1
|
Xie J, Li W, Lu Y, Zheng Y, Huang Y, Chen S, Song Q. Unlocking Diverse π-Bond Enrichment Frameworks by the Synthesis and Conversion of Boronated Phenyldiethynylethylenes. J Am Chem Soc 2024; 146:10167-10176. [PMID: 38536043 DOI: 10.1021/jacs.4c01989] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/11/2024]
Abstract
The π-bond enrichment frameworks not only serve as a crucial building block in organic synthesis but also assume a pivotal role in the fields of materials science, biomedicine, photochemistry, and other related disciplines owing to their distinctive structural characteristics. The incorporation of various substituents into the C═C double bonds of tetrasubstituted alkenes is currently a highly significant research area. However, the synthesis of tetrasubstituted alkenes with diverse substituents on double bonds poses a significant challenge in achieving stereoselectivity. Here, we reported an efficient and convergent route of Cu-catalyzed borylalkynylation of both symmetrical and unsymmetrical 1,3-diynes, B2pin2, and acetylene bromide to the construction of boronated phenyldiethynylethylene (BPDEE) derivatives with excellent chemo-, stereo-, and regioselectivities. BPDEE derivatives could transform into novel tetrasubstituted organic π-conjugated gem-diphenyldiethynylethylene (DPDEE), vinylphenyldiethynylethylene (VPDEE), and phenyltriethynylethylene (PTEE) derivatives by a stepwise process, which provides a flexible platform for the synthesis of complex π-bond enrichment frameworks that were difficult to synthesize by previous methods. The initial optical characterization revealed that the synthesized molecules exhibited aggregation-induced emission (AIE) properties, which further establishes the groundwork for future applications and enriches and advances the field of functional π-conjugated frameworks research.
Collapse
Affiliation(s)
- Jinhui Xie
- Key Laboratory of Molecule Synthesis and Function Discovery, Fujian Province University, College of Chemistry at Fuzhou University, Fuzhou, Fujian 350108, China
| | - Wangyang Li
- Key Laboratory of Molecule Synthesis and Function Discovery, Fujian Province University, College of Chemistry at Fuzhou University, Fuzhou, Fujian 350108, China
| | - Yong Lu
- Key Laboratory of Molecule Synthesis and Function Discovery, Fujian Province University, College of Chemistry at Fuzhou University, Fuzhou, Fujian 350108, China
| | - Yanping Zheng
- Key Laboratory of Molecule Synthesis and Function Discovery, Fujian Province University, College of Chemistry at Fuzhou University, Fuzhou, Fujian 350108, China
| | - Yanying Huang
- Key Laboratory of Molecule Synthesis and Function Discovery, Fujian Province University, College of Chemistry at Fuzhou University, Fuzhou, Fujian 350108, China
| | - Shanglin Chen
- Key Laboratory of Molecule Synthesis and Function Discovery, Fujian Province University, College of Chemistry at Fuzhou University, Fuzhou, Fujian 350108, China
| | - Qiuling Song
- Key Laboratory of Molecule Synthesis and Function Discovery, Fujian Province University, College of Chemistry at Fuzhou University, Fuzhou, Fujian 350108, China
- School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, Henan 453007, China
| |
Collapse
|
2
|
Specific cross-dimerization of terminal alkynes via Pd/TMEDA catalysis. Sci China Chem 2022. [DOI: 10.1007/s11426-022-1388-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
|
3
|
Convenient and efficient reaction system for the oxidative coupling of terminal alkynes over Cu+-containing layered double hydroxides. Tetrahedron Lett 2022. [DOI: 10.1016/j.tetlet.2022.154246] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
4
|
Fu Z, Cao X, Yin J, Gou Z, Yi X, Cai H. ortho-C—H Bond Functionalization of Carboxylic Acid Using Carboxyl as a Traceless Directing Group Based on the Strategy of “Two Birds with One Stone”. CHINESE J ORG CHEM 2022. [DOI: 10.6023/cjoc202106024] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
5
|
Xie Y, Feng H, Qi Y, Huang J, Huang L. Chemodivergent Synthesis of Oxazolidin-2-ones via Cu-Catalyzed Carboxyl Transfer Annulation of Propiolic Acids with Amines. J Org Chem 2021; 86:16940-16947. [PMID: 34726412 DOI: 10.1021/acs.joc.1c02099] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
Carboxylic acids are widely found in natural products and bioactive molecules and have served as raw material compounds in industry. We now report the first example of copper(I)-catalyzed carboxyl transfer annulation of propiolic acids with amines, thereby chemodivergently constructing the oxazolidine-2-ones. In this reaction, two kinds of key propargyamine intermediates were formed through sequential CuI/NBS-catalyzed oxidative deamination/decarboxylative alkynylation or CuI-catalyzed decarboxylative hydroamination/alkynylation. The advantages of this decarboxylative coupling/carboxylative cyclization are showcased in the atom economy, chemical specificity, and functional group tolerance.
Collapse
Affiliation(s)
- Yujuan Xie
- College of Chemistry and Chemical Engineering, Shanghai University of Engineering Science, Shanghai 201620, China
| | - Huangdi Feng
- College of Chemistry and Chemical Engineering, Shanghai University of Engineering Science, Shanghai 201620, China.,Shanghai Key Laboratory of Chemical Biology, East China University of Science and Technology, Shanghai 200237, China
| | - Yayu Qi
- College of Chemistry and Chemical Engineering, Shanghai University of Engineering Science, Shanghai 201620, China
| | - Junhai Huang
- China State Institute of Pharmaceutical Industry, Shanghai Institute of Pharmaceutical Industry, Shanghai 201203, China
| | - Liliang Huang
- College of Chemistry and Chemical Engineering, Shanghai University of Engineering Science, Shanghai 201620, China
| |
Collapse
|
6
|
Decarboxylative Addition of Propiolic Acids with Indoles to Synthesize Bis(indolyl)methane Derivatives with a Pd(II)/LA Catalyst. J Org Chem 2021; 86:8333-8350. [PMID: 34056902 DOI: 10.1021/acs.joc.1c00762] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Exploring new protocols for efficient organic synthesis is crucial for pharmaceutical developments. The present work introduces a Pd(II)/LA-catalyzed (LA: Lewis acid) decarboxylative addition reaction for the synthesis of bis(indolyl)methane derivatives. The presence of Lewis acid such as Sc(OTf)3 triggered Pd(II)-catalyzed decarboxylative addition of propiolic acids with indoles to offer the bis(indolyl)methane derivatives in moderate to good yields, whereas neither Pd(II) nor Lewis acid alone was active for this synthesis. The catalytic efficiency of Pd(OAc)2 was highly dependent on the Lewis acidity of the added Lewis acid, that is, a stronger Lewis acid provided a higher yield of the bis(indolyl)methane derivatives. Meanwhile, this Pd(II)/LA-catalyzed decarboxylative addition reaction showed good tolerance toward versatile electron-rich or -deficient substituents on the indole skeleton and on the benzyl ring of propiolic acids. The studies on the in situ 1H NMR kinetics of this Pd(II)/Sc(III) catalysis disclosed the formation of a transient vinyl-Pd(II)/Sc(III) intermediate generated by the pyrrole addition to the alkynyl-Pd(II)/Sc(III) species after decarboxylation, which was scarcely observed before.
Collapse
|
7
|
Feng H, Peng F, Xi H, Zhong L, Huang L. Cu‐Catalyzed Selective Synthesis of Propargylamines via A
3
‐Coupling/
Aza
‐Michael Addition Sequence: Amine Loading Controls the Selectivity. ASIAN J ORG CHEM 2021. [DOI: 10.1002/ajoc.202100079] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- Huangdi Feng
- College of Chemistry and Chemical Engineering Shanghai University of Engineering Science Shanghai 201620 P. R. China
| | - Futao Peng
- College of Chemistry and Chemical Engineering Shanghai University of Engineering Science Shanghai 201620 P. R. China
| | - Hui Xi
- Zhengzhou Tobacco Research Institute of China National Tobacco Company Zhengzhou 450001 P. R. China
| | - Ling Zhong
- College of Chemistry and Chemical Engineering Shanghai University of Engineering Science Shanghai 201620 P. R. China
| | - Liliang Huang
- College of Chemistry and Chemical Engineering Shanghai University of Engineering Science Shanghai 201620 P. R. China
| |
Collapse
|
8
|
Xu H, Chen R, Ruan H, Ye R, Meng L. Visible‐Light‐Promoted Formation of C—C and C—P Bonds Derived from Evolution of Bromoalkynes under Additive‐Free Conditions: Synthesis of 1,1‐Dibromo‐1‐en‐3‐ynes and Alkynylphosphine Oxides. CHINESE J CHEM 2021. [DOI: 10.1002/cjoc.202000546] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Hailong Xu
- Key Laboratory of Green and Precise Synthetic Chemistry and Applications, Ministry of Education, School of Chemistry and Materials Science, Huaibei Normal University Huaibei Anhui 235000 China
| | - Rui Chen
- Key Laboratory of Green and Precise Synthetic Chemistry and Applications, Ministry of Education, School of Chemistry and Materials Science, Huaibei Normal University Huaibei Anhui 235000 China
| | - Hongjie Ruan
- Key Laboratory of Green and Precise Synthetic Chemistry and Applications, Ministry of Education, School of Chemistry and Materials Science, Huaibei Normal University Huaibei Anhui 235000 China
| | - Ruyi Ye
- Key Laboratory of Green and Precise Synthetic Chemistry and Applications, Ministry of Education, School of Chemistry and Materials Science, Huaibei Normal University Huaibei Anhui 235000 China
| | - Ling‐Guo Meng
- Key Laboratory of Green and Precise Synthetic Chemistry and Applications, Ministry of Education, School of Chemistry and Materials Science, Huaibei Normal University Huaibei Anhui 235000 China
| |
Collapse
|
9
|
Seo E, Oh J, Lee S. Palladium‐Catalyzed
Decarboxylative Homodimerization of Propiolic Acids: Synthesis of 1,
3‐Enynes. B KOREAN CHEM SOC 2021. [DOI: 10.1002/bkcs.12221] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Affiliation(s)
- Eunkyeong Seo
- Department of Chemistry Chonnam National University Gwangju 61186 Republic of Korea
| | - Jonghoon Oh
- Department of Chemistry Chonnam National University Gwangju 61186 Republic of Korea
| | - Sunwoo Lee
- Department of Chemistry Chonnam National University Gwangju 61186 Republic of Korea
| |
Collapse
|
10
|
Hu Y, Shen Y, Huang L, Van der Eycken EV, Feng H. Metal-Free Decarboxylative A3
-Coupling/Pictet-Spengler Cascade Accessing Polycyclic Scaffolds: Propiolic Acids Exceed Alkynes. European J Org Chem 2020. [DOI: 10.1002/ejoc.202000007] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Affiliation(s)
- Yingxin Hu
- College of Chemistry and Chemical Engineering; Shanghai University of Engineering Science; 333 Longteng Road 201620 Shanghai China
| | - Yangpeng Shen
- College of Chemistry and Chemical Engineering; Shanghai University of Engineering Science; 333 Longteng Road 201620 Shanghai China
| | - Liliang Huang
- College of Chemistry and Chemical Engineering; Shanghai University of Engineering Science; 333 Longteng Road 201620 Shanghai China
| | - Erik V. Van der Eycken
- Laboratory for Organic & Microwave-Assisted Chemistry (LOMAC); Department of Chemistry; KU Leuven; Celestijnenlaan 200F 3001 Leuven Belgium
- Department of Chemistry; Peoples' Friendship University of Russia (RUDN University); 6 Miklukho-Maklaya Street 117198 Moscow Russia
| | - Huangdi Feng
- College of Chemistry and Chemical Engineering; Shanghai University of Engineering Science; 333 Longteng Road 201620 Shanghai China
| |
Collapse
|
11
|
Jeon H, Ko SB, Lee S. Palladium-catalyzed decarboxylative gem-selective addition of alkynoic acids to terminal alkynes. Org Chem Front 2020. [DOI: 10.1039/d0qo01133a] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Alkynoic acids added to terminal alkynes to give gem-1,3-enynes with high selectivity and good yields. In addition, the reaction of alkynoic acids with propiolic acid provided the corresponding gem-1,3-enynes via double decarboxylation.
Collapse
Affiliation(s)
- Hyojin Jeon
- Department of Chemistry
- Chonnam National University
- Gwangju 61186
- Republic of Korea
| | - Soo-Byung Ko
- Materials Research Team
- Display Research Center
- Samsung Display Co
- Ltd
- Gyeonggi-do 17113
| | - Sunwoo Lee
- Department of Chemistry
- Chonnam National University
- Gwangju 61186
- Republic of Korea
| |
Collapse
|
12
|
Lu S, Chang Z, Xiao Y, Li H. Regio‐ and Stereoselective Synthesis of 2‐Hydroxymethyl‐1,3‐enynes by Rhodium‐Catalyzed Decarboxylative C−C Coupling. Adv Synth Catal 2019. [DOI: 10.1002/adsc.201901013] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Shi‐Chao Lu
- State Key Laboratory of Natural and Biomimetic DrugsPeking University Beijing 100191 People's Republic of China
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, and Beijing Key Laboratory of Active Substance Discovery and Druggability Evaluation, Institute of Materia Medica, Chinese Academy of Medical SciencesPeking Union Medical College 2 A Nanwei Road, Xicheng District Beijing 100050 People's Republic of China
| | - Zhi‐Xin Chang
- Institute of Pharmacology, School of Pharmaceutical SciencesShandong First Medical University & Shandong Academy of Medical Sciences 619 Changcheng Road Taian 271016 People's Republic of China
| | - Yu‐Liang Xiao
- Institute of Pharmacology, School of Pharmaceutical SciencesShandong First Medical University & Shandong Academy of Medical Sciences 619 Changcheng Road Taian 271016 People's Republic of China
| | - Hong‐Shuang Li
- Institute of Pharmacology, School of Pharmaceutical SciencesShandong First Medical University & Shandong Academy of Medical Sciences 619 Changcheng Road Taian 271016 People's Republic of China
| |
Collapse
|