1
|
Jana S, Wodrich MD, Cramer N. Enantioselective acyl-trifluoromethylation of olefins by bulky thiazolium carbene catalysis. Nat Commun 2025; 16:3293. [PMID: 40195321 PMCID: PMC11977197 DOI: 10.1038/s41467-025-58423-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2024] [Accepted: 03/20/2025] [Indexed: 04/09/2025] Open
Abstract
Enantioenriched α-chiral β-fluorinated ketones are valuable structural motifs with application in several fields. The recently emerged concept of NHC-catalyzed radical acyl-trifluoromethylation of olefins offers a rapid route to construct racemic β-fluorinated ketones in a single step. Due to the lack of competent chiral NHC catalysts constructing these molecules in an enantioselective manner remains an unmet challenge. Herein, we report a family of chiral thiazolium carbenes having bulky chiral flanking groups and offering three distinct positions with broad steric and electronic tunability. The catalysts display so far unmatched enantioselectivities for acyl-trifluoromethylations of simple unactivated olefins with a wide variety of aldehydes and Togni's reagent. The method provides a variety of enantioenriched β-trifluoromethylated α-chiral ketones in high yields and excellent enantioselectivities up to 98:2 er. A potential applicability of this methodology is demonstrated through enantio- and diastereoselective late-stage functionalizations of pharmaceutical compounds.
Collapse
Affiliation(s)
- Sripati Jana
- Laboratory of Asymmetric Catalysis and Synthesis, Institute of Chemical Sciences and Engineering, Ecole Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
| | - Matthew D Wodrich
- Computational Molecular Design Laboratory, Institute of Chemical Sciences and Engineering, Ecole Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
| | - Nicolai Cramer
- Laboratory of Asymmetric Catalysis and Synthesis, Institute of Chemical Sciences and Engineering, Ecole Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland.
| |
Collapse
|
2
|
Qi C, Laktsevich-Iskryk M, Mazzarella D. Navigating electrochemical oxidative functionalization of olefins: selected mechanistic and synthetic examples. Chem Commun (Camb) 2025; 61:4265-4278. [PMID: 39967497 DOI: 10.1039/d4cc06306f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/20/2025]
Abstract
The functionalization of olefins to form added-value compounds is a cornerstone of modern organic chemistry, promoting the synthesis of complex molecules from simple feedstock materials. In parallel, electrochemistry has emerged as a powerful and sustainable technique for enabling challenging transformations under mild conditions by generating reactive intermediates in a controlled manner. This review highlights recent advances in oxidative electrochemical methods for olefin functionalization, showcasing key developments that underscore the versatility of this approach. Using selected representative examples, we explore diverse mechanistic pathways, bond-forming strategies, and the integration of electrochemical techniques with catalytic systems. By providing a concise overview of this rapidly evolving field, we aim to inspire further innovation in electrochemical methodologies to expand the frontiers of olefin chemistry.
Collapse
Affiliation(s)
- Chun Qi
- Department of Chemical Sciences, University of Padova, Via Francesco Marzolo 1, 35131, Padova, Italy
| | - Marharyta Laktsevich-Iskryk
- Department of Chemical Sciences and Technologies, University of Rome Tor Vergata, Via della Ricerca Scientifica 1, 00133, Rome, Italy.
- Department of Chemistry and Biotechnology, Tallinn University of Technology, Akadeemia tee 15, Tallinn 12618, Estonia
| | - Daniele Mazzarella
- Department of Chemical Sciences, University of Padova, Via Francesco Marzolo 1, 35131, Padova, Italy
- Department of Chemical Sciences and Technologies, University of Rome Tor Vergata, Via della Ricerca Scientifica 1, 00133, Rome, Italy.
| |
Collapse
|
3
|
Zhang Y, Zhou G, Liu S, Shen X. Radical Brook rearrangement: past, present, and future. Chem Soc Rev 2025; 54:1870-1904. [PMID: 39835385 DOI: 10.1039/d4cs01275e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2025]
Abstract
The Brook rearrangement has emerged as one of the most pivotal transformations in organic chemistry, with broad applications spanning organic synthesis, drug design, and materials science. Since its discovery in the 1950s, the anion-mediated Brook rearrangement has been extensively studied, laying the groundwork for the development of numerous innovative reactions. In contrast, the radical Brook rearrangement has garnered comparatively less attention, primarily due to the challenges associated with the controlled generation of alkoxyl radicals under mild conditions. However, recent advancements in visible-light catalysis and transition-metal catalysis have positioned the radical Brook rearrangement as a promising alternative synthetic strategy in organic synthesis. Despite these developments, significant limitations and challenges remain, warranting further investigation. This review provides an overview of the radical Brook rearrangement, tracing its development from past to present, and offers perspectives on future directions in the field to inspire the creation of novel synthetic tools based on this transformation.
Collapse
Affiliation(s)
- Yunxiao Zhang
- The Institute for Advanced Studies, Engineering Research Center of Organosilicon Compounds & Materials, Ministry of Education, Wuhan University, 299 Bayi Road, Wuhan, 430072, China.
| | - Gang Zhou
- The Institute for Advanced Studies, Engineering Research Center of Organosilicon Compounds & Materials, Ministry of Education, Wuhan University, 299 Bayi Road, Wuhan, 430072, China.
| | - Shanshan Liu
- The Institute for Advanced Studies, Engineering Research Center of Organosilicon Compounds & Materials, Ministry of Education, Wuhan University, 299 Bayi Road, Wuhan, 430072, China.
| | - Xiao Shen
- The Institute for Advanced Studies, Engineering Research Center of Organosilicon Compounds & Materials, Ministry of Education, Wuhan University, 299 Bayi Road, Wuhan, 430072, China.
| |
Collapse
|
4
|
Kumar R. Decennary Update on Oxidative-Rearrangement Involving 1,2-Aryl C-C Migration Around Alkenes: Synthetic and Mechanistic Insights. Chem Asian J 2024; 19:e202400053. [PMID: 38741472 DOI: 10.1002/asia.202400053] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Revised: 05/12/2024] [Accepted: 05/13/2024] [Indexed: 05/16/2024]
Abstract
In recent years, numerous methodologies on oxidative rearrangements of alkenes have been investigated, that produce multipurpose synthons and heterocyclic scaffolds of potential applications. The present review focused on recently established methodologies for oxidative transformation via 1,2-aryl migration in alkenes (2013-2023). Special emphasis has been placed on mechanistic pathways to understand the reactivity pattern of different substrates, challenges to enhance selectivity, the key role of different reagents, and effect of different substituents, and how they affect the rearrangement process. Moreover, synthetic limitations and future direction also have been discussed. We believe, this review offers new synthetic and mechanistic insight to develop elegant precursors and approaches to explore the utilization of alkene-based compounds for natural product synthesis and functional materials.
Collapse
Affiliation(s)
- Ravinder Kumar
- Department of Chemistry, MMEC, Maharishi Markandeshwar (Deemed to be University), Mullana, Ambala, 133207, Haryana (India
| |
Collapse
|
5
|
Guo G, Li W, Zheng J, Liu A, Zhang Q, Wang Y. PhI(OAc) 2-Promoted 1,2-Transfer Reaction between 1,1-Disubstituted Allylic Alcohols and Thiophenols. Molecules 2024; 29:3112. [PMID: 38999064 PMCID: PMC11243614 DOI: 10.3390/molecules29133112] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Revised: 06/25/2024] [Accepted: 06/25/2024] [Indexed: 07/14/2024] Open
Abstract
The PhI(OAc)2-promoted 1,2-transfer reaction between allylic alcohols and thiophenols, conducted in an argon atmosphere, has proven to be effective in producing β-carbonyl sulfides from 1,1-disubstituted allylic alcohols in high yields. This method offers a fast and efficient way to synthesize β-carbonyl sulfides, which are valuable intermediates in organic synthesis. This discussion focuses on the effects of the oxidizer, temperature, and solvent on the reaction. A proposed tentative mechanism for this reaction is also discussed.
Collapse
Affiliation(s)
- Guozhe Guo
- Gansu Key Laboratory of Efficient Utilization of Oil and Gas Resources, College of Petroleum and Chemical Engineering, Longdong University, Qingyang 745000, China
| | - Wenduo Li
- Gansu Key Laboratory of Efficient Utilization of Oil and Gas Resources, College of Petroleum and Chemical Engineering, Longdong University, Qingyang 745000, China
| | - Jingjing Zheng
- Gansu Key Laboratory of Efficient Utilization of Oil and Gas Resources, College of Petroleum and Chemical Engineering, Longdong University, Qingyang 745000, China
| | - Aping Liu
- Gansu Key Laboratory of Efficient Utilization of Oil and Gas Resources, College of Petroleum and Chemical Engineering, Longdong University, Qingyang 745000, China
| | - Qi Zhang
- Gansu Key Laboratory of Efficient Utilization of Oil and Gas Resources, College of Petroleum and Chemical Engineering, Longdong University, Qingyang 745000, China
| | - Yatao Wang
- Gansu Key Laboratory of Efficient Utilization of Oil and Gas Resources, College of Petroleum and Chemical Engineering, Longdong University, Qingyang 745000, China
| |
Collapse
|
6
|
Yang C, Tao J, Xuan Y, Shen L, Jiang H, Zeng W. Rhodium(III)-Catalyzed Oxidative 1,3-Aryl Migration of α-Aryl Allylic Alcohols. J Org Chem 2024; 89:3684-3695. [PMID: 38394358 DOI: 10.1021/acs.joc.3c01998] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/25/2024]
Abstract
A Rh(III)-catalyzed oxidative 1,3-aryl migration of α-arylallylic alcohols via Csp2-Csp3 σ bond activation has been developed. This method provides an efficient strategy to allow for allylic alcohol-based skeleton rearrangement, in which various secondary and tertiary α-arylallylic alcohols are rapidly converted to β-aryl-α, β-unsaturated ketones and aldehydes.
Collapse
Affiliation(s)
- Can Yang
- Key Laboratory of Functional Molecular Engineering of Guangdong Province, School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou 510641, China
| | - Jiale Tao
- Key Laboratory of Functional Molecular Engineering of Guangdong Province, School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou 510641, China
| | - Yanshuo Xuan
- Key Laboratory of Functional Molecular Engineering of Guangdong Province, School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou 510641, China
| | - Lixing Shen
- Key Laboratory of Functional Molecular Engineering of Guangdong Province, School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou 510641, China
| | - Huanfeng Jiang
- Key Laboratory of Functional Molecular Engineering of Guangdong Province, School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou 510641, China
| | - Wei Zeng
- Key Laboratory of Functional Molecular Engineering of Guangdong Province, School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou 510641, China
| |
Collapse
|
7
|
Ma S, Guo Y, Liu L, Shi L, Lei X, Duan X, Jiao P. gem-Bromonitroalkane Involved Radical 1,2-Aryl Migration of α,α-Diaryl Allyl Alcohol TMS Ether via Visible-Light Photoredox Catalysis. J Org Chem 2023; 88:4743-4756. [PMID: 36971723 DOI: 10.1021/acs.joc.3c00343] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/29/2023]
Abstract
A mild and efficient coupling method concerning the reactions of gem-bromonitroalkanes with α,α-diaryl allyl alcohol trimethylsilyl ethers was reported. A cascade consisting of visible-light-induced generation of an α-nitroalkyl radical and a subsequent neophyl-type rearrangement was key to realize the coupling reactions. Structurally diverse α-aryl-γ-nitro ketones, especially those bearing a nitrocyclobutyl structure, were prepared in moderate to high yields, which could be converted into spirocyclic nitrones and imines.
Collapse
|
8
|
La-Ongthong K, Chantarojsiri T, Soorukram D, Leowanawat P, Reutrakul V, Kuhakarn C. Electrochemical trifluoromethylation of 2-isocyanobiaryls using CF 3SO 2Na: synthesis of 6-(trifluoromethyl)phenanthridines. Org Biomol Chem 2023; 21:4225-4236. [PMID: 36880879 DOI: 10.1039/d3ob00239j] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/06/2023]
Abstract
An efficient trifluoromethylation of 2-isocyanobiaryls was developed through the constant current electrolysis, employing sodium trifluoromethanesulfinate (CF3SO2Na) as the trifluoromethyl source. The method enabled the syntheses of a series of 6-(trifluoromethyl)phenanthridine derivatives in moderate to high yields under metal- and oxidant-free conditions. A gram-scale synthesis highlights the synthetic versatility of the reported protocol.
Collapse
Affiliation(s)
- Kannika La-Ongthong
- Department of Chemistry, Faculty of Science, Mahidol University, Rama VI Road, Bangkok 10400, Thailand. .,Center of Excellence for Innovation in Chemistry (PERCH-CIC), Faculty of Science, Mahidol University, Rama VI Road, Bangkok 10400, Thailand
| | - Teera Chantarojsiri
- Department of Chemistry, Faculty of Science, Mahidol University, Rama VI Road, Bangkok 10400, Thailand. .,Center of Excellence for Innovation in Chemistry (PERCH-CIC), Faculty of Science, Mahidol University, Rama VI Road, Bangkok 10400, Thailand
| | - Darunee Soorukram
- Department of Chemistry, Faculty of Science, Mahidol University, Rama VI Road, Bangkok 10400, Thailand. .,Center of Excellence for Innovation in Chemistry (PERCH-CIC), Faculty of Science, Mahidol University, Rama VI Road, Bangkok 10400, Thailand
| | - Pawaret Leowanawat
- Department of Chemistry, Faculty of Science, Mahidol University, Rama VI Road, Bangkok 10400, Thailand. .,Center of Excellence for Innovation in Chemistry (PERCH-CIC), Faculty of Science, Mahidol University, Rama VI Road, Bangkok 10400, Thailand
| | - Vichai Reutrakul
- Department of Chemistry, Faculty of Science, Mahidol University, Rama VI Road, Bangkok 10400, Thailand. .,Center of Excellence for Innovation in Chemistry (PERCH-CIC), Faculty of Science, Mahidol University, Rama VI Road, Bangkok 10400, Thailand
| | - Chutima Kuhakarn
- Department of Chemistry, Faculty of Science, Mahidol University, Rama VI Road, Bangkok 10400, Thailand. .,Center of Excellence for Innovation in Chemistry (PERCH-CIC), Faculty of Science, Mahidol University, Rama VI Road, Bangkok 10400, Thailand
| |
Collapse
|
9
|
Lv Y, Hou ZW, Wang Y, Li P, Wang L. Electrochemical monofluoroalkylation cyclization of N-arylacrylamides to construct monofluorinated 2-oxindoles. Org Biomol Chem 2023; 21:1014-1020. [PMID: 36602181 DOI: 10.1039/d2ob01883g] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
An electrochemical monofluoroalkylation cyclization of N-arylacrylamides to synthesize monofluorinated 2-oxindoles has been developed, which employs common dimethyl 2-fluoromalonate as a monofluoroalkyl radical precursor and obviates the use of prefunctionalized monofluoroalkylation reagents and sacrificial oxidants. A variety of monofluorinated nitrogen-containing heterocyclic compounds were efficiently obtained with satisfactory yields from readily available materials.
Collapse
Affiliation(s)
- Yanxia Lv
- Advanced Research Institute and School of Pharmaceutical Sciences, Taizhou University, Taizhou 318000, P. R. China. .,Department of Chemistry, Huaibei Normal University, Huaibei, Anhui 235000, P. R. China
| | - Zhong-Wei Hou
- Advanced Research Institute and School of Pharmaceutical Sciences, Taizhou University, Taizhou 318000, P. R. China.
| | - Yi Wang
- The Second Hospital of Anhui Medical University, Heifei, Anhui 230601, P. R. China
| | - Pinhua Li
- Department of Chemistry, Huaibei Normal University, Huaibei, Anhui 235000, P. R. China
| | - Lei Wang
- Advanced Research Institute and School of Pharmaceutical Sciences, Taizhou University, Taizhou 318000, P. R. China. .,Department of Chemistry, Huaibei Normal University, Huaibei, Anhui 235000, P. R. China.,The Second Hospital of Anhui Medical University, Heifei, Anhui 230601, P. R. China
| |
Collapse
|
10
|
Castillo-Pazos DJ, Lasso JD, Hamzehpoor E, Ramos-Sánchez J, Salgado JM, Cosa G, Perepichka DF, Li CJ. Triarylamines as catalytic donors in light-mediated electron donor–acceptor complexes. Chem Sci 2023; 14:3470-3481. [PMID: 37006691 PMCID: PMC10055340 DOI: 10.1039/d2sc07078b] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2022] [Accepted: 02/12/2023] [Indexed: 03/16/2023] Open
Abstract
EDA complexes with catalytic triarylamines allow C–H perfluoroalkylation of arenes and heteroarenes under visible light irradiation in pH- and redox-neutral conditions. A detailed photophysical characterization of the EDA complex is provided.
Collapse
Affiliation(s)
- Durbis J. Castillo-Pazos
- Department of Chemistry, McGill University, 801 Sherbrooke Street West, Montreal, QC H3A 0B8, Canada
- FRQNT Centre for Green Chemistry and Catalysis, McGill University, Montreal, QC H3A 0B8, Canada
| | - Juan D. Lasso
- Department of Chemistry, McGill University, 801 Sherbrooke Street West, Montreal, QC H3A 0B8, Canada
- FRQNT Centre for Green Chemistry and Catalysis, McGill University, Montreal, QC H3A 0B8, Canada
| | - Ehsan Hamzehpoor
- Department of Chemistry, McGill University, 801 Sherbrooke Street West, Montreal, QC H3A 0B8, Canada
| | - Jorge Ramos-Sánchez
- Department of Chemistry, McGill University, 801 Sherbrooke Street West, Montreal, QC H3A 0B8, Canada
| | - Jan Michael Salgado
- Department of Chemistry, McGill University, 801 Sherbrooke Street West, Montreal, QC H3A 0B8, Canada
- FRQNT Centre for Green Chemistry and Catalysis, McGill University, Montreal, QC H3A 0B8, Canada
| | - Gonzalo Cosa
- Department of Chemistry, McGill University, 801 Sherbrooke Street West, Montreal, QC H3A 0B8, Canada
- FRQNT Centre for Green Chemistry and Catalysis, McGill University, Montreal, QC H3A 0B8, Canada
| | - Dmytro F. Perepichka
- Department of Chemistry, McGill University, 801 Sherbrooke Street West, Montreal, QC H3A 0B8, Canada
| | - Chao-Jun Li
- Department of Chemistry, McGill University, 801 Sherbrooke Street West, Montreal, QC H3A 0B8, Canada
- FRQNT Centre for Green Chemistry and Catalysis, McGill University, Montreal, QC H3A 0B8, Canada
| |
Collapse
|
11
|
Zhang J, Deng Y, Mo N, Chen L. Advances in Radical Mediated 1,2-Aryl Migration Reactions of α, α-Diarylallyl Alcohols. CHINESE J ORG CHEM 2023. [DOI: 10.6023/cjoc202208028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/03/2023]
|
12
|
Lei Z, Wei S, Zhou L, Zhang Z, Lopez SE, Dolbier WR. Photocatalytic difluoromethylarylation of unactivated alkenes via a (hetero)aryl neophyl-like radical migration. Org Biomol Chem 2022; 20:5712-5715. [PMID: 35838250 DOI: 10.1039/d2ob00813k] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Photoredox-catalyzed addition of the difluoromethylradical to unactivated alkenes has been found to trigger neophyl-like aryl and heteroaryl migrations which allowed the construction of a diverse series of difluoromethyl ketones. The reaction featured mild reaction conditions and broad substrate scope.
Collapse
Affiliation(s)
- Ziran Lei
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, Department of Chemistry, Zhejiang Normal University, 688 Yingbin Road, Jinhua 321004, P. R. China.
| | - Siqi Wei
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, Department of Chemistry, Zhejiang Normal University, 688 Yingbin Road, Jinhua 321004, P. R. China.
| | - Liejin Zhou
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, Department of Chemistry, Zhejiang Normal University, 688 Yingbin Road, Jinhua 321004, P. R. China.
| | - Zuxiao Zhang
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, Department of Chemistry, Zhejiang Normal University, 688 Yingbin Road, Jinhua 321004, P. R. China. .,Department of Chemistry, University of Florida, Gainesville, FL 32611-7200, USA.
| | - Simon E Lopez
- Department of Chemistry, University of Florida, Gainesville, FL 32611-7200, USA.
| | - William R Dolbier
- Department of Chemistry, University of Florida, Gainesville, FL 32611-7200, USA.
| |
Collapse
|
13
|
Seastram AC, Hareram MD, Knight TMB, Morrill LC. Electrochemical alkene azidocyanation via 1,4-nitrile migration. Chem Commun (Camb) 2022; 58:8658-8661. [PMID: 35822449 DOI: 10.1039/d2cc02958h] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
An electrochemical method for the azidocyanation of alkenes via 1,4-nitrile migration has been developed. This organic oxidant free method is applicable across various alkene containing cyanohydrins, and provides access to a broad range of synthetically useful 1,2-azidonitriles (28 examples). This methodology was extended to an electrochemical alkene sulfonylcyanation procedure, as well as to access a trifunctionalized hexanenitrile from a malononitrile starting material. The orthogonal derivatization of the products was also demonstrated through chemoselective transformations.
Collapse
Affiliation(s)
- Alex C Seastram
- Cardiff Catalysis Institute, School of Chemistry, Cardiff University, Main Building, Park Place, Cardiff, CF10 3AT, UK.
| | - Mishra Deepak Hareram
- Cardiff Catalysis Institute, School of Chemistry, Cardiff University, Main Building, Park Place, Cardiff, CF10 3AT, UK.
| | - Thomas M B Knight
- Cardiff Catalysis Institute, School of Chemistry, Cardiff University, Main Building, Park Place, Cardiff, CF10 3AT, UK.
| | - Louis C Morrill
- Cardiff Catalysis Institute, School of Chemistry, Cardiff University, Main Building, Park Place, Cardiff, CF10 3AT, UK.
| |
Collapse
|
14
|
Remete AM, Nonn M, Novák TT, Csányi D, Kiss L. Recent progress in aryltrifluoromethylation reactions of carbon-carbon multiple bonds. Chem Asian J 2022; 17:e202200395. [PMID: 35584374 DOI: 10.1002/asia.202200395] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2022] [Revised: 05/18/2022] [Indexed: 11/06/2022]
Abstract
Due to the increasing relevance of fluorine-containing organic molecules in drug design, the synthesis of organofluorine compounds has gained high significance in synthetic organic chemistry. Trifluoromethylative difunctionalizations of carbon-carbon multiple bonds, with the simultaneous incorporation of a CF 3 group and another functional element, have considerable potential. Because of the high importance of carbon-carbon bond-forming reactions in organic synthesis, carbotrifluoromethylations and, in particular, aryltrifluoromethylations or heteroaryltrifluoromethylations are considered to be increasing fields of synthetic organic chemistry. The aim of the current review is to summarize recent developments of aryltrifluoromethylation or heteroaryltrifluoromethylation reactions.
Collapse
Affiliation(s)
- Attila M Remete
- University of Szeged: Szegedi Tudomanyegyetem, INSTITUTE OF PHARMACEUTICAL CHEMISTRY, HUNGARY
| | - Melinda Nonn
- HAS RCNS: Termeszettudomanyi Kutatokozpont, INSTITUTE OF MATERIALS AND ENVIRONMENTAL CHEMISTRY, HUNGARY
| | - Tamás T Novák
- HAS RCNS: Termeszettudomanyi Kutatokozpont, INSTITUTE OF ORGANIC CHEMISTRY, HUNGARY
| | - Dorottya Csányi
- HAS RCNS: Termeszettudomanyi Kutatokozpont, INSTITUTE OF ORGANIC CHEMISTRY, HUNGARY
| | - Lorand Kiss
- Research Centre for Natural Sciences: Termeszettudomanyi Kutatokozpont, Institute of Organic Chemistry, Magyar Tudósok krt, 1117, Budapest, HUNGARY
| |
Collapse
|
15
|
Kodo T, Nagao K, Ohmiya H. Organophotoredox-catalyzed semipinacol rearrangement via radical-polar crossover. Nat Commun 2022; 13:2684. [PMID: 35562383 PMCID: PMC9106707 DOI: 10.1038/s41467-022-30395-4] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2022] [Accepted: 04/29/2022] [Indexed: 01/10/2023] Open
Abstract
Over the past century, significant progress in semipinacol rearrangement involving 1,2-migration of α-hydroxy carbocations has been made in the areas of catalysis and total synthesis of natural products. To access the α-hydroxy carbocation intermediate, conventional acid-mediated or electrochemical approaches have been employed. However, the photochemical semipinacol rearrangement has been underdeveloped. Herein, we report the organophotoredox-catalyzed semipinacol rearrangement via radical-polar crossover (RPC). A phenothiazine-based organophotoredox catalyst facilitates the generation of an α-hydroxy non-benzylic alkyl radical followed by oxidation to the corresponding carbocation, which can be exploited to undergo the semipinacol rearrangement. As a result, the photochemical approach enables decarboxylative semipinacol rearrangement of β-hydroxycarboxylic acid derivatives and alkylative semipinacol type rearrangement of allyl alcohols with carbon electrophiles, producing α-quaternary or α-tertiary carbonyls bearing sp3-rich scaffolds.
Collapse
Affiliation(s)
- Taiga Kodo
- Division of Pharmaceutical Sciences, Graduate School of Medical Sciences, Kanazawa University, Kakuma-machi, Kanazawa, 920-1192, Japan
| | - Kazunori Nagao
- Division of Pharmaceutical Sciences, Graduate School of Medical Sciences, Kanazawa University, Kakuma-machi, Kanazawa, 920-1192, Japan.
| | - Hirohisa Ohmiya
- Institute for Chemical Research, Kyoto University, Gokasho, Uji, Kyoto, 611-0011, Japan.
- JST, PRESTO, 4-1-8 Honcho, Kawaguchi, Saitama, 332-0012, Japan.
| |
Collapse
|
16
|
Liu W, Hao L, Zhang J, Zhu T. Progress in the Electrochemical Reactions of Sulfonyl Compounds. CHEMSUSCHEM 2022; 15:e202102557. [PMID: 35174969 DOI: 10.1002/cssc.202102557] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/02/2021] [Revised: 02/13/2022] [Indexed: 06/14/2023]
Abstract
Electrosynthesis has recently attracted more and more attention due to its great potential to replace chemical oxidants or reductants in molecule-electrode electron transfer. Sulfonyl compounds such as sulfonyl hydrazides, sulfinic acids (and their salts), sulfonyl halides have been discovered as practical precursors of several radicals. As electrochemical redox reactions can provide green and efficient pathways for the activation of sulfonyl compounds, studies for electrosynthesis have rapidly increased. Several types of radicals can be generated from anodic oxidation or cathodic reduction of sulfonyl compounds and can initiate fluoroalkylation, benzenesulfonylation, cyclization or rearrangement. In this Review, we summarize the electrosynthesis developments involving sulfonyl compounds mainly in the last decade.
Collapse
Affiliation(s)
- Wangsheng Liu
- International Joint Research Center for Molecular Science, College of Chemistry and Environmental Engineering, College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen, 518060, P. R. China
| | - Lin Hao
- Division of Chemistry & Mathematical Science, School of Physical & Mathematical Sciences, Nanyang Technological University, Singapore, 637371, Singapore
| | - Junmin Zhang
- International Joint Research Center for Molecular Science, College of Chemistry and Environmental Engineering, College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen, 518060, P. R. China
| | - Tingshun Zhu
- School of Chemistry, Sun Yat-Sen University, Guangzhou, 510275, P. R. China
| |
Collapse
|
17
|
Sun X, Li K, Zhao S, Zha Z, Wang Z. Construction of chiral 3-alkenyl-3-substituted oxindoles by stereoselective direct alkenylation of isatin derivatives and 3-vinylindoles. CHINESE CHEM LETT 2022. [DOI: 10.1016/j.cclet.2022.04.032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
18
|
Du J, Gao D, Zhang D, Lin X, Liu C, Zhu N, Yang Z, He W, Fang Z, Guo K. Electrochemical Oxidative
ortho
‐Selective Trifluoromethylation of
N
‐Arylamides. ChemElectroChem 2022. [DOI: 10.1002/celc.202101411] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Jinze Du
- College of Biotechnology and Pharmaceutical Engineering Nanjing Tech University 30 Puzhu Rd S. Nanjing 211816 P. R. China
| | - Di Gao
- College of Biotechnology and Pharmaceutical Engineering Nanjing Tech University 30 Puzhu Rd S. Nanjing 211816 P. R. China
| | - Dong Zhang
- College of Biotechnology and Pharmaceutical Engineering Nanjing Tech University 30 Puzhu Rd S. Nanjing 211816 P. R. China
| | - Xinxin Lin
- College of Biotechnology and Pharmaceutical Engineering Nanjing Tech University 30 Puzhu Rd S. Nanjing 211816 P. R. China
| | - Chengkou Liu
- College of Biotechnology and Pharmaceutical Engineering Nanjing Tech University 30 Puzhu Rd S. Nanjing 211816 P. R. China
| | - Ning Zhu
- College of Biotechnology and Pharmaceutical Engineering Nanjing Tech University 30 Puzhu Rd S. Nanjing 211816 P. R. China
| | - Zhao Yang
- College of Engineering China Pharmaceutical University 24 Tongjiaxiang Nanjing 210003 P. R. China
| | - Wei He
- College of Biotechnology and Pharmaceutical Engineering Nanjing Tech University 30 Puzhu Rd S. Nanjing 211816 P. R. China
| | - Zheng Fang
- College of Biotechnology and Pharmaceutical Engineering Nanjing Tech University 30 Puzhu Rd S. Nanjing 211816 P. R. China
- State Key Laboratory of Materials-Oriented Chemical Engineering Nanjing Tech University 30 Puzhu Rd S. Nanjing 211816 P. R. China
| | - Kai Guo
- College of Biotechnology and Pharmaceutical Engineering Nanjing Tech University 30 Puzhu Rd S. Nanjing 211816 P. R. China
- State Key Laboratory of Materials-Oriented Chemical Engineering Nanjing Tech University 30 Puzhu Rd S. Nanjing 211816 P. R. China
| |
Collapse
|
19
|
Liu L, Zhang W, Xu C, He J, Xu Z, Yang Z, Ling F, Zhong W. Electrosynthesis of CF
3
‐Substituted Polycyclic Quinazolinones via Cascade Trifluoromethylation/Cyclization of Unactivated Alkene. Adv Synth Catal 2022. [DOI: 10.1002/adsc.202101422] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Affiliation(s)
- Lei Liu
- College of Pharmaceutical Science Zhejiang University of Technology Hangzhou 310014 People's Republic of China
| | - Wangqin Zhang
- College of Pharmaceutical Science Zhejiang University of Technology Hangzhou 310014 People's Republic of China
| | - Chao Xu
- College of Pharmaceutical Science Zhejiang University of Technology Hangzhou 310014 People's Republic of China
| | - Jiaying He
- College of Pharmaceutical Science Zhejiang University of Technology Hangzhou 310014 People's Republic of China
| | - Zhenhui Xu
- College of Pharmaceutical Science Zhejiang University of Technology Hangzhou 310014 People's Republic of China
| | - Zehui Yang
- College of Pharmaceutical Science Zhejiang University of Technology Hangzhou 310014 People's Republic of China
| | - Fei Ling
- College of Pharmaceutical Science Zhejiang University of Technology Hangzhou 310014 People's Republic of China
| | - Weihui Zhong
- College of Pharmaceutical Science Zhejiang University of Technology Hangzhou 310014 People's Republic of China
| |
Collapse
|
20
|
Tay NES, Lehnherr D, Rovis T. Photons or Electrons? A Critical Comparison of Electrochemistry and Photoredox Catalysis for Organic Synthesis. Chem Rev 2022; 122:2487-2649. [PMID: 34751568 PMCID: PMC10021920 DOI: 10.1021/acs.chemrev.1c00384] [Citation(s) in RCA: 181] [Impact Index Per Article: 60.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Redox processes are at the heart of synthetic methods that rely on either electrochemistry or photoredox catalysis, but how do electrochemistry and photoredox catalysis compare? Both approaches provide access to high energy intermediates (e.g., radicals) that enable bond formations not constrained by the rules of ionic or 2 electron (e) mechanisms. Instead, they enable 1e mechanisms capable of bypassing electronic or steric limitations and protecting group requirements, thus enabling synthetic chemists to disconnect molecules in new and different ways. However, while providing access to similar intermediates, electrochemistry and photoredox catalysis differ in several physical chemistry principles. Understanding those differences can be key to designing new transformations and forging new bond disconnections. This review aims to highlight these differences and similarities between electrochemistry and photoredox catalysis by comparing their underlying physical chemistry principles and describing their impact on electrochemical and photochemical methods.
Collapse
Affiliation(s)
- Nicholas E. S. Tay
- Department of Chemistry, Columbia University, New York, New York, 10027, United States
| | - Dan Lehnherr
- Process Research and Development, Merck & Co., Inc., Rahway, New Jersey 07065, United States
| | - Tomislav Rovis
- Department of Chemistry, Columbia University, New York, New York, 10027, United States
| |
Collapse
|
21
|
Gu Q, Cheng Z, Zeng X. Electrochemical Oxidative Trifluoromethylation of α-Oxoketene Ketene Dithioacetals with CF 3SO 2Na. CHINESE J ORG CHEM 2022. [DOI: 10.6023/cjoc202112024] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
22
|
Zhang K, Wang Y, He C, Zhou Y, Wang D, Hu M, Duan XH, Liu L. Halogen bond promoted aryl migration of allylic alcohols under visible light irradiation. Org Chem Front 2022. [DOI: 10.1039/d2qo01035f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A simple and catalyst-free radical addition/1,2-aryl migration cascade process of ally alcohol driven by halogen bond was developed under visible light irradiation, featuring mild conditions, practical procedures, and broad substrate scope.
Collapse
Affiliation(s)
- Keyuan Zhang
- School of Chemistry, Xi'an Key Laboratory of Sustainable Energy Material Chemistry, and MOE Key Laboratory for Nonequilibrium Synthesis and Modulation of Condensed Matter, Xi'an Jiaotong University, Xi'an 710049, China
| | - Yulong Wang
- School of Chemistry, Xi'an Key Laboratory of Sustainable Energy Material Chemistry, and MOE Key Laboratory for Nonequilibrium Synthesis and Modulation of Condensed Matter, Xi'an Jiaotong University, Xi'an 710049, China
| | - Chonglong He
- School of Chemistry, Xi'an Key Laboratory of Sustainable Energy Material Chemistry, and MOE Key Laboratory for Nonequilibrium Synthesis and Modulation of Condensed Matter, Xi'an Jiaotong University, Xi'an 710049, China
| | - Youkang Zhou
- School of Chemistry, Xi'an Key Laboratory of Sustainable Energy Material Chemistry, and MOE Key Laboratory for Nonequilibrium Synthesis and Modulation of Condensed Matter, Xi'an Jiaotong University, Xi'an 710049, China
| | - Danning Wang
- School of Chemistry, Xi'an Key Laboratory of Sustainable Energy Material Chemistry, and MOE Key Laboratory for Nonequilibrium Synthesis and Modulation of Condensed Matter, Xi'an Jiaotong University, Xi'an 710049, China
| | - Mingyou Hu
- School of Chemistry, Xi'an Key Laboratory of Sustainable Energy Material Chemistry, and MOE Key Laboratory for Nonequilibrium Synthesis and Modulation of Condensed Matter, Xi'an Jiaotong University, Xi'an 710049, China
| | - Xin-Hua Duan
- School of Chemistry, Xi'an Key Laboratory of Sustainable Energy Material Chemistry, and MOE Key Laboratory for Nonequilibrium Synthesis and Modulation of Condensed Matter, Xi'an Jiaotong University, Xi'an 710049, China
| | - Le Liu
- School of Chemistry, Xi'an Key Laboratory of Sustainable Energy Material Chemistry, and MOE Key Laboratory for Nonequilibrium Synthesis and Modulation of Condensed Matter, Xi'an Jiaotong University, Xi'an 710049, China
| |
Collapse
|
23
|
Zhang K, Liang T, Wang Y, He C, Hu M, Duan XH, Liu L. Oxidative thiocyanation of allylic alcohols: an easy access to allylic thiocyanates with K2S2O8 and NH4SCN. Org Chem Front 2022. [DOI: 10.1039/d1qo01710a] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
A practical method for the synthesis of allylic thioacyanates from allylic alcohols was disclosed employing K2S2O8 as the oxidant and NH4SCN as the thiocyanate source.
Collapse
Affiliation(s)
- Keyuan Zhang
- School of Chemistry, Xi'an Key Laboratory of Sustainable Energy Materials Chemistry, MOE Key Laboratory for Nonequilibrium Synthesis and Modulation of Condensed Matter, Xi'an Jiaotong University, Xi'an 710049, China
| | - Tianbing Liang
- School of Chemistry, Xi'an Key Laboratory of Sustainable Energy Materials Chemistry, MOE Key Laboratory for Nonequilibrium Synthesis and Modulation of Condensed Matter, Xi'an Jiaotong University, Xi'an 710049, China
| | - Yulong Wang
- School of Chemistry, Xi'an Key Laboratory of Sustainable Energy Materials Chemistry, MOE Key Laboratory for Nonequilibrium Synthesis and Modulation of Condensed Matter, Xi'an Jiaotong University, Xi'an 710049, China
| | - Chonglong He
- School of Chemistry, Xi'an Key Laboratory of Sustainable Energy Materials Chemistry, MOE Key Laboratory for Nonequilibrium Synthesis and Modulation of Condensed Matter, Xi'an Jiaotong University, Xi'an 710049, China
| | - Mingyou Hu
- School of Chemistry, Xi'an Key Laboratory of Sustainable Energy Materials Chemistry, MOE Key Laboratory for Nonequilibrium Synthesis and Modulation of Condensed Matter, Xi'an Jiaotong University, Xi'an 710049, China
| | - Xin-Hua Duan
- School of Chemistry, Xi'an Key Laboratory of Sustainable Energy Materials Chemistry, MOE Key Laboratory for Nonequilibrium Synthesis and Modulation of Condensed Matter, Xi'an Jiaotong University, Xi'an 710049, China
| | - Le Liu
- School of Chemistry, Xi'an Key Laboratory of Sustainable Energy Materials Chemistry, MOE Key Laboratory for Nonequilibrium Synthesis and Modulation of Condensed Matter, Xi'an Jiaotong University, Xi'an 710049, China
| |
Collapse
|
24
|
Guo X, Wang Y, Zhao Z, Wang Q, Zuo J, Wang L. Electrochemical Oxidative C—H Trifluoromethylation of Quinoxalin-2(1 H)-ones and the Performance Evaluation via Electro-descriptors. CHINESE J ORG CHEM 2022. [DOI: 10.6023/cjoc202108023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
25
|
Zou Z, Li H, Huang M, Zhang W, Zhi S, Wang Y, Pan Y. Electrochemical-Promoted Nickel-Catalyzed Oxidative Fluoroalkylation of Aryl Iodides. Org Lett 2021; 23:8252-8256. [PMID: 34645266 DOI: 10.1021/acs.orglett.1c02997] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
This work describes a general strategy for metal-catalyzed cross-coupling of fluoroalkyl radicals with aryl halides under electrochemical conditions. The contradiction between anodic oxidation of fluoroalkyl sulfinates and cathodic reduction of low-valent nickel catalysts can be well addressed by paired electrolysis, allowing for direct introduction of fluorinated functionalities into aromatic systems.
Collapse
Affiliation(s)
- Zhenlei Zou
- State Key Laboratory of Coordination Chemistry, Jiangsu Key Laboratory of Advanced Organic Materials, Collaborative Innovation Center of Advanced Microstructures, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Heyin Li
- State Key Laboratory of Coordination Chemistry, Jiangsu Key Laboratory of Advanced Organic Materials, Collaborative Innovation Center of Advanced Microstructures, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Mengjun Huang
- State Key Laboratory of Coordination Chemistry, Jiangsu Key Laboratory of Advanced Organic Materials, Collaborative Innovation Center of Advanced Microstructures, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Weigang Zhang
- State Key Laboratory of Coordination Chemistry, Jiangsu Key Laboratory of Advanced Organic Materials, Collaborative Innovation Center of Advanced Microstructures, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China.,Yuxiu Postdoctoral School, Nanjing University, Nanjing 210023, China
| | - Sanjun Zhi
- Jiangsu Key Laboratory for the Chemistry of Low-Dimensional Materials, Huaiyin Normal University, Huaian 223300, China
| | - Yi Wang
- State Key Laboratory of Coordination Chemistry, Jiangsu Key Laboratory of Advanced Organic Materials, Collaborative Innovation Center of Advanced Microstructures, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Yi Pan
- State Key Laboratory of Coordination Chemistry, Jiangsu Key Laboratory of Advanced Organic Materials, Collaborative Innovation Center of Advanced Microstructures, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| |
Collapse
|
26
|
Wu X, Ma Z, Feng T, Zhu C. Radical-mediated rearrangements: past, present, and future. Chem Soc Rev 2021; 50:11577-11613. [PMID: 34661216 DOI: 10.1039/d1cs00529d] [Citation(s) in RCA: 127] [Impact Index Per Article: 31.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Rearrangement reactions, one of the most significant transformations in organic chemistry, play an irreplaceable role in improving synthetic efficiency and molecular complexity. Concomitant cleavage and reconstruction of chemical bonds can display the great artistry and the glamour of synthetic chemistry. Over the past century, ionic rearrangement reactions, in particular those involving cationic pathways, have represented most of the research. Alongside the renaissance of radical chemistry, radical-mediated rearrangements have recently seen a rapid increase of attention from the chemical community. Many new radical rearrangements that extensively reveal the migratory behaviour of functional groups have been unveiled in the last decade. This Review provides a comprehensive perspective on the area from the past to present achievements, and brings up the prospects that may inspire colleagues to develop more useful synthetic tools based on radical rearrangements.
Collapse
Affiliation(s)
- Xinxin Wu
- Key Laboratory of Organic Synthesis of Jiangsu Province, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, 199 Ren-Ai Road, Suzhou, Jiangsu 215123, China.
| | - Zhigang Ma
- Key Laboratory of Organic Synthesis of Jiangsu Province, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, 199 Ren-Ai Road, Suzhou, Jiangsu 215123, China.
| | - Tingting Feng
- Key Laboratory of Organic Synthesis of Jiangsu Province, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, 199 Ren-Ai Road, Suzhou, Jiangsu 215123, China.
| | - Chen Zhu
- Key Laboratory of Organic Synthesis of Jiangsu Province, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, 199 Ren-Ai Road, Suzhou, Jiangsu 215123, China. .,Key Laboratory of Synthetic Chemistry of Natural Substances, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, 345 Lingling Road, Shanghai 200032, China
| |
Collapse
|
27
|
Thadathil DA, Varghese A, Radhakrishnan KV. The Renaissance of Electro‐Organic Synthesis for the Difunctionalization of Alkenes and Alkynes: A Sustainable Approach. ASIAN J ORG CHEM 2021. [DOI: 10.1002/ajoc.202100447] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Affiliation(s)
- Ditto Abraham Thadathil
- Department of Chemistry CHRIST (Deemed to be University) Hosur Road Bengaluru, Karnataka 560029 India
| | - Anitha Varghese
- Department of Chemistry CHRIST (Deemed to be University) Hosur Road Bengaluru, Karnataka 560029 India
| | - Kokkuvayil Vasu Radhakrishnan
- Chemical Sciences and Technology Division CSIR-National Institute for Interdisciplinary Science and Technology (CSIR-NIIST) Thiruvananthapuram 695019 India
| |
Collapse
|
28
|
Zhu Z, Chen X, Liu S, Zhang J, Shen X. Synthesis of 1‐Tri(di)fluoromethyl 1,4‐Diketones Enabled by Radical Brook Rearrangement. European J Org Chem 2021. [DOI: 10.1002/ejoc.202100860] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- Zhihong Zhu
- The Institute for Advanced Studies Engineering Research Center of Organosilicon Compounds & Materials Ministry of Education Wuhan University Wuhan 430072 China
| | - Xiang Chen
- The Institute for Advanced Studies Engineering Research Center of Organosilicon Compounds & Materials Ministry of Education Wuhan University Wuhan 430072 China
| | - Shanshan Liu
- The Institute for Advanced Studies Engineering Research Center of Organosilicon Compounds & Materials Ministry of Education Wuhan University Wuhan 430072 China
| | - Jianjun Zhang
- State Key Laboratory of Fluorinated Greenhouse Gases Replacement and Control Treatment Zhejiang Research Institute of Chemical Industry Hangzhou 310023 China
| | - Xiao Shen
- The Institute for Advanced Studies Engineering Research Center of Organosilicon Compounds & Materials Ministry of Education Wuhan University Wuhan 430072 China
- Shenzhen Research Institute of Wuhan University Wuhan University Shenzhen 518057 China
| |
Collapse
|
29
|
Guo Y, Wang R, Song H, Liu Y, Wang Q. Electrochemical trifluoromethylation/cyclization for the synthesis of isoquinoline-1,3-diones and oxindoles. Chem Commun (Camb) 2021; 57:8284-8287. [PMID: 34328164 DOI: 10.1039/d1cc03389a] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Herein, we describe a protocol for electrochemical cathode reduction to generate trifluoromethyl radicals. The trifluoromethylation reagent (IMDN-SO2CF3) used in this strategy is inexpensive and easy to obtain, and the reaction can be conducted efficiently without the addition of additional redox reagents. Using this strategy, we achieved electrochemical trifluoromethylation/cyclization for the synthesis of isoquinoline-1,3-diones and oxindoles. This protocol has good functional group tolerance and a broad substrate scope.
Collapse
Affiliation(s)
- Yuanqiang Guo
- State Key Laboratory of Elemento-Organic Chemistry, Research Institute of Elemento-Organic Chemistry, College of Chemistry, Frontiers Science Center for New Organic Matter, Nankai University, Tianjin 300071, People's Republic of China.
| | | | | | | | | |
Collapse
|
30
|
Kisukuri CM, Fernandes VA, Delgado JAC, Häring AP, Paixão MW, Waldvogel SR. Electrochemical Installation of CFH 2 -, CF 2 H-, CF 3 -, and Perfluoroalkyl Groups into Small Organic Molecules. CHEM REC 2021; 21:2502-2525. [PMID: 34151507 DOI: 10.1002/tcr.202100065] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2021] [Revised: 04/19/2021] [Accepted: 04/19/2021] [Indexed: 11/11/2022]
Abstract
Electrosynthesis can be considered a powerful and sustainable methodology for the synthesis of small organic molecules. Due to its intrinsic ability to generate highly reactive species under mild conditions by anodic oxidation or cathodic reduction, electrosynthesis is particularly interesting for otherwise challenging transformations. One such challenge is the installation of fluorinated alkyl groups, which has gained significant attention in medicinal chemistry and material science due to their unique physicochemical features. Unsurprisingly, several electrochemical fluoroalkylation methods have been established. In this review, we survey recent developments and established methods in the field of electrochemical mono-, di-, and trifluoromethylation, and perfluoroalkylation of small organic molecules.
Collapse
Affiliation(s)
- Camila M Kisukuri
- Center of Excellence for Research in Sustainable Chemistry (CERSusChem), Department of Chemistry, Federal University of São Carlos - UFSCar São Carlos, São Paulo, Brazil, -13565-905
| | - Vitor A Fernandes
- Center of Excellence for Research in Sustainable Chemistry (CERSusChem), Department of Chemistry, Federal University of São Carlos - UFSCar São Carlos, São Paulo, Brazil, -13565-905
| | - José A C Delgado
- Center of Excellence for Research in Sustainable Chemistry (CERSusChem), Department of Chemistry, Federal University of São Carlos - UFSCar São Carlos, São Paulo, Brazil, -13565-905
| | - Andreas P Häring
- Department of Chemistry, Johannes Gutenberg University Mainz, Duesbergweg 10-14, 55128, Mainz, Germany
| | - Márcio W Paixão
- Center of Excellence for Research in Sustainable Chemistry (CERSusChem), Department of Chemistry, Federal University of São Carlos - UFSCar São Carlos, São Paulo, Brazil, -13565-905
| | - Siegfried R Waldvogel
- Department of Chemistry, Johannes Gutenberg University Mainz, Duesbergweg 10-14, 55128, Mainz, Germany
| |
Collapse
|
31
|
Xing Y, Li C, Meng J, Zhang Z, Wang X, Wang Z, Ye Y, Sun K. Recent Advances in the Synthetic Use of Migration Reactions of Allyl Alcohols. Adv Synth Catal 2021. [DOI: 10.1002/adsc.202100446] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Affiliation(s)
- Yun Xing
- College of Chemistry and Chemical Engineering Anyang Normal University Anyang 455000 People's Republic of China
- College of Chemistry and Chemical Engineering Yantai University Yantai 264005 Shandong People's Republic of China
| | - Chen Li
- School of Pharmacy Harbin University of Commerce Harbin 150076 People's Republic of China
| | - Jianping Meng
- School of Pharmacy Harbin University of Commerce Harbin 150076 People's Republic of China
| | - Zhen Zhang
- College of Chemistry and Chemical Engineering Yantai University Yantai 264005 Shandong People's Republic of China
| | - Xin Wang
- College of Chemistry and Chemical Engineering Yantai University Yantai 264005 Shandong People's Republic of China
| | - Zhichuan Wang
- School of Pharmacy Harbin University of Commerce Harbin 150076 People's Republic of China
| | - Yong Ye
- College of Chemistry Zhengzhou University Zhengzhou 450001 People's Republic of China
| | - Kai Sun
- College of Chemistry and Chemical Engineering Yantai University Yantai 264005 Shandong People's Republic of China
| |
Collapse
|
32
|
Difluoroalkylation/1,2-aryl migration of allylic alcohols under transition metal-free conditions. Tetrahedron Lett 2021. [DOI: 10.1016/j.tetlet.2021.153002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
33
|
Gregson CHU, Noble A, Aggarwal VK. Divergent, Strain-Release Reactions of Azabicyclo[1.1.0]butyl Carbinols: Semipinacol or Spiroepoxy Azetidine Formation. Angew Chem Int Ed Engl 2021; 60:7360-7365. [PMID: 33555105 PMCID: PMC8247891 DOI: 10.1002/anie.202100583] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2021] [Indexed: 12/17/2022]
Abstract
The azetidine moiety is a privileged motif in medicinal chemistry and new methods that access them efficiently are highly sought after. Towards this goal, we have found that azabicyclo[1.1.0]butyl carbinols, readily obtained from the highly strained azabicyclo[1.1.0]butane (ABB), can undergo divergent strain-release reactions upon N-activation. Treatment with trifluoroacetic anhydride or triflic anhydride triggered a semipinacol rearrangement to give keto 1,3,3-substituted azetidines. More than 20 examples were explored, enabling us to evaluate selectivity and the migratory aptitude of different groups. Alternatively, treatment of the same alcohols with benzyl chloroformate in the presence of NaI led to iodohydrin intermediates which gave spiroepoxy azetidines upon treatment with base. The electronic nature of the activating agent dictates which pathway operates.
Collapse
Affiliation(s)
| | - Adam Noble
- School of ChemistryUniversity of BristolCantock's CloseBristolBS8 1TSUK
| | | |
Collapse
|
34
|
Saha D, Taily IM, Kumar R, Banerjee P. Electrochemical rearrangement protocols towards the construction of diverse molecular frameworks. Chem Commun (Camb) 2021; 57:2464-2478. [PMID: 33616597 DOI: 10.1039/d1cc00116g] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Rearrangement reactions constitute a critical facet of synthetic organic chemistry and demonstrate an attractive way to take advantage of existing structures to access various important molecular frameworks. Electroorganic chemistry has emerged as an environmentally benign approach to carry out organic transformations by directly employing an electric current and avoids the use of stoichiometric chemical oxidants. The last few years have witnessed a resurgence of electroorganic chemistry that has promoted a renaissance of interest in the development of novel redox electroorganic transformations. This review manifests the evolution of electrosynthesis in the area of rearrangement chemistry and covers the achievements in the field of migration, ring expansion, and rearrangements along with the mechanisms involved.
Collapse
Affiliation(s)
- Debarshi Saha
- Department of Chemistry, Indian Institute of Technology Ropar, Nangal Road, Rupnagar, Punjab-140001, India.
| | - Irshad Maajid Taily
- Department of Chemistry, Indian Institute of Technology Ropar, Nangal Road, Rupnagar, Punjab-140001, India.
| | - Rakesh Kumar
- Department of Chemistry, Indian Institute of Technology Ropar, Nangal Road, Rupnagar, Punjab-140001, India.
| | - Prabal Banerjee
- Department of Chemistry, Indian Institute of Technology Ropar, Nangal Road, Rupnagar, Punjab-140001, India.
| |
Collapse
|
35
|
Gregson CHU, Noble A, Aggarwal VK. Divergent, Strain‐Release Reactions of Azabicyclo[1.1.0]butyl Carbinols: Semipinacol or Spiroepoxy Azetidine Formation. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202100583] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
| | - Adam Noble
- School of Chemistry University of Bristol Cantock's Close Bristol BS8 1TS UK
| | | |
Collapse
|
36
|
Wang D, Xu X, Zhang J, Zhao Y. Ligand Promoted Olefination of Anilides for Indirectly Introducing Fluorinated Functional Groups via Palladium Catalyst. J Org Chem 2021; 86:2696-2705. [PMID: 33502195 DOI: 10.1021/acs.joc.0c02701] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
We report a palladium-catalyzed, ligand promoted, C-H fluorine-containing olefination of anilides with 4-bromo-3,3,4,4-tetrafluorobutene as the fluorinated reagent, which has a potential transformation into other compounds due to its -CF2CF2Br functional group. -CF2CF2H was obtained by using the mild reducing agent sodium borohydride. Bioactive compounds such as aminoglutethimide derivative and propham were well-tolerated in this reaction, both of which highlight the synthetic importance of this method.
Collapse
Affiliation(s)
- Dongjie Wang
- College of Energy, Soochow Institute for Energy and Materials Innovations, Soochow University, Suzhou 215006, P.R. China.,Key Laboratory of Organic Synthesis of Jiangsu Province, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, P.R. China
| | - Xu Xu
- College of Energy, Soochow Institute for Energy and Materials Innovations, Soochow University, Suzhou 215006, P.R. China.,Key Laboratory of Organic Synthesis of Jiangsu Province, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, P.R. China
| | - Jingyu Zhang
- College of Energy, Soochow Institute for Energy and Materials Innovations, Soochow University, Suzhou 215006, P.R. China.,School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang 453000, P.R. China
| | - Yingsheng Zhao
- Key Laboratory of Organic Synthesis of Jiangsu Province, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, P.R. China.,School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang 453000, P.R. China
| |
Collapse
|
37
|
Li Z, Wang M, Shi Z. Radical Addition Enables 1,2-Aryl Migration from a Vinyl-Substituted All-Carbon Quaternary Center. Angew Chem Int Ed Engl 2021; 60:186-190. [PMID: 32914547 DOI: 10.1002/anie.202010839] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2020] [Revised: 09/03/2020] [Indexed: 12/19/2022]
Abstract
An efficient method for photocatalytic perfluoroalkylation of vinyl-substituted all-carbon quaternary centers involving 1,2-aryl migration has been developed. The rearrangement reactions use fac-Ir(ppy)3 , visible light and commercially available fluoroalkyl halides and can generate valuable multisubstituted perfluoroalkylated compounds in a single step that would be challenging to prepare by other methods. Mechanistically, the photoinduced alkyl radical addition to an alkene leads to the migration of a vicinal aryl substituent from its adjacent all-carbon quaternary center with the concomitant generation of a C-radical bearing two electron-withdrawing groups that is further reduced by a hydrogen donor to complete the domino sequence.
Collapse
Affiliation(s)
- Zexian Li
- State Key Laboratory of Coordination Chemistry, Chemistry and Biomedicine Innovation Center (ChemBIC), School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210093, China
| | - Minyan Wang
- State Key Laboratory of Coordination Chemistry, Chemistry and Biomedicine Innovation Center (ChemBIC), School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210093, China
| | - Zhuangzhi Shi
- State Key Laboratory of Coordination Chemistry, Chemistry and Biomedicine Innovation Center (ChemBIC), School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210093, China
| |
Collapse
|
38
|
Zou Z, Zhang W, Wang Y, Pan Y. Recent advances in electrochemically driven radical fluorination and fluoroalkylation. Org Chem Front 2021. [DOI: 10.1039/d1qo00054c] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Electrochemical fluorination (ECF) refers to the introduction of fluorine-containing moieties into organic molecules under electrochemical conditions.
Collapse
Affiliation(s)
- Zhenlei Zou
- State Key Laboratory of Coordination Chemistry
- Jiangsu Key Laboratory of Advanced Organic Materials
- School of Chemistry and Chemical Engineering
- Nanjing University
- Nanjing 210023
| | - Weigang Zhang
- State Key Laboratory of Coordination Chemistry
- Jiangsu Key Laboratory of Advanced Organic Materials
- School of Chemistry and Chemical Engineering
- Nanjing University
- Nanjing 210023
| | - Yi Wang
- State Key Laboratory of Coordination Chemistry
- Jiangsu Key Laboratory of Advanced Organic Materials
- School of Chemistry and Chemical Engineering
- Nanjing University
- Nanjing 210023
| | - Yi Pan
- State Key Laboratory of Coordination Chemistry
- Jiangsu Key Laboratory of Advanced Organic Materials
- School of Chemistry and Chemical Engineering
- Nanjing University
- Nanjing 210023
| |
Collapse
|
39
|
Qiu Y, Wei F, Ye L, Zhao M. Advances in Trifluoromethylation-Promoted Functional Group Migration of Alkenes. CHINESE J ORG CHEM 2021. [DOI: 10.6023/cjoc202009036] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
40
|
Claraz A, Djian A, Masson G. Electrochemical tandem trifluoromethylation of allylamines/formal (3 + 2)-cycloaddition for the rapid access to CF3-containing imidazolines and oxazolidines. Org Chem Front 2021. [DOI: 10.1039/d0qo01307b] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
A straightforward and environmentally friendly synthesis of CF3-containing imidazolines and oxazolidines has been developed through an electrochemical three-component reaction among allylamines, the Langlois reagent, and nitrile or carbonyl compounds.
Collapse
Affiliation(s)
- Aurélie Claraz
- Institut de Chimie des Substances Naturelles
- Université Paris Saclay
- CNRS
- UPR2301
- 91198 Gif-sur-Yvette cedex
| | - Aurélie Djian
- Institut de Chimie des Substances Naturelles
- Université Paris Saclay
- CNRS
- UPR2301
- 91198 Gif-sur-Yvette cedex
| | - Géraldine Masson
- Institut de Chimie des Substances Naturelles
- Université Paris Saclay
- CNRS
- UPR2301
- 91198 Gif-sur-Yvette cedex
| |
Collapse
|
41
|
Zhang P, Zhang T, Cai P, Jiang B, Tu S. Study on tert-Butyl Radical-Initiated 1,2-Alkynyl Migration. CHINESE J ORG CHEM 2021. [DOI: 10.6023/cjoc202101042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
42
|
John SE, Gulati S, Shankaraiah N. Recent advances in multi-component reactions and their mechanistic insights: a triennium review. Org Chem Front 2021. [DOI: 10.1039/d0qo01480j] [Citation(s) in RCA: 49] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
This review summarizes the recent developments in MCRs, incorporating different strategies along with their mechanistic aspects.
Collapse
Affiliation(s)
- Stephy Elza John
- Department of Medicinal Chemistry
- National Institute of Pharmaceutical Education and Research (NIPER)
- Hyderabad – 500 037
- India
| | - Shivani Gulati
- Department of Medicinal Chemistry
- National Institute of Pharmaceutical Education and Research (NIPER)
- Hyderabad – 500 037
- India
| | - Nagula Shankaraiah
- Department of Medicinal Chemistry
- National Institute of Pharmaceutical Education and Research (NIPER)
- Hyderabad – 500 037
- India
| |
Collapse
|
43
|
Guo G, Yuan Y, Wan S, Cao X, Sun Y, Huo C. K 2S 2O 8 promoted dehydrative cross-coupling between α,α-disubstituted allylic alcohols and thiophenols/thiols. Org Chem Front 2021. [DOI: 10.1039/d1qo00148e] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
K2S2O8 promoted dehydrative cross-coupling between α,α-disubstituted allylic alcohols and thiophenols/thiols is demonstrated for the first time, leading to a wide range of allyl sulfides in good to high yields.
Collapse
Affiliation(s)
- Guozhe Guo
- Gansu International Scientific and Technological Cooperation Base of Water-Retention Chemical Functional Materials
- College of Chemistry and Chemical Engineering
- Northwest Normal University
- Lanzhou
- China
| | - Yong Yuan
- Gansu International Scientific and Technological Cooperation Base of Water-Retention Chemical Functional Materials
- College of Chemistry and Chemical Engineering
- Northwest Normal University
- Lanzhou
- China
| | - Shuocheng Wan
- Gansu International Scientific and Technological Cooperation Base of Water-Retention Chemical Functional Materials
- College of Chemistry and Chemical Engineering
- Northwest Normal University
- Lanzhou
- China
| | - Xuehui Cao
- Gansu International Scientific and Technological Cooperation Base of Water-Retention Chemical Functional Materials
- College of Chemistry and Chemical Engineering
- Northwest Normal University
- Lanzhou
- China
| | - Yali Sun
- Gansu International Scientific and Technological Cooperation Base of Water-Retention Chemical Functional Materials
- College of Chemistry and Chemical Engineering
- Northwest Normal University
- Lanzhou
- China
| | - Congde Huo
- Gansu International Scientific and Technological Cooperation Base of Water-Retention Chemical Functional Materials
- College of Chemistry and Chemical Engineering
- Northwest Normal University
- Lanzhou
- China
| |
Collapse
|
44
|
Affiliation(s)
- Rasmi P. Bhaskaran
- Department of Chemistry National Institute of Technology Karnataka (NITK) Mangalore, Surathkal 575025 India
| | - Beneesh P. Babu
- Department of Chemistry National Institute of Technology Karnataka (NITK) Mangalore, Surathkal 575025 India
| |
Collapse
|
45
|
Li Z, Wang M, Shi Z. Radical Addition Enables 1,2‐Aryl Migration from a Vinyl‐Substituted All‐Carbon Quaternary Center. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.202010839] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Affiliation(s)
- Zexian Li
- State Key Laboratory of Coordination Chemistry Chemistry and Biomedicine Innovation Center (ChemBIC) School of Chemistry and Chemical Engineering Nanjing University Nanjing 210093 China
| | - Minyan Wang
- State Key Laboratory of Coordination Chemistry Chemistry and Biomedicine Innovation Center (ChemBIC) School of Chemistry and Chemical Engineering Nanjing University Nanjing 210093 China
| | - Zhuangzhi Shi
- State Key Laboratory of Coordination Chemistry Chemistry and Biomedicine Innovation Center (ChemBIC) School of Chemistry and Chemical Engineering Nanjing University Nanjing 210093 China
| |
Collapse
|
46
|
Affiliation(s)
- Shi-Hui Shi
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China
- Shaanxi Key Laboratory of Chemical Reaction Engineering, College of Chemistry and Chemical Engineering, Yan’an University, Yan’an 716000, Shaanxi, China
| | - Yujie Liang
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China
| | - Ning Jiao
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China
- State Key Laboratory of Organometallic Chemistry, Chinese Academy of Sciences, Shanghai 200032, China
| |
Collapse
|
47
|
Zhang Y, Ren Z, Liu Y, Wang Z, Li Z. Fluoroalkylation of Allylic Alcohols with Concomitant (Hetero)aryl Migration: Access to Fluoroalkylated Ketones and Evaluation of Antifungal Action against
Magnaporthe grisea. European J Org Chem 2020. [DOI: 10.1002/ejoc.202000782] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Affiliation(s)
- Yanhu Zhang
- Department of Applied Chemistry College of Materials and Energy South China Agricultural University 510642 Guangzhou China
| | - Ziyang Ren
- Department of Applied Chemistry College of Materials and Energy South China Agricultural University 510642 Guangzhou China
| | - Yun‐Lin Liu
- School of Chemistry and Chemical Engineering Guangzhou University 230 Wai Huan Xi Road 510006 Guangzhou China
| | - Zhentao Wang
- College of Chemistry and Material Science Shandong Agricultural University 271018 Taian Shandong China
| | - Zhaodong Li
- Department of Applied Chemistry College of Materials and Energy South China Agricultural University 510642 Guangzhou China
| |
Collapse
|
48
|
Metal-free electrochemical oxidative trifluoromethylation/C(sp2) H functionalization of quinolinones. Tetrahedron Lett 2020. [DOI: 10.1016/j.tetlet.2020.152226] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
|
49
|
Zhou K, Geng J, Wang D, Zhang J, Zhao Y. An Indirect Strategy for Trifluoromethylation via an Iridium Catalyst: Approach to Generate Isocoumarin Skeletons in Bioactive Molecules. Org Lett 2020; 22:5109-5114. [PMID: 32551685 DOI: 10.1021/acs.orglett.0c01700] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
3-Bromo-1,1,1-trifluoroacetone was first disclosed as an effective indirect trifluoromethylation reagent to construct the important 3-trifluoromethyl isocoumarin skeleton. The reaction proceeds through a ligand-promoted, iridium-catalyzed ortho-selective C-H alkylation of benzoic acid and an intermolecular cyclization reaction promoted by silver acetate. A wide range of 3-trifluoromethyl isocoumarins can be easily obtained in moderate to good yields. Importantly, the isocoumarin skeleton can be easily formed in bioactive compounds, highlighting the importance of this reaction.
Collapse
Affiliation(s)
- Kehan Zhou
- College of Energy, Soochow Institute for Energy and Materials Innovations, Soochow University, Suzhou 215006, P. R. China.,Key Laboratory of Organic Synthesis of Jiangsu Province, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, P. R. China
| | - Jingyao Geng
- Key Laboratory of Organic Synthesis of Jiangsu Province, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, P. R. China
| | - Dongjie Wang
- Key Laboratory of Organic Synthesis of Jiangsu Province, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, P. R. China
| | - Jingyu Zhang
- College of Energy, Soochow Institute for Energy and Materials Innovations, Soochow University, Suzhou 215006, P. R. China
| | - Yingsheng Zhao
- Key Laboratory of Organic Synthesis of Jiangsu Province, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, P. R. China
| |
Collapse
|
50
|
Patel OPS, Jaspal S, Shinde VN, Nandwana NK, Rangan K, Kumar A. Phenyliodine(III) Diacetate-Mediated 1,2-ipso-Migration in Mannich Bases of Imidazo[1,2-a]pyridines: Preparation of N-Acetoxymethyl/Alkoxymethyl-N-arylimidazo[1,2-a]pyridine-3-amines. J Org Chem 2020; 85:7309-7321. [DOI: 10.1021/acs.joc.0c00674] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Affiliation(s)
- Om P. S. Patel
- Department of Chemistry, Birla Institute of Technology and Science Pilani, Pilani Campus, Pilani, Rajasthan 333031, India
| | - Sonam Jaspal
- Department of Chemistry, Birla Institute of Technology and Science Pilani, Pilani Campus, Pilani, Rajasthan 333031, India
| | - Vikki N. Shinde
- Department of Chemistry, Birla Institute of Technology and Science Pilani, Pilani Campus, Pilani, Rajasthan 333031, India
| | - Nitesh K. Nandwana
- Department of Chemistry, Birla Institute of Technology and Science Pilani, Pilani Campus, Pilani, Rajasthan 333031, India
| | - Krishnan Rangan
- Department of Chemistry, Birla Institute of Technology and Science Pilani, Hyderabad Campus, Hyderabad, Telangana 500078, India
| | - Anil Kumar
- Department of Chemistry, Birla Institute of Technology and Science Pilani, Pilani Campus, Pilani, Rajasthan 333031, India
| |
Collapse
|