1
|
Liu C, Zhang L, You Q, Feng H, Huang J. Advancements in Desilylation Reactions for the Synthesis of Valuable Organic Molecules. CHEM REC 2024; 24:e202400120. [PMID: 39417771 DOI: 10.1002/tcr.202400120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2024] [Revised: 08/13/2024] [Indexed: 10/19/2024]
Abstract
Silicon, due to its abundance, non-toxicity, and cost-effectiveness, is a critical element in the earth's crust with significant industrial applications. In organic chemistry, main group elements, and in particular silicon, are extensively utilized as versatile synthetic intermediates. Despite the current challenges associated with harsh reaction conditions and unsustainable practices in synthesizing crucial organic structural molecules, desilylation reactions have emerged as a facilitative method, offering milder conditions and operational simplicity. This review provides a comprehensive analysis of recent advancements in the synthesis of valuable organic molecules through two distinct desilylation reactions. It systematically presents the synthesis of a variety of derivatives, such as furan, alcohol, N-heterocyclic, and ketone, highlighting the broad substrate tolerance of these reactions. This broad functional group compatibility suggests a promising future for the synthesis of a wide range of bioactive molecules, underscoring the significant potential of desilylation in contemporary organic synthesis.
Collapse
Affiliation(s)
- Chuang Liu
- College of Chemistry and Chemical Engineering, Shanghai University of Engineering Science, Shanghai, 201620, China
| | - Le Zhang
- Department of Chemistry, The University of Texas at Austin, Austin, TX, 78712, United States
| | - Qingqing You
- College of Chemistry and Chemical Engineering, Shanghai University of Engineering Science, Shanghai, 201620, China
| | - Huangdi Feng
- College of Chemistry and Chemical Engineering, Shanghai University of Engineering Science, Shanghai, 201620, China
| | - Junhai Huang
- College of Chemistry and Chemical Engineering, Shanghai University of Engineering Science, Shanghai, 201620, China
- Shanghai Engineering Research Center of Pharmaceutical Intelligent Equipment, Shanghai University of Engineering Science, Shanghai, 201620, China
| |
Collapse
|
2
|
Nishijo M, Mori S, Nishimura T, Shinokubo H, Miyake Y. Stepwise N-Methylation of Ruthenium and Cobalt 5,15-Diazaporphyrins: Post-Functionalization of Porphyrinoid Catalysts. Chem Asian J 2022; 17:e202200305. [PMID: 35513348 DOI: 10.1002/asia.202200305] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2022] [Revised: 04/15/2022] [Indexed: 11/08/2022]
Abstract
Post-functionalization of porphyrinoid catalysts provides a powerful tool for fine-tuning their electronic structure. We have succeeded in the stepwise methylation of the peripheral nitrogen atoms in ruthenium and cobalt 5,15-diazaporphyrins. The axial coordination of an anion to the metal center accelerates the second methylation through charge neutralization. N-Methylation of the diazaporphyrin complexes effectively controls their electron deficiency, Lewis acidity, and catalytic activity.
Collapse
Affiliation(s)
- Mayu Nishijo
- Nagoya University: Nagoya Daigaku, Department of Molecular and Macromolecular Chemistry, Graduate School of Engineering, JAPAN
| | - Shiho Mori
- Nagoya University: Nagoya Daigaku, Department of Molecular and Macromolecular Chemistry, Graduate School of Engineering, JAPAN
| | - Tsubasa Nishimura
- Nagoya University: Nagoya Daigaku, Department of Molecular and Macromolecular Chemistry, Graduate School of Engineering, JAPAN
| | - Hiroshi Shinokubo
- Nagoya University: Nagoya Daigaku, Department of Molecular and Macromolecular Chemistry, Graduate School of Engineering, JAPAN
| | - Yoshihiro Miyake
- Nagoya University, Department of Molecular and Macromolecular Chemistry, Graduate School of Engineering, Furo-cho, 464-8603, Nagoya, JAPAN
| |
Collapse
|
3
|
Chen XY, Yang S, Ren BP, Shi L, Lin DZ, Zhang H, Liu HY. Copper porphyrin-catalyzed cross dehydrogenative coupling of alkanes with carboxylic acids: Esterification and decarboxylation dual pathway. Tetrahedron 2021. [DOI: 10.1016/j.tet.2021.132377] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
4
|
Liu Y, Jiao Y, Luo H, Huang N, Lai M, Zou K, Yao H. Catalyst-Controlled Regiodivergent Synthesis of 1- and 3-Thiosugars with High Stereoselectivity and Chemoselectivity. ACS Catal 2021. [DOI: 10.1021/acscatal.1c00225] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Affiliation(s)
- Yuexin Liu
- Hubei Key Laboratory of Natural Products Research and Development, Key Laboratory of Functional Yeast (China National Light Industry), College of Biological and Pharmaceutical Sciences, China Three Gorges University, Yichang 443002, P. R. China
| | - Yang Jiao
- Hubei Key Laboratory of Natural Products Research and Development, Key Laboratory of Functional Yeast (China National Light Industry), College of Biological and Pharmaceutical Sciences, China Three Gorges University, Yichang 443002, P. R. China
| | - Huajun Luo
- Hubei Key Laboratory of Natural Products Research and Development, Key Laboratory of Functional Yeast (China National Light Industry), College of Biological and Pharmaceutical Sciences, China Three Gorges University, Yichang 443002, P. R. China
| | - Nianyu Huang
- Hubei Key Laboratory of Natural Products Research and Development, Key Laboratory of Functional Yeast (China National Light Industry), College of Biological and Pharmaceutical Sciences, China Three Gorges University, Yichang 443002, P. R. China
| | - Mengnan Lai
- Hubei Key Laboratory of Natural Products Research and Development, Key Laboratory of Functional Yeast (China National Light Industry), College of Biological and Pharmaceutical Sciences, China Three Gorges University, Yichang 443002, P. R. China
| | - Kun Zou
- Hubei Key Laboratory of Natural Products Research and Development, Key Laboratory of Functional Yeast (China National Light Industry), College of Biological and Pharmaceutical Sciences, China Three Gorges University, Yichang 443002, P. R. China
| | - Hui Yao
- Hubei Key Laboratory of Natural Products Research and Development, Key Laboratory of Functional Yeast (China National Light Industry), College of Biological and Pharmaceutical Sciences, China Three Gorges University, Yichang 443002, P. R. China
| |
Collapse
|
5
|
Construction of C–O bond via cross-dehydrogenative coupling of sp [ ] C–H bond with phenols catalyzed by copper porphyrin. Tetrahedron 2020. [DOI: 10.1016/j.tet.2020.131569] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
6
|
Fernandes RA, Ramakrishna GV, Bethi V. MnO 2 as a terminal oxidant in Wacker oxidation of homoallyl alcohols and terminal olefins. Org Biomol Chem 2020; 18:6115-6125. [PMID: 32725041 DOI: 10.1039/d0ob01344g] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Efficient and mild reaction conditions for Wacker-type oxidation of terminal olefins of less explored homoallyl alcohols to β-hydroxy-methyl ketones have been developed by using a Pd(ii) catalyst and MnO2 as a co-oxidant. The method involves mild reaction conditions and shows good functional group compatibility along with high regio- and chemoselectivity. While our earlier system of PdCl2/CrO3/HCl produced α,β-unsaturated ketones from homoallyl alcohols, the present method provided orthogonally the β-hydroxy-methyl ketones. No overoxidation or elimination of benzylic and/or β-hydroxy groups was observed. The method could be extended to the oxidation of simple terminal olefins as well, to methyl ketones, displaying its versatility. An application to the regioselective synthesis of gingerol is demonstrated.
Collapse
Affiliation(s)
- Rodney A Fernandes
- Department of Chemistry, Indian Institute of Technology Bombay, Powai, Mumbai 400076, Maharashtra, India.
| | - Gujjula V Ramakrishna
- Department of Chemistry, Indian Institute of Technology Bombay, Powai, Mumbai 400076, Maharashtra, India.
| | - Venkati Bethi
- Department of Chemistry, Indian Institute of Technology Bombay, Powai, Mumbai 400076, Maharashtra, India.
| |
Collapse
|
7
|
Kim T, Jeong HM, Venkateswarlu A, Ryu DH. Highly Enantioselective Allylation Reactions of Aldehydes with Allyltrimethylsilane Catalyzed by a Chiral Oxazaborolidinium Ion. Org Lett 2020; 22:5198-5201. [DOI: 10.1021/acs.orglett.0c01820] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Taehyeong Kim
- Department of Chemistry, Sungkyunkwan University, Suwon 16419, Republic of Korea
| | - Hye-Min Jeong
- Department of Chemistry, Sungkyunkwan University, Suwon 16419, Republic of Korea
| | | | - Do Hyun Ryu
- Department of Chemistry, Sungkyunkwan University, Suwon 16419, Republic of Korea
| |
Collapse
|
8
|
Han JF, Guo P, Zhang XG, Liao JB, Ye KY. Recent advances in cobalt-catalyzed allylic functionalization. Org Biomol Chem 2020; 18:7740-7750. [PMID: 32940308 DOI: 10.1039/d0ob01581d] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Unlike many other state-of-the-art transition-metal-catalyzed allylic substitutions, cobalt-catalyzed allylic substitution has received much less attention from synthetic chemists for a long time despite the fact that cobalt is an earth-abundant, low-cost and thus much more sustainable option as either a reagent or a catalyst in organic synthesis. Recently, there has been an upsurge in the use of cobalt catalysis in allylic functionalization reactions, including allylic substitution, nucleophilic allylation, and Heck-type allylic functionalization, to construct synthetically significant building blocks featuring a double bond available for diverse downstream synthetic manipulations. This review highlights the current development of cobalt catalysis in allylic functionalization with an in-depth discussion of the reaction scope and mechanistic insights.
Collapse
Affiliation(s)
- Jun-Fa Han
- Key Laboratory of Molecule Synthesis and Function Discovery (Fujian Province University), College of Chemistry, Fuzhou University, Fuzhou 350108, China.
| | | | | | | | | |
Collapse
|
9
|
Gong Y, Cao ZY, Shi YB, Zhou F, Zhou Y, Zhou J. A highly efficient Hg(OTf)2-mediated Sakurai–Hosomi allylation of N-tert-butyloxycarbonylamino sulfones, aldehydes, fluoroalkyl ketones and α,β-unsaturated enones using allyltrimethylsilane. Org Chem Front 2019. [DOI: 10.1039/c9qo01049a] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The cheap and easily available Hg(OTf)2 can efficiently mediate the Sakurai–Hosomi reaction of N-Boc amino sulfones, aldehydes, α-fluoroalkyl ketones and α,β-unsaturated enones using allyltrimethylsilane with the catalyst loading down to 0.5–5.0 mol%.
Collapse
Affiliation(s)
- Yi Gong
- College of Pharmacy
- Guiyang University of Chinese Medicine
- Guiyang 550025
- P. R. China
| | - Zhong-Yan Cao
- Shanghai Key Laboratory of Green Chemistry and Chemical Process
- Shanghai Engineering Research Center of Molecular Therapeutics and New Drug Development
- East China Normal University
- Shanghai 200062
- P. R. China
| | - Ying-Bo Shi
- College of Chemistry and Material Sciences
- Sichuan Normal University
- Chengdu
- P. R. China
| | - Feng Zhou
- Shanghai Key Laboratory of Green Chemistry and Chemical Process
- Shanghai Engineering Research Center of Molecular Therapeutics and New Drug Development
- East China Normal University
- Shanghai 200062
- P. R. China
| | - Ying Zhou
- College of Pharmacy
- Guiyang University of Chinese Medicine
- Guiyang 550025
- P. R. China
| | - Jian Zhou
- Shanghai Key Laboratory of Green Chemistry and Chemical Process
- Shanghai Engineering Research Center of Molecular Therapeutics and New Drug Development
- East China Normal University
- Shanghai 200062
- P. R. China
| |
Collapse
|