1
|
Patel AR, Lawer A, Bhadbhade M, Hunter L. The influence of backbone fluorination on the helicity of α/γ-hybrid peptides. Org Biomol Chem 2024; 22:1608-1612. [PMID: 38305470 DOI: 10.1039/d3ob02016a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2024]
Abstract
Peptides that are composed of an alternating pattern of α- and γ-amino acids are potentially valuable as metabolism-resistant bioactive agents. For optimal function, some kind of conformational restriction is usually required to either stabilize the dominant 12-helix, or else to divert the peptide away from this conformation in a controlled way. Herein, we explore stereoselective fluorination as a method for controlling the conformations of α/γ-hybrid peptides. We show through a combination of X-ray, NMR and CD analyses that fluorination can either stabilize or disrupt the 12-helix, depending on the fluorine stereochemistry. These findings could inform the ongoing development of diverse functional hybrid peptides.
Collapse
Affiliation(s)
| | - Aggie Lawer
- School of Chemistry, University of New South Wales (UNSW), Sydney, Australia.
| | - Mohan Bhadbhade
- Mark Wainwright Analytical Centre, University of New South Wales (UNSW), Sydney, Australia
| | - Luke Hunter
- School of Chemistry, University of New South Wales (UNSW), Sydney, Australia.
| |
Collapse
|
2
|
Lin Q, Lan H, Ma C, Stendall RT, Shankland K, Musgrave RA, Horton PN, Baldauf C, Hofmann H, Butts CP, Müller MM, Cobb AJA. Crystal Structure and NMR of an α,δ-Peptide Foldamer Helix Shows Side-Chains are Well Placed for Bifunctional Catalysis: Application as a Minimalist Aldolase Mimic. ANGEWANDTE CHEMIE (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023; 135:e202305326. [PMID: 38516402 PMCID: PMC10952562 DOI: 10.1002/ange.202305326] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/15/2023] [Indexed: 03/23/2024]
Abstract
We report the first NMR and X-ray diffraction (XRD) structures of an unusual 13/11-helix (alternating i, i+1 {NH-O=C} and i, i+3 {C=O-H-N} H-bonds) formed by a heteromeric 1 : 1 sequence of α- and δ-amino acids, and demonstrate the application of this framework towards catalysis. Whilst intramolecular hydrogen bonds (IMHBs) are the clear driver of helix formation in this system, we also observe an apolar interaction between the ethyl residue of one δ-amino acid and the cyclohexyl group of the next δ-residue in the sequence that seems to stabilize one type of helix over another. To the best of our knowledge this type of additional stabilization leading to a specific helical preference has not been observed before. Critically, the helix type realized places the α-residue functionalities in positions proximal enough to engage in bifunctional catalysis as demonstrated in the application of our system as a minimalist aldolase mimic.
Collapse
Affiliation(s)
- Qi Lin
- Department of ChemistryKing's College London7 Trinity StreetLondonSE1 1DBUK
| | - Hao Lan
- School of ChemistryUniversity of BristolCantocks CloseBristolBS8 1TSUK
| | - Chunmiao Ma
- School of Chemistry and Chemical EngineeringHuazhong University of Science and TechnologyWuhan430074P. R. China
| | - Ryan T. Stendall
- Department of ChemistryKing's College London7 Trinity StreetLondonSE1 1DBUK
| | - Kenneth Shankland
- School of ChemistryFood and Pharmacy (SCFP)University of ReadingWhiteknights BerksReadingRG6 6ADUK
| | | | - Peter N. Horton
- EPSRC National Crystallography ServiceSchool of ChemistryUniversity of Southampton HighfieldSouthamptonSO17 1BJUK
| | - Carsten Baldauf
- Fritz-Haber-Institut der Max-Planck-GesellschaftFaradayweg 4–614195BerlinGermany
| | - Hans‐Jörg Hofmann
- Institut für BiochemieUniversität LeipzigBrüderstrasse 3404103LeipzigGermany
| | - Craig P. Butts
- School of ChemistryUniversity of BristolCantocks CloseBristolBS8 1TSUK
| | - Manuel M. Müller
- Department of ChemistryKing's College London7 Trinity StreetLondonSE1 1DBUK
| | | |
Collapse
|
3
|
Lin Q, Lan H, Ma C, Stendall RT, Shankland K, Musgrave RA, Horton PN, Baldauf C, Hofmann H, Butts CP, Müller MM, Cobb AJA. Crystal Structure and NMR of an α,δ-Peptide Foldamer Helix Shows Side-Chains are Well Placed for Bifunctional Catalysis: Application as a Minimalist Aldolase Mimic. Angew Chem Int Ed Engl 2023; 62:e202305326. [PMID: 37218617 PMCID: PMC10952276 DOI: 10.1002/anie.202305326] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2023] [Revised: 05/17/2023] [Accepted: 05/22/2023] [Indexed: 05/24/2023]
Abstract
We report the first NMR and X-ray diffraction (XRD) structures of an unusual 13/11-helix (alternating i, i+1 {NH-O=C} and i, i+3 {C=O-H-N} H-bonds) formed by a heteromeric 1 : 1 sequence of α- and δ-amino acids, and demonstrate the application of this framework towards catalysis. Whilst intramolecular hydrogen bonds (IMHBs) are the clear driver of helix formation in this system, we also observe an apolar interaction between the ethyl residue of one δ-amino acid and the cyclohexyl group of the next δ-residue in the sequence that seems to stabilize one type of helix over another. To the best of our knowledge this type of additional stabilization leading to a specific helical preference has not been observed before. Critically, the helix type realized places the α-residue functionalities in positions proximal enough to engage in bifunctional catalysis as demonstrated in the application of our system as a minimalist aldolase mimic.
Collapse
Affiliation(s)
- Qi Lin
- Department of ChemistryKing's College London7 Trinity StreetLondonSE1 1DBUK
| | - Hao Lan
- School of ChemistryUniversity of BristolCantocks CloseBristolBS8 1TSUK
| | - Chunmiao Ma
- School of Chemistry and Chemical EngineeringHuazhong University of Science and TechnologyWuhan430074P. R. China
| | - Ryan T. Stendall
- Department of ChemistryKing's College London7 Trinity StreetLondonSE1 1DBUK
| | - Kenneth Shankland
- School of ChemistryFood and Pharmacy (SCFP)University of ReadingWhiteknights BerksReadingRG6 6ADUK
| | | | - Peter N. Horton
- EPSRC National Crystallography ServiceSchool of ChemistryUniversity of Southampton HighfieldSouthamptonSO17 1BJUK
| | - Carsten Baldauf
- Fritz-Haber-Institut der Max-Planck-GesellschaftFaradayweg 4–614195BerlinGermany
| | - Hans‐Jörg Hofmann
- Institut für BiochemieUniversität LeipzigBrüderstrasse 3404103LeipzigGermany
| | - Craig P. Butts
- School of ChemistryUniversity of BristolCantocks CloseBristolBS8 1TSUK
| | - Manuel M. Müller
- Department of ChemistryKing's College London7 Trinity StreetLondonSE1 1DBUK
| | | |
Collapse
|
4
|
Legrand B, Maillard LT. α,β-Unsaturated γ-Peptide Foldamers. Chempluschem 2021; 86:629-645. [PMID: 33856125 DOI: 10.1002/cplu.202100045] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2021] [Revised: 03/31/2021] [Indexed: 01/01/2023]
Abstract
Despite their concomitant emergence in the 1990s, γ-peptide foldamers have not developed as fast as β-peptide foldamers and to date, only a few γ-oligomer structures have been reported, and with sparse applications. Among these examples, sequences containing α,β-unsaturated γ-amino acids have recently drawn attention since the Z/E configurations of the double bond provide opposite planar restrictions leading to divergent conformational behaviors, from helix to extended structures. In this Review, we give a comprehensive overview of the developments of γ-peptide foldamers containing α,β-unsaturated γ-amino acids with examples of applications for health and catalysis, as well as materials science.
Collapse
Affiliation(s)
- Baptiste Legrand
- Institut des Biomolécules Max Mousseron, IBMM, University of Montpellier, ENSCM, CNRS, Montpellier, France., 15 Av. Charles Flahault BP 14 491, 34093, Montpellier Cedex 5, France
| | - Ludovic T Maillard
- Institut des Biomolécules Max Mousseron, IBMM, University of Montpellier, ENSCM, CNRS, Montpellier, France., 15 Av. Charles Flahault BP 14 491, 34093, Montpellier Cedex 5, France
| |
Collapse
|
5
|
Dey S, Misra R, Saseendran A, Pahan S, Gopi HN. Metal‐Coordinated Supramolecular Polymers from the Minimalistic Hybrid Peptide Foldamers. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202015838] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Sanjit Dey
- Department of Chemistry Indian Institute of Science Education and Research (IISER), Pune Dr. Homi Bhabha Road Pune 411008 India
| | - Rajkumar Misra
- Department of Chemistry Indian Institute of Science Education and Research (IISER), Pune Dr. Homi Bhabha Road Pune 411008 India
| | - Abhijith Saseendran
- Department of Chemistry Indian Institute of Science Education and Research (IISER), Pune Dr. Homi Bhabha Road Pune 411008 India
| | - Saikat Pahan
- Department of Chemistry Indian Institute of Science Education and Research (IISER), Pune Dr. Homi Bhabha Road Pune 411008 India
| | - Hosahudya N. Gopi
- Department of Chemistry Indian Institute of Science Education and Research (IISER), Pune Dr. Homi Bhabha Road Pune 411008 India
| |
Collapse
|
6
|
Dey S, Misra R, Saseendran A, Pahan S, Gopi HN. Metal‐Coordinated Supramolecular Polymers from the Minimalistic Hybrid Peptide Foldamers. Angew Chem Int Ed Engl 2021; 60:9863-9868. [DOI: 10.1002/anie.202015838] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2020] [Revised: 01/19/2021] [Indexed: 11/11/2022]
Affiliation(s)
- Sanjit Dey
- Department of Chemistry Indian Institute of Science Education and Research (IISER), Pune Dr. Homi Bhabha Road Pune 411008 India
| | - Rajkumar Misra
- Department of Chemistry Indian Institute of Science Education and Research (IISER), Pune Dr. Homi Bhabha Road Pune 411008 India
| | - Abhijith Saseendran
- Department of Chemistry Indian Institute of Science Education and Research (IISER), Pune Dr. Homi Bhabha Road Pune 411008 India
| | - Saikat Pahan
- Department of Chemistry Indian Institute of Science Education and Research (IISER), Pune Dr. Homi Bhabha Road Pune 411008 India
| | - Hosahudya N. Gopi
- Department of Chemistry Indian Institute of Science Education and Research (IISER), Pune Dr. Homi Bhabha Road Pune 411008 India
| |
Collapse
|
7
|
Reja RM, Kumar V, George G, Patel R, Puneeth Kumar DRGKR, Raghothama S, Gopi HN. Structural Investigation of Hybrid Peptide Foldamers Composed of α-Dipeptide Equivalent β-Oxy-δ 5 -amino Acids. Chemistry 2020; 26:4304-4309. [PMID: 31960517 DOI: 10.1002/chem.201904780] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2019] [Revised: 01/15/2020] [Indexed: 01/05/2023]
Abstract
Due to their equivalent lengths, δ-amino acids can serve as surrogates of α-dipeptides. However, δ-amino acids with proteinogenic side chains have not been well studied because of synthetic difficulties and because of their insolubility in organic solvents. Recently we reported the spontaneous supramolecular gelation of δ-peptides composed of β(O)-δ5 -amino acids. Here, we report the incorporation of β(O)-δ5 -amino acids as guests into the host α-helix, α,γ-hybrid peptide 12-helix and their single-crystal conformations. In addition, we studied the solution conformations of hybrid peptides composed of 1:1 alternating α and β(O)-δ5 -amino acids. In contrast to the control α-helix structures, the crystal structure of peptides with β(O)-δ5 -amino acids exhibit α-helical conformations consisting of both 13- and 10-membered H-bonds. The α,δ-hybrid peptide adopted mixed 13/11-helix conformation in solution with alternating H-bond directionality. Crystal-structure analysis revealed that the α,γ4 -hybrid peptide accommodated the guest β(O)-δ5 -amino acid without significant deviation to the overall helix folding. The results reported here emphasize that β(O)-δ5 -amino acids with proteinogenic side chains can be accommodated into regular α-helix or 12-helix as guests without much deviation of the overall helix folding of the peptides.
Collapse
Affiliation(s)
- Rahi M Reja
- Department of Chemistry, Indian Institute of Science Education and Research, Dr. Homi Bhabha Road, Pune, 411008, India
| | - Vivek Kumar
- Department of Chemistry, Indian Institute of Science Education and Research, Dr. Homi Bhabha Road, Pune, 411008, India
| | - Gijo George
- NMR Research Centre, Indian Institute of Science, Bangalore, 560012, India
| | - Rajat Patel
- Department of Chemistry, Indian Institute of Science Education and Research, Dr. Homi Bhabha Road, Pune, 411008, India
| | - DRGKoppalu R Puneeth Kumar
- Department of Chemistry, Indian Institute of Science Education and Research, Dr. Homi Bhabha Road, Pune, 411008, India
| | | | - Hosahudya N Gopi
- Department of Chemistry, Indian Institute of Science Education and Research, Dr. Homi Bhabha Road, Pune, 411008, India
| |
Collapse
|
8
|
Marafon G, Moretto A, Zanuy D, Alemán C, Crisma M, Toniolo C. Effect on the Conformation of a Terminally Blocked, ( E) β,γ-Unsaturated δ-Amino Acid Residue Induced by Carbon Methylation. J Org Chem 2020; 85:1513-1524. [PMID: 31769989 DOI: 10.1021/acs.joc.9b02544] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Peptides are well-known to play a fundamental therapeutic role and to represent building blocks for numerous useful biomaterials. Stabilizing their active 3D-structure by appropriate modifications remains, however, a challenge. In this study, we have expanded the available literature information on the conformational propensities of a promising backbone change of a terminally blocked δ-amino acid residue, a dipeptide mimic, by replacing its central amide moiety with an (E) Cβ═Cγ alkene unit. Specifically, we have examined by DFT calculations, X-ray diffraction in the crystalline state, and FT-IR absorption/NMR spectroscopies in solution the extended vs folded preferences of analogues of this prototype system either unmodified or possessing single or multiple methyl group substituents on each of its four -CH2-CH═CH-CH2- main-chain carbon atoms. The theoretical and experimental results obtained clearly point to the conclusion that increasing the number of adequately positioned methylations will enhance the preference of the original sequence to fold, thus opening interesting perspectives in the design of conformationally constrained peptidomimetics.
Collapse
Affiliation(s)
- Giulia Marafon
- Department of Chemical Sciences , University of Padova , 35131 Padova , Italy
| | - Alessandro Moretto
- Department of Chemical Sciences , University of Padova , 35131 Padova , Italy.,Institute of Biomolecular Chemistry , Padova Unit, CNR , 35131 Padova , Italy
| | - David Zanuy
- Department of Chemical Engineering and Barcelona Research Center in Multiscale Science and Engineering , Universitat Polytècnica de Catalunya , 08019 Barcelona , Spain
| | - Carlos Alemán
- Department of Chemical Engineering and Barcelona Research Center in Multiscale Science and Engineering , Universitat Polytècnica de Catalunya , 08019 Barcelona , Spain.,Institute for Bioengineering of Catalonia (IBEC) , The Barcelona Institute of Science and Technology , Baldiri Reixac 10-12 , 08028 Barcelona Spain
| | - Marco Crisma
- Institute of Biomolecular Chemistry , Padova Unit, CNR , 35131 Padova , Italy
| | - Claudio Toniolo
- Department of Chemical Sciences , University of Padova , 35131 Padova , Italy.,Institute of Biomolecular Chemistry , Padova Unit, CNR , 35131 Padova , Italy
| |
Collapse
|
9
|
Ganesh Kumar M, Veeresh K, Nalawade SA, Nithun RV, Gopi HN. Direct Transformation of N-Protected α,β-Unsaturated γ-Amino Amides into γ-Lactams through a Base-Mediated Molecular Rearrangement. J Org Chem 2019; 84:15145-15153. [PMID: 31657563 DOI: 10.1021/acs.joc.9b01936] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Here, we are reporting a single-step transformation of N-protected α,β-unsaturated γ-amino amides into 5,5-disubstituted γ-lactams through a base-mediated new molecular rearrangement. In contrast to the known N- to C(O) cyclization of saturated γ-amino acids into corresponding γ-lactams, the new rearrangement involves the cyclization between N-terminal Cγ- to C-terminal amide N. The cyclization process was initiated by the migration of double bond from α,β → β,γ position. The enamine-imine tautomerization of the new β,γ-double bond and subsequent 5-exo-trig cyclization of terminal amide leads to the formation of N-protected 5,5-disubstituted γ-lactam. The structures of various γ-lactams obtained from the rearrangement were studied in single crystals. Overall, the results reported here demonstrate the facile and single-step transformation of N-protected α,β-unsaturated γ-amino amides into γ-lactams and provided an excellent opportunity to construct small-molecule peptidomimetics.
Collapse
Affiliation(s)
- Mothukuri Ganesh Kumar
- Department of Chemistry , Indian Institute of Science Education and Research , Dr. Homi Bhabha Road , Pune 411 008 , India
| | - Kuruva Veeresh
- Department of Chemistry , Indian Institute of Science Education and Research , Dr. Homi Bhabha Road , Pune 411 008 , India
| | - Sachin A Nalawade
- Department of Chemistry , Indian Institute of Science Education and Research , Dr. Homi Bhabha Road , Pune 411 008 , India
| | - Raj V Nithun
- Department of Chemistry , Indian Institute of Science Education and Research , Dr. Homi Bhabha Road , Pune 411 008 , India
| | - Hosahudya N Gopi
- Department of Chemistry , Indian Institute of Science Education and Research , Dr. Homi Bhabha Road , Pune 411 008 , India
| |
Collapse
|