University, Changzhou 213164, China
| | - Guangyang Xu
- Jiangsu Key Laboratory of Advanced Catalytic Materials & Technology, School of Petrochemical Engineering, Changzhou University, Changzhou 213164, China
| | - Shengbiao Tang
- Jiangsu Key Laboratory of Advanced Catalytic Materials & Technology, School of Petrochemical Engineering, Changzhou University, Changzhou 213164, China
| | - Qun Chen
- Jiangsu Key Laboratory of Advanced Catalytic Materials & Technology, School of Petrochemical Engineering, Changzhou University, Changzhou 213164, China
| | - Jiangtao Sun
- Jiangsu Key Laboratory of Advanced Catalytic Materials & Technology, School of Petrochemical Engineering, Changzhou University, Changzhou 213164, China
| |
Collapse
|
13
|
Chen P, Nan J, Hu Y, Kang Y, Wang B, Ma Y, Szostak M. Metal-free tandem carbene N-H insertions and C-C bond cleavages. Chem Sci 2020; 12:803-811. [PMID: 34163814 PMCID: PMC8178978 DOI: 10.1039/d0sc05763k] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2020] [Accepted: 11/09/2020] [Indexed: 01/16/2023] Open
Abstract
A metal-free C-H [5 + 1] annulation reaction of 2-arylanilines with diazo compounds has been achieved, giving rise to two types of prevalent phenanthridines via highly selective C-C cleavage. Compared to the simple N-H insertion manipulation of diazo, this method elegantly accomplishes a tandem N-H insertion/SEAr/C-C cleavage/aromatization reaction, and the synthetic utility of this new transformation is exemplified by the succinct syntheses of trisphaeridine and bicolorine alkaloids.
Collapse
Affiliation(s)
- Pu Chen
- Shaanxi Key Laboratory of Chemical Additives for Industry, College of Chemistry and Chemical Engineering, Shaanxi University of Science and Technology Xi'an 710021 China
| | - Jiang Nan
- Shaanxi Key Laboratory of Chemical Additives for Industry, College of Chemistry and Chemical Engineering, Shaanxi University of Science and Technology Xi'an 710021 China
| | - Yan Hu
- Shaanxi Key Laboratory of Chemical Additives for Industry, College of Chemistry and Chemical Engineering, Shaanxi University of Science and Technology Xi'an 710021 China
| | - Yifan Kang
- Shaanxi Key Laboratory of Chemical Additives for Industry, College of Chemistry and Chemical Engineering, Shaanxi University of Science and Technology Xi'an 710021 China
| | - Bo Wang
- Shaanxi Key Laboratory of Chemical Additives for Industry, College of Chemistry and Chemical Engineering, Shaanxi University of Science and Technology Xi'an 710021 China
| | - Yangmin Ma
- Shaanxi Key Laboratory of Chemical Additives for Industry, College of Chemistry and Chemical Engineering, Shaanxi University of Science and Technology Xi'an 710021 China
| | - Michal Szostak
- Shaanxi Key Laboratory of Chemical Additives for Industry, College of Chemistry and Chemical Engineering, Shaanxi University of Science and Technology Xi'an 710021 China
- Department of Chemistry, Rutgers University 73 Warren Street Newark New Jersey 07102 USA
| |
Collapse
|
14
|
Guo P, Sun W, Liu Y, Li YX, Loh TP, Jiang Y. Stereoselective Synthesis of Vinylcyclopropa[ b]indolines via a Rh-Migration Strategy. Org Lett 2020; 22:5978-5983. [PMID: 32672043 DOI: 10.1021/acs.orglett.0c02071] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
A mild rhodium catalytic system has been developed to synthesize vinylcyclopropa[b]indolines through cyclopropanation of indoles with vinyl carbenoids generated from ring opening of cyclopropenes in situ. By employing a Rh-migration strategy, the products can be obtained with good to excellent E:Z ratios (≤99:1) and complete diastereoselectivity (≤99:1). This method is easy, has a low catalyst loading, and works for a broad range of functionalities.
Collapse
Affiliation(s)
- Pan Guo
- Institute of Advanced Synthesis, School of Chemistry and Molecular Engineering, Nanjing Tech University, Nanjing 211816, China
| | - Wangbin Sun
- Institute of Advanced Synthesis, School of Chemistry and Molecular Engineering, Nanjing Tech University, Nanjing 211816, China
| | - Yu Liu
- Institute of Advanced Synthesis, School of Chemistry and Molecular Engineering, Nanjing Tech University, Nanjing 211816, China
| | - Yong-Xin Li
- Division of Chemistry and Biological Chemistry, School of Physical and Mathematical Sciences, Nanyang Technological University, Singapore 637616
| | - Teck-Peng Loh
- Division of Chemistry and Biological Chemistry, School of Physical and Mathematical Sciences, Nanyang Technological University, Singapore 637616
| | - Yaojia Jiang
- Institute of Advanced Synthesis, School of Chemistry and Molecular Engineering, Nanjing Tech University, Nanjing 211816, China
| |
Collapse
|
15
|
Ross RJ, Jeyaseelan R, Lautens M. Rhodium-Catalyzed Intermolecular Cyclopropanation of Benzofurans, Indoles, and Alkenes via Cyclopropene Ring Opening. Org Lett 2020; 22:4838-4843. [PMID: 32496786 DOI: 10.1021/acs.orglett.0c01655] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
The generation of metal carbenoids via ring opening of cyclopropenes by transition metals offers a simple entry into highly reactive intermediates. Herein, we describe a diastereoselective intermolecular rhodium-catalyzed cyclopropanation of heterocycles and alkenes using cyclopropenes as carbene precursors with a low loading of a commercially available rhodium catalyst. The reported method is scalable and could be performed with catalyst loadings as low as 0.2 mol %, with no impact to the reaction yield or selectivity.
Collapse
Affiliation(s)
- Rachel J Ross
- Davenport Research Laboratories, Department of Chemistry, University of Toronto, Toronto, Ontario M5S 3H6, Canada
| | - Rubaishan Jeyaseelan
- Davenport Research Laboratories, Department of Chemistry, University of Toronto, Toronto, Ontario M5S 3H6, Canada
| | - Mark Lautens
- Davenport Research Laboratories, Department of Chemistry, University of Toronto, Toronto, Ontario M5S 3H6, Canada
| |
Collapse
|
16
|
Liu J, Fang Z, Liu X, Dou Y, Jiang J, Zhang F, Qu J, Zhu Q. Diastereoselective 2,3-diazidation of indoles via copper(II)-catalyzed dearomatization. CHINESE CHEM LETT 2020. [DOI: 10.1016/j.cclet.2019.10.035] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
17
|
Reddy ACS, Reddy PM, Anbarasan P. Diastereoselective Palladium Catalyzed Carbenylative Amination of
ortho
‐Vinylanilines with 3‐Diazoindolin‐2‐ones. Adv Synth Catal 2020. [DOI: 10.1002/adsc.201901286] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Affiliation(s)
| | | | - Pazhamalai Anbarasan
- Department of ChemistryIndian Institute of Technology Madras Chennai 600036 India
| |
Collapse
|
18
|
Reddy ACS, Ramachandran K, Reddy PM, Anbarasan P. Rhodium-catalyzed Sommelet–Hauser type rearrangement of α-diazoimines: synthesis of functionalized enamides. Chem Commun (Camb) 2020; 56:5649-5652. [DOI: 10.1039/d0cc00016g] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
An efficient rhodium catalyzed Sommelet–Hauser type rearrangement of sulfur ylides derived from α-thioesters and N-sulfonyl-1,2,3-triazoles has been successfully accomplished for the synthesis of various functionalized enamides.
Collapse
Affiliation(s)
| | - Kuppan Ramachandran
- Department of Chemistry
- Indian Institute of Technology Madras
- Chennai–600036
- India
| | | | | |
Collapse
|
19
|
Reddy ACS, Anbarasan P. Rhodium-Catalyzed Rearrangement of S/Se-Ylides for the Synthesis of Substituted Vinylogous Carbonates. Org Lett 2019; 21:9965-9969. [DOI: 10.1021/acs.orglett.9b03852] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Affiliation(s)
| | - Pazhamalai Anbarasan
- Department of Chemistry, Indian Institute of Technology Madras, Chennai 600036, India
| |
Collapse
|
20
|
Wang Z, Xu G, Tang S, Shao Y, Sun J. Catalyst-Controlled Selective Alkylation/Cyclopropanation of Indoles with Vinyl Diazoesters. Org Lett 2019; 21:8488-8491. [DOI: 10.1021/acs.orglett.9b03323] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Affiliation(s)
- Zhen Wang
- Jiangsu Key Laboratory of Advanced Catalytic Materials & Technology, School of Petrochemical Engineering, Changzhou University, Changzhou 213164, P. R. China
| | - Guangyang Xu
- Jiangsu Key Laboratory of Advanced Catalytic Materials & Technology, School of Petrochemical Engineering, Changzhou University, Changzhou 213164, P. R. China
| | - Shengbiao Tang
- Jiangsu Key Laboratory of Advanced Catalytic Materials & Technology, School of Petrochemical Engineering, Changzhou University, Changzhou 213164, P. R. China
| | - Ying Shao
- Jiangsu Key Laboratory of Advanced Catalytic Materials & Technology, School of Petrochemical Engineering, Changzhou University, Changzhou 213164, P. R. China
| | - Jiangtao Sun
- Jiangsu Key Laboratory of Advanced Catalytic Materials & Technology, School of Petrochemical Engineering, Changzhou University, Changzhou 213164, P. R. China
| |
Collapse
|