1
|
Wang Q, Zou X, Yang LX, Qiu SH, Zhong ZS, Su WE, Li LH, Fan MM, Yu ZL, Liang YM, Wang XJ. Stereoselective Assembly of α-Fluoroacrylate-Substituted β-Lactams via Acid-Base Microenvironment-Controlled Carbonylation. Org Lett 2025. [PMID: 40353341 DOI: 10.1021/acs.orglett.5c01386] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/14/2025]
Abstract
We developed a stereoselective synthesis strategy for α-fluoroacrylate-substituted β-lactams, utilizing an innovative acid-base synergistic regulation approach. This method employs a dioxane-mediated microreaction environment to spatially separate acidic and alkaline reagents, enabling precise control over cyclization and fluorination processes. This strategy enhances catalytic efficiency and addresses challenges in Pd-catalyzed reactions, offering a new paradigm for synthesizing fluorinated drug molecules amid acid-base complexities.
Collapse
Affiliation(s)
- Qiang Wang
- College of Chemical Engineering and Energy Technology, Dongguan University of Technology, Dongguan 523808, P.R. China
- Songshan Lake Medical Science and Engineering Courses Integration and Innovation Center, Dongguan 523808, P.R. China
| | - Xiang Zou
- School of Life and Health Technology, Dongguan University of Technology, Dongguan 523808, P.R. China
| | - Lian-Xin Yang
- College of Chemical Engineering and Energy Technology, Dongguan University of Technology, Dongguan 523808, P.R. China
| | - Si-Hui Qiu
- College of Chemical Engineering and Energy Technology, Dongguan University of Technology, Dongguan 523808, P.R. China
| | - Zhi-Shan Zhong
- College of Chemical Engineering and Energy Technology, Dongguan University of Technology, Dongguan 523808, P.R. China
| | - Wei-En Su
- College of Chemical Engineering and Energy Technology, Dongguan University of Technology, Dongguan 523808, P.R. China
| | - Li-Hui Li
- College of Chemical Engineering and Energy Technology, Dongguan University of Technology, Dongguan 523808, P.R. China
| | - Miao-Miao Fan
- College of Chemical Engineering and Energy Technology, Dongguan University of Technology, Dongguan 523808, P.R. China
| | - Zhang Long Yu
- College of Chemical Engineering and Energy Technology, Dongguan University of Technology, Dongguan 523808, P.R. China
- Songshan Lake Medical Science and Engineering Courses Integration and Innovation Center, Dongguan 523808, P.R. China
| | - Yong-Min Liang
- State Key Laboratory of Applied Organic Chemistry, Lanzhou University, Lanzhou 730000, P.R. China
| | - Xiao-Ji Wang
- College of Chemical Engineering and Energy Technology, Dongguan University of Technology, Dongguan 523808, P.R. China
- Songshan Lake Medical Science and Engineering Courses Integration and Innovation Center, Dongguan 523808, P.R. China
| |
Collapse
|
2
|
Altarejos J, Valero A, Manzano R, Carreras J. Synthesis of Tri‐ and Tetrasubstituted Alkenyl Boronates from Alkynes. European J Org Chem 2022. [DOI: 10.1002/ejoc.202200521] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Julia Altarejos
- Universidad de Alcalá Facultad de Ciencias: Universidad de Alcala Facultad de Ciencias Química Orgánica y Química Inorgánica SPAIN
| | - Antonio Valero
- Universidad de Alcalá Facultad de Ciencias: Universidad de Alcala Facultad de Ciencias Química Orgánica y Química Inorgánica SPAIN
| | - Rubén Manzano
- Universidad de Alcalá Facultad de Ciencias: Universidad de Alcala Facultad de Ciencias Química Orgánica y Química Inorgánica SPAIN
| | - Javier Carreras
- Universidad de Alcalá Facultad de Ciencias: Universidad de Alcala Facultad de Ciencias Química Orgánica y Química Inorgánica Carretera Madrid-Barcelona km 33,6, Campus Universitario.Facultad de Farmacia 28805 Alcalá de Henares SPAIN
| |
Collapse
|
3
|
Remete AM, Nonn M, Novák TT, Csányi D, Kiss L. Recent progress in aryltrifluoromethylation reactions of carbon-carbon multiple bonds. Chem Asian J 2022; 17:e202200395. [PMID: 35584374 DOI: 10.1002/asia.202200395] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2022] [Revised: 05/18/2022] [Indexed: 11/06/2022]
Abstract
Due to the increasing relevance of fluorine-containing organic molecules in drug design, the synthesis of organofluorine compounds has gained high significance in synthetic organic chemistry. Trifluoromethylative difunctionalizations of carbon-carbon multiple bonds, with the simultaneous incorporation of a CF 3 group and another functional element, have considerable potential. Because of the high importance of carbon-carbon bond-forming reactions in organic synthesis, carbotrifluoromethylations and, in particular, aryltrifluoromethylations or heteroaryltrifluoromethylations are considered to be increasing fields of synthetic organic chemistry. The aim of the current review is to summarize recent developments of aryltrifluoromethylation or heteroaryltrifluoromethylation reactions.
Collapse
Affiliation(s)
- Attila M Remete
- University of Szeged: Szegedi Tudomanyegyetem, INSTITUTE OF PHARMACEUTICAL CHEMISTRY, HUNGARY
| | - Melinda Nonn
- HAS RCNS: Termeszettudomanyi Kutatokozpont, INSTITUTE OF MATERIALS AND ENVIRONMENTAL CHEMISTRY, HUNGARY
| | - Tamás T Novák
- HAS RCNS: Termeszettudomanyi Kutatokozpont, INSTITUTE OF ORGANIC CHEMISTRY, HUNGARY
| | - Dorottya Csányi
- HAS RCNS: Termeszettudomanyi Kutatokozpont, INSTITUTE OF ORGANIC CHEMISTRY, HUNGARY
| | - Lorand Kiss
- Research Centre for Natural Sciences: Termeszettudomanyi Kutatokozpont, Institute of Organic Chemistry, Magyar Tudósok krt, 1117, Budapest, HUNGARY
| |
Collapse
|
4
|
Ma X, Kuang Z, Song Q. Recent Advances in the Construction of Fluorinated Organoboron Compounds. JACS AU 2022; 2:261-279. [PMID: 35252978 PMCID: PMC8889561 DOI: 10.1021/jacsau.1c00129] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/23/2021] [Indexed: 05/05/2023]
Abstract
Fluorinated organoboron compounds are important synthetic building blocks that combine the unique characteristics of a fluorinated motif with the versatile synthetic applications of organoboron moiety. This review article guides the research on fluorinated organoboron compounds mainly from four aspects in recent years: selective monodefluoroborylation of polyfluoroarenes and polyfluoroalkenes, selective borylation of fluorinated substrates, selective fluorination of organoboron compounds, and borofluorination of alkynes/olefins. In addition, this review will provide a necessary guidance and inspiration for the research on the valuable synthetic building block fluorinated organoboron compounds.
Collapse
Affiliation(s)
- Xingxing Ma
- Key
Laboratory of Molecule Synthesis and Function Discovery, Fujian Province
University, College of Chemistry at Fuzhou
University, Fuzhou, Fujian 350108, China
| | - Zhijie Kuang
- Institute
of Next Generation Matter Transformation, College of Materials Science
Engineering & Chemical Engineering, Huaqiao University, 668 Jimei Boulevard, Xiamen, Fujian 361021, China
| | - Qiuling Song
- Key
Laboratory of Molecule Synthesis and Function Discovery, Fujian Province
University, College of Chemistry at Fuzhou
University, Fuzhou, Fujian 350108, China
- Institute
of Next Generation Matter Transformation, College of Materials Science
Engineering & Chemical Engineering, Huaqiao University, 668 Jimei Boulevard, Xiamen, Fujian 361021, China
| |
Collapse
|
5
|
Maiti S, Rhlee JH. Reductive Ni-catalysis for stereoselective carboarylation of terminal aryl alkynes. Chem Commun (Camb) 2021; 57:11346-11349. [PMID: 34643192 DOI: 10.1039/d1cc04586e] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Stereoselective dicarbofunctionalization of terminal aryl alkynes has been achieved through reductive Ni-catalysis. The exclusive regioselective and anti-addition selective alkylarylation of terminal alkynes is accomplished using alkyl iodide and aryl iodide as electrophilic coupling partners in the presence of NiBr2 as the catalyst and Mn as an inexpensive reductant.
Collapse
Affiliation(s)
- Saikat Maiti
- Department of Chemistry, Ulsan National Institute of Science and Technology (UNIST), 50 UNIST-gil, Ulsan, 44919, Republic of Korea. .,Center for Genomic Integrity (CGI), Institute for Basic Science (IBS), 50 UNIST-gil, Ulsan 44919, Republic of Korea
| | - Joon Ho Rhlee
- Department of Chemistry, Ulsan National Institute of Science and Technology (UNIST), 50 UNIST-gil, Ulsan, 44919, Republic of Korea.
| |
Collapse
|
6
|
Gatlik B, Chaładaj W. Pd-Catalyzed Perfluoroalkylative Aryloxycarbonylation of Alkynes with Formates as CO Surrogates. ACS Catal 2021. [DOI: 10.1021/acscatal.1c00671] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Beata Gatlik
- Institute of Organic Chemistry, Polish Academy of Sciences, Kasprzaka 44/52, 01-224 Warsaw, Poland
| | - Wojciech Chaładaj
- Institute of Organic Chemistry, Polish Academy of Sciences, Kasprzaka 44/52, 01-224 Warsaw, Poland
| |
Collapse
|
7
|
Suliman AMY, Ahmed EAMA, Gong TJ, Fu Y. Cu/Pd-Catalyzed cis-Borylfluoroallylation of Alkynes for the Synthesis of Boryl-Substituted Monofluoroalkenes. Org Lett 2021; 23:3259-3263. [PMID: 33872017 DOI: 10.1021/acs.orglett.1c00668] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Monofluoroalkenes normally act as metabolically stable bioisosteres for amide groups (-NH-CO-) and have widespread applications in drug discovery. Additionally, they are widely used as building blocks in organic synthesis. In this study, the Cu/Pd-catalyzed cis-borylfluoroallylation of alkynes was achieved, providing a modular and general tactic for the preparation of monofluorinated alkene scaffolds with high regioselectivity and stereoselectivity. Moreover, an array of synthetic building blocks can be generated by downstream transformations.
Collapse
Affiliation(s)
- Ayman M Y Suliman
- Hefei National Laboratory for Physical Sciences at the Microscale, CAS Key Laboratory of Urban Pollutant Conversion, Anhui Province Key Laboratory of Biomass Clean Energy, Center for Excellence in Molecular Synthesis of CAS, University of Science and Technology of China, Hefei 230026, China.,Institute of Energy, Hefei Comprehensive National Science Center, Hefei 230031, China
| | - Ebrahim-Alkhalil M A Ahmed
- College of Chemistry & Materials Engineering, Wenzhou University, Wenzhou, Zhejiang Province 325035, China
| | - Tian-Jun Gong
- Hefei National Laboratory for Physical Sciences at the Microscale, CAS Key Laboratory of Urban Pollutant Conversion, Anhui Province Key Laboratory of Biomass Clean Energy, Center for Excellence in Molecular Synthesis of CAS, University of Science and Technology of China, Hefei 230026, China.,Institute of Energy, Hefei Comprehensive National Science Center, Hefei 230031, China
| | - Yao Fu
- Hefei National Laboratory for Physical Sciences at the Microscale, CAS Key Laboratory of Urban Pollutant Conversion, Anhui Province Key Laboratory of Biomass Clean Energy, Center for Excellence in Molecular Synthesis of CAS, University of Science and Technology of China, Hefei 230026, China.,Institute of Energy, Hefei Comprehensive National Science Center, Hefei 230031, China
| |
Collapse
|
8
|
Affiliation(s)
- Sebastián Martínez
- University of Strasbourg, CNRS, ISIS UMR 7006, 8 allée Gaspard Monge, 67000 Strasbourg, France
| | - Lukas Veth
- University of Strasbourg, CNRS, ISIS UMR 7006, 8 allée Gaspard Monge, 67000 Strasbourg, France
| | - Bruno Lainer
- University of Strasbourg, CNRS, ISIS UMR 7006, 8 allée Gaspard Monge, 67000 Strasbourg, France
| | - Paweł Dydio
- University of Strasbourg, CNRS, ISIS UMR 7006, 8 allée Gaspard Monge, 67000 Strasbourg, France
| |
Collapse
|
9
|
Sun X, Dong X, Liu H, Liu Y. Recent Progress in Palladium‐Catalyzed Radical Reactions. Adv Synth Catal 2021. [DOI: 10.1002/adsc.202001315] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Affiliation(s)
- Xi Sun
- School of Chemistry Chemical Engineering Shandong University of Technology 266 West Xincun Road Zibo 255049 People's Republic of China
| | - Xu Dong
- School of Chemistry Chemical Engineering Shandong University of Technology 266 West Xincun Road Zibo 255049 People's Republic of China
| | - Hui Liu
- School of Chemistry Chemical Engineering Shandong University of Technology 266 West Xincun Road Zibo 255049 People's Republic of China
| | - Yuying Liu
- School of Chemistry Chemical Engineering Shandong University of Technology 266 West Xincun Road Zibo 255049 People's Republic of China
| |
Collapse
|
10
|
Zhang W, Zou Z, Zhao W, Lu S, Wu Z, Huang M, Wang X, Wang Y, Liang Y, Zhu Y, Zheng Y, Pan Y. Integrated redox-active reagents for photoinduced regio- and stereoselective fluorocarboborylation. Nat Commun 2020; 11:2572. [PMID: 32444596 PMCID: PMC7244735 DOI: 10.1038/s41467-020-16477-1] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2020] [Accepted: 04/30/2020] [Indexed: 12/24/2022] Open
Abstract
Vinylboronates and alkylboronates are key components in variegated transformations in all facets of chemical science. The synthesis of vinylboronates and alkylboronates suffers from step-tedious and poor stereoselective procedures. We have developed a regulated radical difunctionalization strategy for the construction of fluorine-containing vinylboronates and alkylboronates with an integrated redox-active reagent IMDN-SO2RF. This bench-stable imidazolium sulfonate cationic salt offers a scalable and operational protocol for the fluoroalkylation-borylation of unsaturated hydrocarbons in a high regio- and stereoselective manner. The products can be further transformed into valuable fluorinated building blocks.
Collapse
Affiliation(s)
- Weigang Zhang
- State Key Laboratory of Coordination Chemistry, Jiangsu Key Laboratory of Advanced Organic Materials, School of Chemistry and Chemical Engineering, Nanjing University, 210023, Nanjing, China
| | - Zhenlei Zou
- State Key Laboratory of Coordination Chemistry, Jiangsu Key Laboratory of Advanced Organic Materials, School of Chemistry and Chemical Engineering, Nanjing University, 210023, Nanjing, China
| | - Wenxuan Zhao
- State Key Laboratory of Coordination Chemistry, Jiangsu Key Laboratory of Advanced Organic Materials, School of Chemistry and Chemical Engineering, Nanjing University, 210023, Nanjing, China
| | - Shuo Lu
- State Key Laboratory of Coordination Chemistry, Jiangsu Key Laboratory of Advanced Organic Materials, School of Chemistry and Chemical Engineering, Nanjing University, 210023, Nanjing, China
| | - Zhengguang Wu
- State Key Laboratory of Coordination Chemistry, Jiangsu Key Laboratory of Advanced Organic Materials, School of Chemistry and Chemical Engineering, Nanjing University, 210023, Nanjing, China
| | - Mengjun Huang
- State Key Laboratory of Coordination Chemistry, Jiangsu Key Laboratory of Advanced Organic Materials, School of Chemistry and Chemical Engineering, Nanjing University, 210023, Nanjing, China
| | - Xiaochen Wang
- State Key Laboratory of Coordination Chemistry, Jiangsu Key Laboratory of Advanced Organic Materials, School of Chemistry and Chemical Engineering, Nanjing University, 210023, Nanjing, China
| | - Yi Wang
- State Key Laboratory of Coordination Chemistry, Jiangsu Key Laboratory of Advanced Organic Materials, School of Chemistry and Chemical Engineering, Nanjing University, 210023, Nanjing, China.
| | - Yong Liang
- State Key Laboratory of Coordination Chemistry, Jiangsu Key Laboratory of Advanced Organic Materials, School of Chemistry and Chemical Engineering, Nanjing University, 210023, Nanjing, China.
| | - Yi Zhu
- Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material Engineering, Jiangnan University, 214122, Wuxi, Jiangsu, China.
| | - Youxuan Zheng
- State Key Laboratory of Coordination Chemistry, Jiangsu Key Laboratory of Advanced Organic Materials, School of Chemistry and Chemical Engineering, Nanjing University, 210023, Nanjing, China
| | - Yi Pan
- State Key Laboratory of Coordination Chemistry, Jiangsu Key Laboratory of Advanced Organic Materials, School of Chemistry and Chemical Engineering, Nanjing University, 210023, Nanjing, China
| |
Collapse
|
11
|
Shang T, Zhang J, Zhang Y, Zhang F, Li XS, Zhu G. Photocatalytic Remote Oxyfluoroalkylation of Heteroalkynes: Regio-, Stereo-, and Site-Selective Access to Complex Fluoroalkylated (Z)-Alkenes. Org Lett 2020; 22:3667-3672. [DOI: 10.1021/acs.orglett.0c01163] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Tianbo Shang
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, Department of Chemistry, Zhejiang Normal University, 688 Yingbin Road, Jinhua 321004, P. R. China
| | - Junhua Zhang
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, Department of Chemistry, Zhejiang Normal University, 688 Yingbin Road, Jinhua 321004, P. R. China
| | - Yan Zhang
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, Department of Chemistry, Zhejiang Normal University, 688 Yingbin Road, Jinhua 321004, P. R. China
| | - Fang Zhang
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, Department of Chemistry, Zhejiang Normal University, 688 Yingbin Road, Jinhua 321004, P. R. China
| | - Xin-Sheng Li
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, Department of Chemistry, Zhejiang Normal University, 688 Yingbin Road, Jinhua 321004, P. R. China
| | - Gangguo Zhu
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, Department of Chemistry, Zhejiang Normal University, 688 Yingbin Road, Jinhua 321004, P. R. China
| |
Collapse
|
12
|
Kuang Z, Yang K, Zhou Y, Song Q. Base-promoted domino-borylation-protodeboronation strategy. Chem Commun (Camb) 2020; 56:6469-6479. [PMID: 32436551 DOI: 10.1039/d0cc00614a] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Since a nucleophilic sp2 boron species can be generated in situ under the combined action of an inorganic base, B2pin2 and methanol, research on base-promoted nucleophilic borylation of unsaturated compounds has attracted significant attention. A series of multi-borylated compounds, such as alkyl 1,2-bis(boronates), gem-diborylalkanes, and 1,1,2-tris(boronates), are constructed based on this strategy. These multi-borylated compounds can in turn undergo selective protodeboronation, creating a variety of useful boron-containing compounds. This Feature article documents the development of base-promoted domino-borylation-protodeboronation (DBP) strategies and their applications in organic synthesis.
Collapse
Affiliation(s)
- Zhijie Kuang
- Institute of Next Generation Matter Transformation, College of Materials Science & Engineering and College of Chemical Engineering at Huaqiao University, 668 Jimei Blvd, Xiamen, Fujian 361021, P. R. China.
| | - Kai Yang
- Key Laboratory of Molecule Synthesis and Function Discovery, Fujian Province University, College of Chemistry, Fuzhou University, Fuzhou, Fujian 350108, P. R. China
| | - Yao Zhou
- College of Chemistry and Chemical Engineering, Hubei Normal University, Huangshi, Hubei 435002, P. R. China
| | - Qiuling Song
- Institute of Next Generation Matter Transformation, College of Materials Science & Engineering and College of Chemical Engineering at Huaqiao University, 668 Jimei Blvd, Xiamen, Fujian 361021, P. R. China. and Key Laboratory of Molecule Synthesis and Function Discovery, Fujian Province University, College of Chemistry, Fuzhou University, Fuzhou, Fujian 350108, P. R. China
| |
Collapse
|
13
|
Upadhyay NS, Chaładaj W. Palladium‐Catalyzed Carboperfluoroalkylation of Alkynes with Fluoroalkyl Iodides and Arylstannanes. Adv Synth Catal 2019. [DOI: 10.1002/adsc.201901027] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
| | - Wojciech Chaładaj
- Institute of Organic Chemistry Polish Academy of Sciences, Kasprzaka 44/52, 01–224 Warsaw Poland
| |
Collapse
|