1
|
Gupta A, Ranaut S, Kooleri A, Jandial T, Rani N, Bhuvanesh N, Mazumder S, Sridharan V. Revealing the Role of Solvent in anti-Oxypalladation-Triggered Regiocontrolled Domino Reactions for the Synthesis of Benzazepine- and Tetrahydroquinoline-Containing Scaffolds: A Combined Computational and Experimental Study. J Org Chem 2024; 89:13038-13058. [PMID: 39215714 DOI: 10.1021/acs.joc.4c01127] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/04/2024]
Abstract
Palladium-catalyzed regiocontrolled intramolecular oxypalladation-initiated cascades of multifunctional internal alkyne bearing an N-tosyl tether deliver functionalized benzazepine as an exclusive product via 6-endo-dig pathway in 1,4-dioxane solvent and tetrahydroquinoline scaffold as a major product via the 5-exo-dig pathway in the DMSO solvent. The role of the solvent in controlling the regioselectivity is still unknown which can be a major hurdle for further reaction development. Moreover, the reaction in DMSO suffered from having a mixture of products, and no exclusive formation of tetrahydroquinoline was achieved. Herein, we report a concerted computational and experimental study, revealing the role of the solvent in controlling the reaction outcome. DFT study revealed that the formation of the σ-vinylpalladium intermediate is reversible for the 5-exo-dig pathway while it is irreversible for the 6-endo-dig mechanism in 1,4-dioxane and consequently, the 5-exo-dig pathway is difficult to proceed. In contrast, both the 5-exo-dig and 6-endo-dig pathways are irreversible in DMSO. We predicted an exclusive formation of isobenzofuranone-fused chromane via the 5-exo-dig pathway when the N-tosyl tether is replaced by the O-tether in the internal alkyne in DMSO. The experimental study confirms the theoretical hypothesis and provides a highly chemo-divergent approach for the synthesis of biologically significant chromane with a large substrate scope and up to 95% yield at room temperature.
Collapse
Affiliation(s)
- Anish Gupta
- Department of Chemistry and Chemical Sciences, Central University of Jammu, Rahya-Suchani (Bagla), District-Samba, Jammu, Jammu and Kashmir 181143, India
| | - Sheetal Ranaut
- Department of Chemistry, Indian Institute of Technology Jammu, Jagti, Jammu, Jammu and Kashmir 181221, India
| | - Athira Kooleri
- Department of Chemistry, Indian Institute of Technology Jammu, Jagti, Jammu, Jammu and Kashmir 181221, India
| | - Tanvi Jandial
- Department of Chemistry and Chemical Sciences, Central University of Jammu, Rahya-Suchani (Bagla), District-Samba, Jammu, Jammu and Kashmir 181143, India
| | - Neha Rani
- Department of Chemistry, Indian Institute of Technology Jammu, Jagti, Jammu, Jammu and Kashmir 181221, India
| | - Nattamai Bhuvanesh
- Department of Chemistry, Texas A&M University, College Station, Texas 77843, United States
| | - Shivnath Mazumder
- Department of Chemistry, Indian Institute of Technology Jammu, Jagti, Jammu, Jammu and Kashmir 181221, India
| | - Vellaisamy Sridharan
- Department of Chemistry and Chemical Sciences, Central University of Jammu, Rahya-Suchani (Bagla), District-Samba, Jammu, Jammu and Kashmir 181143, India
- School of Chemistry, University of Hyderabad, Hyderabad 500046, India
| |
Collapse
|
2
|
Zhang Y, Zhu L, Song X, Wang XJ, Zhu B, Ouyang Q, Du W, Chen YC. Pd(0)-Catalyzed Asymmetric Cyclization/Coupling Cascade of Alkyne-Tethered Unsaturated Carbonyls: Development and Mechanism Elucidation. J Am Chem Soc 2024; 146:5977-5986. [PMID: 38395050 DOI: 10.1021/jacs.3c12685] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/25/2024]
Abstract
While the Pd(0)-catalyzed cyclization of alkyne-tethered unsaturated carbonyl substrates has been reported, the mechanism has not been well elucidated, and the potential asymmetric version remains to be developed. Here, we disclose that a chiral Pd(0) complex can efficiently promote the desymmetrizative cyclization of alkyne-tethered cyclohexadienones in CH3OH, and the resultant Pd(II) intermediates further undergo an array of tandem coupling reactions, including Suzuki, Sonogashira, and even chemoselective reduction by CH3OH in the absence of additional coupling partners. As a result, a broad spectrum of hydrobenzofuran derivatives, having a tetra- or trisubstituted exo-alkene motif, is constructed with moderate to outstanding enantioselectivity in an exclusive cis-difunctionalization pattern. In addition, this enantioselective protocol can be well expanded to linear alkyne-tethered unsaturated carbonyls, and a new desymmetrizative and asymmetric cyclization/coupling cascade of bis-alkyne-tethered enones is further realized efficiently, furnishing diversely structured frameworks with high stereoselectivity. Moreover, kinetic transformation for various racemic alkyne-tethered enones can be accomplished under similar catalytic conditions, and unusual kinetic reactions by chemoselectively undertaking Suzuki or Sonogashira coupling, or reduction by CH3OH, occur sequentially, finally yielding two types of chiral products, both with high enantioselectivity via either ligand- or substrate-based control. The experimental results demonstrate that the current Pd(0)-based strategy is superior to the classical Pd(II)-catalyzed carbopalladation/cyclization process of the identical substrates with regard to enantioselectivity and synthetic versatility. Moreover, density functional theory calculations are conducted to rationalize the Pd(0)-catalyzed oxidative cyclometalation pathway in the key cyclization step, which leads to the observed cis-difunctionalized products exclusively.
Collapse
Affiliation(s)
- Yi Zhang
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu 610041, China
| | - Lei Zhu
- College of Pharmacy, Third Military Medical University, Chongqing 400038, China
| | - Xue Song
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu 610041, China
| | - Xiao-Jun Wang
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu 610041, China
| | - Bo Zhu
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu 610041, China
| | - Qin Ouyang
- College of Pharmacy, Third Military Medical University, Chongqing 400038, China
| | - Wei Du
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu 610041, China
| | - Ying-Chun Chen
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu 610041, China
- College of Pharmacy, Third Military Medical University, Chongqing 400038, China
| |
Collapse
|
3
|
Saini MK, Prajapati K, Basak AK. Synthesis of Azonia Aromatic Heterocycles Bearing 6-6-6-5-6 Pentacyclic Core via Intramolecular [4 + 2]-Cycloaddition and Oxidative Aromatization Reaction Sequence in One Pot. J Org Chem 2024; 89:68-79. [PMID: 38111967 DOI: 10.1021/acs.joc.3c01506] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2023]
Abstract
Cationic aza-heterocycle-fused compounds have gained wide applications in materials science, biological applications, and synthetic organic chemistry. In this report, synthesis of benzothiazolochromenopyridinium tetrafluoroborates, a novel molecular scaffold, bearing 6-6-6-5-6 pentacyclic core is described that proceeds via (i) piperidine-catalyzed Knoevenagel condensation between 2-propargyloxyarylaldehydes bearing internal alkynes and 2-benzothiazoleacetonitrile, (ii) intramolecular formal [4 + 2]-cycloaddition, and (iii) crucial molecular oxygen-mediated oxidative aromatization reaction sequence in one pot. These quaternary pyridinium salts are obtained at ambient temperature in good to high yields.
Collapse
Affiliation(s)
- Manoj Kumar Saini
- Department of Chemistry, Institute of Science, Banaras Hindu University, Varanasi 221005, India
| | - Karmdeo Prajapati
- Department of Chemistry, Institute of Science, Banaras Hindu University, Varanasi 221005, India
| | - Ashok K Basak
- Department of Chemistry, Institute of Science, Banaras Hindu University, Varanasi 221005, India
| |
Collapse
|
4
|
Rajput D, Jan G, Karuppasamy M, Bhuvanesh N, Nagarajan S, Maheswari CU, Menéndez JC, Sridharan V. Rapid Assembly of Functionalized 2 H-Chromenes and 1,2-Dihydroquinolines via Microwave-Assisted Secondary Amine-Catalyzed Cascade Annulation of 2- O/ N-Propargylarylaldehydes with 2,6-Dialkylphenols. J Org Chem 2023; 88:11778-11792. [PMID: 37556760 DOI: 10.1021/acs.joc.3c01082] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/11/2023]
Abstract
An efficient, secondary amine-catalyzed cascade annulation of 2-O/N-propargylarylaldehydes with 2,6-dialkylphenols was established to access biologically relevant functionalized 2H-chromenes and 1,2-dihydroquinolines tethered with a synthetically useful p-quinone methide scaffold in high yields under microwave irradiation and conventional heating conditions. The microwave-assisted strategy was convenient, clean, rapid, and high yielding in which the reactions were completed in just 15 min, and the yields obtained were up to 95%. This highly atom-economical domino process constructed two new C-C double bonds and a six-membered O/N-heterocyclic ring in a single synthetic operation. Its mechanism process was rationalized as involving sequential iminium ion formation, nucleophilic addition, and intramolecular annulation steps. Furthermore, the synthesized 2H-chromene derivatives were transformed into valuable indeno[2,1-c]chromenes, 5H-indeno[2,1-c]quinolines, and oxireno[2,3-c]chromene via a palladium-catalyzed double C-H bond activation process and epoxidation, respectively.
Collapse
Affiliation(s)
- Diksha Rajput
- Department of Chemistry and Chemical Sciences, Central University of Jammu, Rahya-Suchani (Bagla), District-Samba, Jammu 181143, Jammu and Kashmir, India
| | - Gowsia Jan
- Department of Chemistry and Chemical Sciences, Central University of Jammu, Rahya-Suchani (Bagla), District-Samba, Jammu 181143, Jammu and Kashmir, India
| | - Muthu Karuppasamy
- Department of Chemistry and Chemical Sciences, Central University of Jammu, Rahya-Suchani (Bagla), District-Samba, Jammu 181143, Jammu and Kashmir, India
| | - Nattamai Bhuvanesh
- Department of Chemistry, Texas A & M University, College Station, Texas 77843, United States
| | - Subbiah Nagarajan
- Department of Chemistry, National Institute of Technology, Warangal, Warangal 506004, Telangana, India
| | - C Uma Maheswari
- Department of Chemistry, School of Chemical and Biotechnology, SASTRA Deemed University, Thanjavur 613401, Tamil Nadu, India
| | - J Carlos Menéndez
- Unidad de Química Orgánica y Farmacéutica, Departamento de Química en Ciencias Farmacéuticas, Facultad de Farmacia, Universidad Complutense de Madrid, Madrid 28040, Spain
| | - Vellaisamy Sridharan
- Department of Chemistry and Chemical Sciences, Central University of Jammu, Rahya-Suchani (Bagla), District-Samba, Jammu 181143, Jammu and Kashmir, India
| |
Collapse
|
5
|
Rajput D, Tsering D, Karuppasamy M, Kapoor KK, Nagarajan S, Maheswari CU, Bhuvanesh N, Sridharan V. Diversity-Oriented Synthesis of Benzo[ f][1,4]oxazepine-, 2 H-Chromene-, and 1,2-Dihydroquinoline-Fused Polycyclic Nitrogen Heterocycles under Microwave-Assisted Conditions. J Org Chem 2023. [PMID: 37318181 DOI: 10.1021/acs.joc.3c00552] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
An efficient, diversity-oriented synthesis of oxazepino[5,4-b]quinazolin-9-ones, 6H-chromeno[4,3-b]quinolines, and dibenzo[b,h][1,6]naphthyridines was established involving a substrate-based approach under microwave-assisted and conventional heating conditions in high yields (up to 88%). The CuBr2-catalyzed, chemoselective cascade annulation of O-propargylated 2-hydroxybenzaldehydes and 2-aminobenzamides delivered oxazepino[5,4-b]quinazolin-9-ones involving a 6-exo-trig cyclization-air oxidation-1,3-proton shift-7-exo-dig cyclization sequence. This one-pot process showed excellent atom economy (-H2O) and constructed two new heterocyclic rings (six- and seven-membered) and three new C-N bonds in a single synthetic operation. On the other side of diversification, the reaction between O/N-propargylated 2-hydroxy/aminobenzaldehydes and 2-aminobenzyl alcohols delivered 6H-chromeno[4,3-b]quinolines and dibenzo[b,h][1,6]naphthyridines involving sequential imine formation-[4 + 2] hetero-Diels-Alder reaction-aromatization steps. The influence of microwave assistance was superior to conventional heating, where the reactions were clean, rapid, and completed in 15 min, and the conventional heating required a longer reaction time at a relatively elevated temperature.
Collapse
Affiliation(s)
- Diksha Rajput
- Department of Chemistry and Chemical Sciences, Central University of Jammu, Rahya-Suchani (Bagla), District-Samba, Jammu 181143, Jammu and Kashmir, India
| | - Dolma Tsering
- Department of Chemistry, University of Jammu, Jammu 180006, Jammu and Kashmir, India
| | - Muthu Karuppasamy
- Department of Chemistry and Chemical Sciences, Central University of Jammu, Rahya-Suchani (Bagla), District-Samba, Jammu 181143, Jammu and Kashmir, India
| | - Kamal K Kapoor
- Department of Chemistry, University of Jammu, Jammu 180006, Jammu and Kashmir, India
| | - Subbiah Nagarajan
- Department of Chemistry, National Institute of Technology Warangal, Warangal 506004, Telangana, India
| | - C Uma Maheswari
- Department of Chemistry, School of Chemical and Biotechnology, SASTRA Deemed University, Thanjavur613401, Tamil Nadu, India
| | - Nattamai Bhuvanesh
- Department of Chemistry, Texas A&M University, College Station, Texas 77843, United States
| | - Vellaisamy Sridharan
- Department of Chemistry and Chemical Sciences, Central University of Jammu, Rahya-Suchani (Bagla), District-Samba, Jammu 181143, Jammu and Kashmir, India
| |
Collapse
|
6
|
Vinoth P, Karuppasamy M, Gupta A, Nagarajan S, Maheswari CU, Sridharan V. Intramolecular oxypalladation-initiated domino sequence: One-pot, two-step regioselective synthesis of isoquinolines. Tetrahedron 2023. [DOI: 10.1016/j.tet.2023.133272] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
|
7
|
Jan G, Kumar A, Karuppasamy M, Rajput D, Slathia N, Kapoor KK, Sridharan V. Microwave-assisted one-pot two-step imine formation-hetero-Diels-Alder-detosylation/aromatization sequence: direct access to dibenzo[ b, h][1,6]naphthyridines. Org Biomol Chem 2022; 20:7472-7482. [PMID: 36102029 DOI: 10.1039/d2ob01216b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A microwave-assisted, copper-catalyzed, one-pot, two-step reaction is established to access functionalized [1,6]naphthyridines in high yields (up to 96%) starting from 2-(N-propargylamino)benzaldehydes and arylamines. This rapid and operationally simple sequential reaction allowed the construction of two new heterocyclic rings and three new (2 C-C and 1 C-N) bonds in a single synthetic operation. This reaction tolerated various electron-donating and electron-withdrawing substituents well and delivered the desired products in a shorter reaction time under microwave irradiation. This reaction proceeds through a sequential imine formation, intramolecular [4 + 2] hetero-Diels-Alder reaction, and air oxidation, followed by detosylation-aromatization steps.
Collapse
Affiliation(s)
- Gowsia Jan
- Department of Chemistry and Chemical Sciences, Central University of Jammu, Rahya-Suchani (Bagla), District-Samba, Jammu-181143, J&K, India.
| | - Atul Kumar
- Department of Chemistry and Chemical Sciences, Central University of Jammu, Rahya-Suchani (Bagla), District-Samba, Jammu-181143, J&K, India.
| | - Muthu Karuppasamy
- Department of Chemistry and Chemical Sciences, Central University of Jammu, Rahya-Suchani (Bagla), District-Samba, Jammu-181143, J&K, India.
| | - Diksha Rajput
- Department of Chemistry and Chemical Sciences, Central University of Jammu, Rahya-Suchani (Bagla), District-Samba, Jammu-181143, J&K, India.
| | - Nancy Slathia
- Department of Chemistry, University of Jammu, Jammu-180006, J&K, India
| | - Kamal K Kapoor
- Department of Chemistry, University of Jammu, Jammu-180006, J&K, India
| | - Vellaisamy Sridharan
- Department of Chemistry and Chemical Sciences, Central University of Jammu, Rahya-Suchani (Bagla), District-Samba, Jammu-181143, J&K, India.
| |
Collapse
|
8
|
Ramos De Dios SM, Tiwari VK, McCune CD, Dhokale RA, Berkowitz DB. Biomacromolecule-Assisted Screening for Reaction Discovery and Catalyst Optimization. Chem Rev 2022; 122:13800-13880. [PMID: 35904776 DOI: 10.1021/acs.chemrev.2c00213] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Reaction discovery and catalyst screening lie at the heart of synthetic organic chemistry. While there are efforts at de novo catalyst design using computation/artificial intelligence, at its core, synthetic chemistry is an experimental science. This review overviews biomacromolecule-assisted screening methods and the follow-on elaboration of chemistry so discovered. All three types of biomacromolecules discussed─enzymes, antibodies, and nucleic acids─have been used as "sensors" to provide a readout on product chirality exploiting their native chirality. Enzymatic sensing methods yield both UV-spectrophotometric and visible, colorimetric readouts. Antibody sensors provide direct fluorescent readout upon analyte binding in some cases or provide for cat-ELISA (Enzyme-Linked ImmunoSorbent Assay)-type readouts. DNA biomacromolecule-assisted screening allows for templation to facilitate reaction discovery, driving bimolecular reactions into a pseudo-unimolecular format. In addition, the ability to use DNA-encoded libraries permits the barcoding of reactants. All three types of biomacromolecule-based screens afford high sensitivity and selectivity. Among the chemical transformations discovered by enzymatic screening methods are the first Ni(0)-mediated asymmetric allylic amination and a new thiocyanopalladation/carbocyclization transformation in which both C-SCN and C-C bonds are fashioned sequentially. Cat-ELISA screening has identified new classes of sydnone-alkyne cycloadditions, and DNA-encoded screening has been exploited to uncover interesting oxidative Pd-mediated amido-alkyne/alkene coupling reactions.
Collapse
Affiliation(s)
| | - Virendra K Tiwari
- Department of Chemistry, University of Nebraska-Lincoln, Lincoln, Nebraska 68588, United States
| | - Christopher D McCune
- Department of Chemistry, University of Nebraska-Lincoln, Lincoln, Nebraska 68588, United States
| | - Ranjeet A Dhokale
- Higuchi Biosciences Center, University of Kansas, Lawrence, Kansas 66047, United States
| | - David B Berkowitz
- Department of Chemistry, University of Nebraska-Lincoln, Lincoln, Nebraska 68588, United States
| |
Collapse
|
9
|
Rajput D, Kumar A, Jandial T, Karuppasamy M, Bhuvanesh N, Kumar RS, Almansour AI, Sridharan V. Microwave-Assisted Copper(II)-Catalyzed Cascade Cyclization of 2-Propargylamino/Oxy-Arylaldehydes and O-Phenylenediamines: Access to Densely Functionalized Benzo[ f]Imidazo[1,2- d][1,4]Oxazepines and Benzo[ f]Imidazo[1,2- d][1,4]Diazepines. J Org Chem 2022; 87:8956-8969. [PMID: 35765119 DOI: 10.1021/acs.joc.2c00671] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
A highly efficient microwave-assisted copper(II)-catalyzed cyclization cascade was established starting from readily accessible O/N-propargylated 2-hydroxy or 2-aminobenzaldehydes and o-phenylenediamines to synthesize densely functionalized imidazo[1,2-d][1,4]oxazepines and imidazo[1,2-d][1,4]diazepines in high yields (up to 93%). This one-pot two-step process was found to be highly atom economical (-H2O, -H2) and operationally simple and enabled the generation of two new heterocycle rings (seven- and five-membered) and three new C-N bonds in a single synthetic operation. These reactions well tolerated a variety of substituents including electron-donating and electron-withdrawing groups and furnished the desired fused heterocycles in high yields under microwave irradiation in a very short reaction time. The mechanism of the established protocol involves sequential imine formation-intramolecular cyclization-air oxidation followed by 7-exo-dig cyclization steps. A comparative study between the microwave-assisted approach and conventional heating was also performed to demonstrate the advantages of the microwave-assisted protocol in terms of high yield and shorter reaction time.
Collapse
Affiliation(s)
- Diksha Rajput
- Department of Chemistry and Chemical Sciences, Central University of Jammu, Rahya-Suchani (Bagla), District-Samba, Jammu 181143, J&K, India
| | - Atul Kumar
- Department of Chemistry and Chemical Sciences, Central University of Jammu, Rahya-Suchani (Bagla), District-Samba, Jammu 181143, J&K, India
| | - Tanvi Jandial
- Department of Chemistry and Chemical Sciences, Central University of Jammu, Rahya-Suchani (Bagla), District-Samba, Jammu 181143, J&K, India
| | - Muthu Karuppasamy
- Department of Chemistry and Chemical Sciences, Central University of Jammu, Rahya-Suchani (Bagla), District-Samba, Jammu 181143, J&K, India
| | - Nattamai Bhuvanesh
- Department of Chemistry, Texas A & M University, College Station, Texas 77843, United States
| | - Raju Suresh Kumar
- Department of Chemistry, College of Sciences, King Saud University, P.O. Box 2455, Riyadh 11451, Saudi Arabia
| | - Abdulrahman I Almansour
- Department of Chemistry, College of Sciences, King Saud University, P.O. Box 2455, Riyadh 11451, Saudi Arabia
| | - Vellaisamy Sridharan
- Department of Chemistry and Chemical Sciences, Central University of Jammu, Rahya-Suchani (Bagla), District-Samba, Jammu 181143, J&K, India
| |
Collapse
|
10
|
Yu XC, Zhang CC, Wang LT, Li JZ, Li T, Wei WT. The synthesis of seven- and eight-membered rings by radical strategies. Org Chem Front 2022. [DOI: 10.1039/d2qo00774f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Radical strategies for preparation of seven- or eight-membered rings.
Collapse
Affiliation(s)
- Xuan-Chi Yu
- Institute of Drug Discovery Technology, School of Materials Science and Chemical Engineering, Ningbo University, Ningbo, Zhejiang, 315211, China
| | - Can-Can Zhang
- Institute of Drug Discovery Technology, School of Materials Science and Chemical Engineering, Ningbo University, Ningbo, Zhejiang, 315211, China
| | - Ling-Tao Wang
- Institute of Drug Discovery Technology, School of Materials Science and Chemical Engineering, Ningbo University, Ningbo, Zhejiang, 315211, China
| | - Jiao-Zhe Li
- Institute of Drug Discovery Technology, School of Materials Science and Chemical Engineering, Ningbo University, Ningbo, Zhejiang, 315211, China
| | - Ting Li
- College of Chemistry and Pharmaceutical Engineering, Nanyang Normal University, Nanyang, Henan, 473061, China
| | - Wen-Ting Wei
- Institute of Drug Discovery Technology, School of Materials Science and Chemical Engineering, Ningbo University, Ningbo, Zhejiang, 315211, China
| |
Collapse
|
11
|
Manavi B, Tejeneki HZ, Rominger F, Armaghan M, Frank W, Bijanzadeh HR, Balalaie S. Copper(I)‐Catalyzed Intramolecular Cyclization of
o
‐Propargyloxy Diketopiperazines to Access Diverse Diazabicyclic and Spiro‐Diketopiperazinochromanes. Adv Synth Catal 2021. [DOI: 10.1002/adsc.202100432] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Affiliation(s)
- Bita Manavi
- Peptide Chemistry Research Institute K. N. Toosi University of Technology P. O. Box 15875-4416 Tehran Iran
| | - Hossein Zahedian Tejeneki
- Peptide Chemistry Research Institute K. N. Toosi University of Technology P. O. Box 15875-4416 Tehran Iran
| | - Frank Rominger
- Organisch-Chemisches Institut der Universität Heidelberg Im Neuenheimer Feld 270 69120 Heidelberg Germany
| | - Mahsa Armaghan
- Institut für Anorganische Chemie und Strukturchemie Heinrich-Heine-Universität Düsseldorf Universitätsstraße 1 40225 Düsseldorf Germany
| | - Walter Frank
- Institut für Anorganische Chemie und Strukturchemie Heinrich-Heine-Universität Düsseldorf Universitätsstraße 1 40225 Düsseldorf Germany
| | - Hamid Reza Bijanzadeh
- Department of Environmental Sciences, Faculty of Natural Resources and Marine Sciences Tarbiat Modares University Tehran Iran
| | - Saeed Balalaie
- Peptide Chemistry Research Institute K. N. Toosi University of Technology P. O. Box 15875-4416 Tehran Iran
- Medical Biology Research Center Kermanshah University of Medical Sciences Kermanshah Iran
| |
Collapse
|
12
|
Mondal S, Ballav T, Biswas K, Ghosh S, Ganesh V. Exploiting the Versatility of Palladium Catalysis: A Modern Toolbox for Cascade Reactions. European J Org Chem 2021. [DOI: 10.1002/ejoc.202100312] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Affiliation(s)
- Sourav Mondal
- Department of Chemistry Indian Institute of Technology Kharagpur Kharagpur 721 302 West Bengal India
| | - Tamal Ballav
- Department of Chemistry Indian Institute of Technology Kharagpur Kharagpur 721 302 West Bengal India
| | - Krishna Biswas
- Department of Chemistry Indian Institute of Technology Kharagpur Kharagpur 721 302 West Bengal India
| | - Suman Ghosh
- Department of Chemistry Indian Institute of Technology Kharagpur Kharagpur 721 302 West Bengal India
| | - Venkataraman Ganesh
- Department of Chemistry Indian Institute of Technology Kharagpur Kharagpur 721 302 West Bengal India
| |
Collapse
|
13
|
Kaur M, Garg S, Malhi DS, Sohal HS. A Review on Synthesis, Reactions and Biological Properties of Seven Membered Heterocyclic Compounds: Azepine, Azepane, Azepinone. CURR ORG CHEM 2021. [DOI: 10.2174/1385272825999210104222338] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Seven membered heterocyclic Azepine and its derivatives have great pharmacological
and therapeutic implications. In this review, the literature of the last fifty years has
been exploited for the synthesis, reaction, and biological properties of these seven-member
heterocyclic compounds. Most of the mechanisms involved the ring expansion of either five
or six-membered compounds using various methods such as thermally, photo-chemically, and
microwave irradiation. The systematically designed schemes involve the synthesis of different
derivatives of azepine, azepinone, azepane, etc., using similar moieties by various researchers.
However, there is much work yet to be done in the biological section, as it is not
explored and reported in the literature; therefore, N-containing seven-membered heterocycles
still have much scope for the researchers.
Collapse
Affiliation(s)
- Manvinder Kaur
- Department of Chemistry, Chandigarh University, Gharuan-140413, Mohali, Punjab, India
| | - Sonali Garg
- Department of Chemistry, Chandigarh University, Gharuan-140413, Mohali, Punjab, India
| | - Dharambeer S. Malhi
- Department of Chemistry, Chandigarh University, Gharuan-140413, Mohali, Punjab, India
| | - Harvinder S. Sohal
- Department of Chemistry, Chandigarh University, Gharuan-140413, Mohali, Punjab, India
| |
Collapse
|
14
|
Vachan BS, Karuppasamy M, Jan G, Bhuvanesh N, Maheswari CU, Sridharan V. Direct Access to Bridged Tetrahydroquinolines and Chromanes via an InCl 3-Catalyzed Sequential Three-Component Cascade. J Org Chem 2020; 85:8062-8073. [PMID: 32452689 DOI: 10.1021/acs.joc.0c00893] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
A sequential three-component cascade process was developed for the synthesis of bridged tetrahydroquinolines and chromanes bearing 2,6-methanobenzo[d][1,3]diazocine and 2,6-methanobenzo[g][1,3]oxazocine scaffolds, respectively, in good yields from readily available materials. The InCl3-catalyzed reaction progressed via enamine formation, Michael addition, intramolecular cyclization, and intramolecular iminium ion cyclization steps. Notably, this high atom economic approach (-2H2O) allowed the generation of four new bonds (1 C-C and 3 C-N or 1 C-C, 1 C-O and 2 C-N) and two heterocyclic rings in a single operation.
Collapse
Affiliation(s)
- B S Vachan
- Department of Chemistry, School of Chemical and Biotechnology, SASTRA Deemed University, Thanjavur 613401, Tamil Nadu, India
| | - Muthu Karuppasamy
- Department of Chemistry, School of Chemical and Biotechnology, SASTRA Deemed University, Thanjavur 613401, Tamil Nadu, India
| | - Gowsia Jan
- Department of Chemistry and Chemical Sciences, Central University of Jammu, Rahya-Suchani (Bagla), Samba, Jammu 181143, Jammu and Kashmir, India
| | - Nattamai Bhuvanesh
- Department of Chemistry, Texas A & M University, College Station, Texas 77843, United States
| | - C Uma Maheswari
- Department of Chemistry, School of Chemical and Biotechnology, SASTRA Deemed University, Thanjavur 613401, Tamil Nadu, India
| | - Vellaisamy Sridharan
- Department of Chemistry, School of Chemical and Biotechnology, SASTRA Deemed University, Thanjavur 613401, Tamil Nadu, India.,Department of Chemistry and Chemical Sciences, Central University of Jammu, Rahya-Suchani (Bagla), Samba, Jammu 181143, Jammu and Kashmir, India
| |
Collapse
|
15
|
Karuppasamy M, Vachan BS, Jandial T, Babiola Annes S, Bhuvanesh N, Uma Maheswari C, Sridharan V. Palladium(II)‐Catalyzed Direct Access to Indeno[1,2‐
c
]isochromen‐5(11
H
)‐Ones via Intramolecular Oxypalladation‐Initiated Cascade Process. Adv Synth Catal 2020. [DOI: 10.1002/adsc.202000456] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Affiliation(s)
- Muthu Karuppasamy
- Department of Chemistry, School of Chemical and BiotechnologySASTRA Deemed University Thanjavur 613401, Tamil Nadu India
| | - B. S. Vachan
- Department of Chemistry, School of Chemical and BiotechnologySASTRA Deemed University Thanjavur 613401, Tamil Nadu India
| | - Tanvi Jandial
- Department of Chemistry and Chemical SciencesCentral University of Jammu, Rahya-Suchani (Bagla), District-Samba Jammu 181143, J&K India
| | - Sesuraj Babiola Annes
- Department of Chemistry, School of Chemical and BiotechnologySASTRA Deemed University Thanjavur 613401, Tamil Nadu India
| | - Nattamai Bhuvanesh
- Department of ChemistryTexas A & M University, College Station Texas 77843 United States
| | - C. Uma Maheswari
- Department of Chemistry, School of Chemical and BiotechnologySASTRA Deemed University Thanjavur 613401, Tamil Nadu India
| | - Vellaisamy Sridharan
- Department of Chemistry, School of Chemical and BiotechnologySASTRA Deemed University Thanjavur 613401, Tamil Nadu India
- Department of Chemistry and Chemical SciencesCentral University of Jammu, Rahya-Suchani (Bagla), District-Samba Jammu 181143, J&K India
| |
Collapse
|
16
|
Muthukrishnan I, Karuppasamy M, Vachan BS, Rajput D, Subbiah N, Uma Maheswari C, Sridharan V. Chemodivergent synthesis of functionalized methanodibenzo[b,f][1,5]diazocin-13-ylmethanones and tetrahydroquinolines via solvent-dependent AB2 and A2B2 multicomponent annulation reactions. Org Chem Front 2020. [DOI: 10.1039/d0qo00449a] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
A solvent-dependent chemodivergent approach was developed for the synthesis of 6,12-methanodibenzo[b,f][1,5]diazocin-13-ylmethanones and 2,3,4-trisubstituted 1,2,3,4-tetrahydroquinolines involving two distinct AB2 and A2B2 multicomponent processes.
Collapse
Affiliation(s)
- Isravel Muthukrishnan
- Department of Chemistry
- School of Chemical and Biotechnology
- SASTRA Deemed University
- Thanjavur-613401
- India
| | - Muthu Karuppasamy
- Department of Chemistry
- School of Chemical and Biotechnology
- SASTRA Deemed University
- Thanjavur-613401
- India
| | - B. S. Vachan
- Department of Chemistry
- School of Chemical and Biotechnology
- SASTRA Deemed University
- Thanjavur-613401
- India
| | - Diksha Rajput
- Department of Chemistry and Chemical Sciences
- Central University of Jammu
- Jammu-181143
- India
| | - Nagarajan Subbiah
- Department of Chemistry
- National Institute of Technology
- Warangal-506004
- India
| | - C. Uma Maheswari
- Department of Chemistry
- School of Chemical and Biotechnology
- SASTRA Deemed University
- Thanjavur-613401
- India
| | - Vellaisamy Sridharan
- Department of Chemistry
- School of Chemical and Biotechnology
- SASTRA Deemed University
- Thanjavur-613401
- India
| |
Collapse
|
17
|
Karuppasamy M, Vinoth P, Pradeep N, Nagarajan S, Maheswari CU, Sridharan V. Regioselective synthesis of tetrahydroquinolines via syn- and anti-nucleopalladation-initiated cascade processes. Org Biomol Chem 2020; 18:8474-8485. [DOI: 10.1039/d0ob01840f] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Regioselective synthesis of tetrahydroquinolines via nucleopalladation-initiated cascade sequences was established.
Collapse
Affiliation(s)
- Muthu Karuppasamy
- Department of Chemistry
- School of Chemical and Biotechnology
- SASTRA Deemed University
- Thanjavur-613401
- India
| | - Perumal Vinoth
- Department of Chemistry
- School of Chemical and Biotechnology
- SASTRA Deemed University
- Thanjavur-613401
- India
| | - N. Pradeep
- Department of Chemistry
- School of Chemical and Biotechnology
- SASTRA Deemed University
- Thanjavur-613401
- India
| | - Subbiah Nagarajan
- Department of Chemistry
- National Institute of Technology
- Warangal-506004
- India
| | - C. Uma Maheswari
- Department of Chemistry
- School of Chemical and Biotechnology
- SASTRA Deemed University
- Thanjavur-613401
- India
| | - Vellaisamy Sridharan
- Department of Chemistry
- School of Chemical and Biotechnology
- SASTRA Deemed University
- Thanjavur-613401
- India
| |
Collapse
|
18
|
Kohlbacher SM, Ionasz VS, Ielo L, Pace V. The synthetic versatility of the Tiffeneau–Demjanov chemistry in homologation tactics. MONATSHEFTE FUR CHEMIE 2019. [DOI: 10.1007/s00706-019-02514-3] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Abstract
The Tiffeneau–Demjanov rearrangement can be regarded as an interesting alternative to the more common semi-pinacol transposition. It is usually employed for ring extension but, under specific conditions, it can also be used for ring contraction. Compared to other techniques, such as the Demjanov rearrangement or homologations with diazo compounds, the Tiffeneau–Demjanov pathway presents attractive features including high yielding and selective processes. Ring enlargements follow very strict and simple rules, such as the movement of the less substituted carbon and retention of the configuration. The rearrangement process is mainly affected by steric factors, due to presence of neighbouring groups, rather than electronic ones. The ring contraction may be achieved positioning the amine within the ring, thus achieving a high level of control. Unfortunately, applications of the reaction in modern homologation chemistry are rare; therefore, the aim of the review is re-proposing to the synthetic community the versatility of this venerable reaction and thus, spurring its employment for tackling challenging homologations processes.
Graphic abstract
Collapse
|