1
|
Liu S, Zhou J, Yu L, Liu Y, Huang Y, Ouyang Y, Liu GK, Xu XH, Shibata N. Nitrogen-Based Organofluorine Functional Molecules: Synthesis and Applications. Chem Rev 2025; 125:4603-4764. [PMID: 40261821 DOI: 10.1021/acs.chemrev.4c00661] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/24/2025]
Abstract
Fluorine and nitrogen form a successful partnership in organic synthesis, medicinal chemistry, and material sciences. Although fluorine-nitrogen chemistry has a long and rich history, this field has received increasing interest and made remarkable progress over the past two decades, driven by recent advancements in transition metal and organocatalysis and photochemistry. This review, emphasizing contributions from 2015 to 2023, aims to update the state of the art of the synthesis and applications of nitrogen-based organofluorine functional molecules in organic synthesis and medicinal chemistry. In dedicated sections, we first focus on fluorine-containing reagents organized according to the type of fluorine-containing groups attached to nitrogen, including N-F, N-RF, N-SRF, and N-ORF. This review also covers nitrogen-linked fluorine-containing building blocks, catalysts, pharmaceuticals, and agrochemicals, underlining these components' broad applicability and growing importance in modern chemistry.
Collapse
Affiliation(s)
- Shuai Liu
- College of Chemistry and Chemical Engineering, Donghua University, 2999 North Renmin Road, Shanghai 201620, China
- National Engineering Research Center for Carbohydrate Synthesis, Jiangxi Normal University, Nanchang 330022, China
| | - Jun Zhou
- Department of Nanopharmaceutical Sciences & Department of Life Science and Applied Chemistry, Nagoya Institute of Technology, Gokiso, Showa-ku, Nagoya 466-8555, Japan
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou 350002, China
| | - Lu Yu
- Key Laboratory of Fluorine and Nitrogen Chemistry and Advanced Materials, Shanghai Institute of Organic Chemistry, Chinese Academy of Science, 345 Lingling Lu, Shanghai 200032, China
| | - Yingle Liu
- School of Chemistry and Environmental Engineering, Sichuan University of Science&Engineering, 180 Xueyuan Street, Huixing Lu, Zigong, Sichuan 643000, China
| | - Yangen Huang
- College of Chemistry and Chemical Engineering, Donghua University, 2999 North Renmin Road, Shanghai 201620, China
| | - Yao Ouyang
- Key Laboratory of Fluorine and Nitrogen Chemistry and Advanced Materials, Shanghai Institute of Organic Chemistry, Chinese Academy of Science, 345 Lingling Lu, Shanghai 200032, China
| | - Guo-Kai Liu
- School of Pharmacy, Shenzhen University Medical School, Shenzhen University, Shenzhen 518055, China
| | - Xiu-Hua Xu
- Key Laboratory of Fluorine and Nitrogen Chemistry and Advanced Materials, Shanghai Institute of Organic Chemistry, Chinese Academy of Science, 345 Lingling Lu, Shanghai 200032, China
| | - Norio Shibata
- Department of Nanopharmaceutical Sciences & Department of Life Science and Applied Chemistry, Nagoya Institute of Technology, Gokiso, Showa-ku, Nagoya 466-8555, Japan
| |
Collapse
|
2
|
Zhuo J, Liu J, Zhou M, Ma L, Zhang M. Visible-Light-Induced C(sp 3)-H Activation for Minisci Alkylation of Pyrimidines Using CHCl 3 as Radical Source and Oxidant. J Org Chem 2025; 90:1400-1410. [PMID: 39807970 DOI: 10.1021/acs.joc.4c02855] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2025]
Abstract
A highly efficient Minisci reaction of pyrimidines with alkyl radical generated from visible-light-induced activation of simple C(sp3)-H feedstocks such as (cyclo)alkanes, ethers, alcohols, esters, and amides is reported. A mechanistic study revealed that alkyl radical was generated via hydrogen atom transfer (HAT) of C(sp3)-H with dichloromethyl radical (·CHCl2), which was generated by photoreduction of chloroform.
Collapse
Affiliation(s)
- Jiatian Zhuo
- School of Chemistry and Chemical Engineering, Guangxi University, Nanning, Guangxi 530004, China
| | - Jinshan Liu
- School of Chemistry and Chemical Engineering, Guangxi University, Nanning, Guangxi 530004, China
| | - Min Zhou
- School of Chemistry and Chemical Engineering, Guangxi University, Nanning, Guangxi 530004, China
| | - Lin Ma
- School of Chemistry and Chemical Engineering, Guangxi University, Nanning, Guangxi 530004, China
| | - Min Zhang
- School of Chemistry and Chemical Engineering, Guangxi University, Nanning, Guangxi 530004, China
| |
Collapse
|
3
|
Lamb MC, Steiniger KA, Trigoura LK, Wu J, Kundu G, Huang H, Lambert TH. Electrophotocatalysis for Organic Synthesis. Chem Rev 2024; 124:12264-12304. [PMID: 39441982 DOI: 10.1021/acs.chemrev.4c00464] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2024]
Abstract
Electrocatalysis and photocatalysis have been the focus of extensive research efforts in organic synthesis in recent decades, and these powerful strategies have provided a wealth of new methods to construct complex molecules. Despite these intense efforts, only recently has there been a significant focus on the combined use of these two modalities. Nevertheless, the past five years have witnessed rapidly growing interest in the area of electrophotocatalysis. This hybrid strategy capitalizes on the enormous benefits of using photons as reagents while also employing an electric potential as a convenient and tunable source or sink of electrons. Research on this topic has led to a number of methods for C-H functionalization, reductive cross-coupling, and olefin addition among others. This field has also seen the use of a broad range of catalyst types, including both metal and organocatalysts. Of particular note has been work with open-shell photocatalysts, which tend to have comparatively large redox potentials. Electrochemistry provides a convenient means to generate such species, making electrophotocatalysis particularly amenable to this intriguing class of redox catalyst. This review surveys methods in the area of electrophotocatalysis as applied to organic synthesis, organized broadly into oxidative, reductive, and redox neutral transformations.
Collapse
Affiliation(s)
- Matthew C Lamb
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, New York 14853, United States
| | - Keri A Steiniger
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, New York 14853, United States
| | - Leslie K Trigoura
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, New York 14853, United States
| | - Jason Wu
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, New York 14853, United States
| | - Gourab Kundu
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, New York 14853, United States
| | - He Huang
- School of Materials Science and Engineering, Beijing Institute of Technology, Beijing 100081, China
| | - Tristan H Lambert
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, New York 14853, United States
| |
Collapse
|
4
|
Mantry L, Gandeepan P. Photochemical direct alkylation of heteroarenes with alkanes, alcohols, amides, and ethers. Org Biomol Chem 2024; 22:7643-7648. [PMID: 39195903 DOI: 10.1039/d4ob01119h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/29/2024]
Abstract
Direct functionalization of heteroarenes with simple alkanes utilizing anthracene as a photoredox catalyst has been established. This approach provides a sustainable alternative, avoiding costly reagents or peroxides. The method demonstrates a broad substrate scope, enabling regioselective alkylation of various heteroarenes, including azoles, pyridines, quinolines, isoquinolones, and quinoxalinones under mild conditions. A range of alkyl sources, such as alkanes, ethers, dioxane, trioxane, alcohol, and alkylamides were viable substrates. A plausible catalytic cycle was proposed based on the preliminary mechanistic evidence.
Collapse
Affiliation(s)
- Lusina Mantry
- Department of Chemistry, Indian Institute of Technology Tirupati, Yerpedu-Venkatagiri Road, Yerpedu Post, Tirupati District, Andhra Pradesh, India - 517619.
| | - Parthasarathy Gandeepan
- Department of Chemistry, Indian Institute of Technology Tirupati, Yerpedu-Venkatagiri Road, Yerpedu Post, Tirupati District, Andhra Pradesh, India - 517619.
| |
Collapse
|
5
|
Lai J, Xiao X, Shao S, Wang S, Kan J, Su W. Photoinduced Transition-Metal and External Photosensitizer Free Benzylic Fluorination of Unactivated Alkylarenes. Chemistry 2024; 30:e202401669. [PMID: 38970448 DOI: 10.1002/chem.202401669] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2024] [Revised: 06/20/2024] [Accepted: 07/05/2024] [Indexed: 07/08/2024]
Abstract
A green and efficient protocol for the direct monofluorination of unactivated alkylarenes under visible-light irradiation has been developed, without any extraneous transition-metal catalysts or photosensitizers. This method is compatible with a broad spectrum of functional groups, including carboxylic and alcoholic scaffolds, under mild reaction conditions. Gram-scale synthesis of a fluorine-containing pharmaceutical analogue was successfully executed, underscoring the strategy's reliability and practicality. Furthermore, mechanistic studies suggest that a single-electron transfer mechanism might be responsible for the generation of the benzylic radicals in initiation step.
Collapse
Affiliation(s)
- Jiawen Lai
- College of Chemistry & Materials Science, Fujian Normal University, 350007, Fuzhou Fujian, P. R. China
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, 350002, Fuzhou Fujian, P. R. China
| | - Xuan Xiao
- College of Chemistry & Materials Science, Fujian Normal University, 350007, Fuzhou Fujian, P. R. China
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, 350002, Fuzhou Fujian, P. R. China
| | - Shixing Shao
- College of Chemistry & Materials Science, Fujian Normal University, 350007, Fuzhou Fujian, P. R. China
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, 350002, Fuzhou Fujian, P. R. China
| | - Shuping Wang
- College of Chemistry & Materials Science, Fujian Normal University, 350007, Fuzhou Fujian, P. R. China
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, 350002, Fuzhou Fujian, P. R. China
| | - Jian Kan
- College of Chemistry & Materials Science, Fujian Normal University, 350007, Fuzhou Fujian, P. R. China
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, 350002, Fuzhou Fujian, P. R. China
| | - Weiping Su
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, 350002, Fuzhou Fujian, P. R. China
- Fujian Science & Technology Innovation Laboratory for Optoelectronic Information of China, 350108, Fuzhou Fujian, P. R. China
| |
Collapse
|
6
|
Wan Q, Wu XD, Hou ZW, Ma Y, Wang L. Organophotoelectrocatalytic C(sp 2)-H alkylation of heteroarenes with unactivated C(sp 3)-H compounds. Chem Commun (Camb) 2024; 60:5502-5505. [PMID: 38699797 DOI: 10.1039/d4cc01335b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/05/2024]
Abstract
An organophotoelectrocatalytic method for the C(sp2)-H alkylation of heteroarenes with unactivated C(sp3)-H compounds through dehydrogenation cross-coupling has been developed. The C(sp2)-H alkylation combines organic catalysis, photochemistry and electrochemistry, avoiding the need for external metal-reagents, HAT-reagents, and oxidants. This protocol exhibits good substrate tolerance and functional group compatibility, providing a straightforward and powerful pathway to access a variety of alkylated heteroarenes under green conditions.
Collapse
Affiliation(s)
- Qinhui Wan
- Advanced Research Institute and School of Pharmaceutical Sciences, Taizhou University, Jiaojiang, Zhejiang, 318000, P. R. China.
| | - Xia-Die Wu
- Advanced Research Institute and School of Pharmaceutical Sciences, Taizhou University, Jiaojiang, Zhejiang, 318000, P. R. China.
| | - Zhong-Wei Hou
- Advanced Research Institute and School of Pharmaceutical Sciences, Taizhou University, Jiaojiang, Zhejiang, 318000, P. R. China.
| | - Yongmin Ma
- Advanced Research Institute and School of Pharmaceutical Sciences, Taizhou University, Jiaojiang, Zhejiang, 318000, P. R. China.
| | - Lei Wang
- Advanced Research Institute and School of Pharmaceutical Sciences, Taizhou University, Jiaojiang, Zhejiang, 318000, P. R. China.
- College of Material Chemistry and Chemical Engineering, Key Laboratory of Organosilicon Chemistry and Material Technology, Ministry of Education, Hangzhou Normal University, Hangzhou, 311121, Zhejiang, P. R. China
| |
Collapse
|
7
|
Qi M, Xu AW. A visible-light-induced photosensitizer-free decarbonylative Minisci-type reaction. Org Biomol Chem 2024; 22:2654-2661. [PMID: 38470359 DOI: 10.1039/d4ob00021h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/13/2024]
Abstract
This study presents a green and practical visible-light-induced photosensitizer-free decarbonylative Minisci-type reaction using aldehydes as alkyl radical precursors. The photocatalytic system exhibits a broad substrate scope and synthetically useful yields. Mechanistic experiments revealed that alkyl radicals could be generated through auto-oxidation of aldehydes under irradiation, which is a mild and effective method for achieving late-stage functionalization of N-heteroarenes. Some biologically active N-heteroarenes could be alkylated using this photocatalytic system smoothly.
Collapse
Affiliation(s)
- Ming Qi
- Division of Nanomaterials and Chemistry, Hefei National Research Center for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei, 230026, People's Republic of China.
| | - An-Wu Xu
- Division of Nanomaterials and Chemistry, Hefei National Research Center for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei, 230026, People's Republic of China.
| |
Collapse
|
8
|
Huang C, Qin YS, Wang CL, Xiao P, Tang S, Liu HJ, Wei Z, Cai H. Visible light-induced C(sp 3)-H azolation of ethers via radical-polar crossover. Chem Commun (Camb) 2024; 60:2669-2672. [PMID: 38351890 DOI: 10.1039/d3cc06210d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/01/2024]
Abstract
Reported herein is a photochemical strategy for C(sp3)-H azolation of ethers via a hydrogen-atom transfer and radical-polar crossover process, offering efficient access to valuable N-alkylated azoles under visible-light irradiation. The protocol is metal-free and photocatalyst-free, and exhibits good to excellent yields and broad substrate scope with regard to azoles. EPR experiments provide evidence for the formation of intermediates formed in situ.
Collapse
Affiliation(s)
- Cheng Huang
- School of Chemistry and Chemical Engineering, Nanchang University, Nanchang, Jiangxi 330031, P. R. China.
| | - Yu-Shu Qin
- School of Chemistry and Chemical Engineering, Nanchang University, Nanchang, Jiangxi 330031, P. R. China.
| | - Chen-Lu Wang
- School of Chemistry and Chemical Engineering, Nanchang University, Nanchang, Jiangxi 330031, P. R. China.
| | - Peng Xiao
- School of Chemistry and Chemical Engineering, Nanchang University, Nanchang, Jiangxi 330031, P. R. China.
| | - Sheng Tang
- School of Chemistry and Chemical Engineering, Nanchang University, Nanchang, Jiangxi 330031, P. R. China.
| | - Hong-Jun Liu
- School of Chemistry and Chemical Engineering, Nanchang University, Nanchang, Jiangxi 330031, P. R. China.
| | - Zhenhong Wei
- School of Chemistry and Chemical Engineering, Nanchang University, Nanchang, Jiangxi 330031, P. R. China.
| | - Hu Cai
- School of Chemistry and Chemical Engineering, Nanchang University, Nanchang, Jiangxi 330031, P. R. China.
| |
Collapse
|
9
|
Dimasi A, Failla M, Montoli A, Citarella A, Ronchi P, Passarella D, Fasano V. First total synthesis of caerulomycin K: a case study on selective, multiple C-H functionalizations of pyridines. RSC Adv 2024; 14:5542-5546. [PMID: 38352680 PMCID: PMC10862659 DOI: 10.1039/d4ra00589a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Accepted: 01/31/2024] [Indexed: 02/16/2024] Open
Abstract
Caerulomycins, natural alkaloids with antimicrobial properties, have been previously synthesized starting with highly pre-functionalized building blocks or requiring many functional group manipulations. In this work, we report the first total synthesis of caerulomycin K, a diversely trifunctionalized pyridine readily assembled in three steps exploiting the recent advancements in the C-H activation of N-heterocycles.
Collapse
Affiliation(s)
- Alessandro Dimasi
- Department of Chemistry, Università degli Studi di Milano Via Camillo Golgi, 19 20133 Milano Italy https://www.fasanolab.com
| | - Mattia Failla
- Department of Chemistry, Università degli Studi di Milano Via Camillo Golgi, 19 20133 Milano Italy https://www.fasanolab.com
| | - Arianna Montoli
- Department of Chemistry, Università degli Studi di Milano Via Camillo Golgi, 19 20133 Milano Italy https://www.fasanolab.com
| | - Andrea Citarella
- Department of Chemistry, Università degli Studi di Milano Via Camillo Golgi, 19 20133 Milano Italy https://www.fasanolab.com
| | - Paolo Ronchi
- Medicinal Chemistry and Drug Design Technologies Department, Global Research and Preclinical Development, Chiesi Farmaceutici S.p.A Largo Francesco Belloli 11/a 43126 Parma Italy
| | - Daniele Passarella
- Department of Chemistry, Università degli Studi di Milano Via Camillo Golgi, 19 20133 Milano Italy https://www.fasanolab.com
| | - Valerio Fasano
- Department of Chemistry, Università degli Studi di Milano Via Camillo Golgi, 19 20133 Milano Italy https://www.fasanolab.com
| |
Collapse
|
10
|
Romero AH. C-H Bond Functionalization of N-Heteroarenes Mediated by Selectfluor. Top Curr Chem (Cham) 2023; 381:29. [PMID: 37736818 DOI: 10.1007/s41061-023-00437-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2023] [Accepted: 08/21/2023] [Indexed: 09/23/2023]
Abstract
Herein, recent developments for Selectfluor-mediated C-H functionalization of N-heteroarenes are described. This type of C-H bond activation is an attractive and competitive alternative to traditional methodologies, allowing the functionalization of a variety of chemical functions. In addition, Selectfluor is a more sustainable and economically accessible oxidant compared with expensive/toxic metals or hazardous peroxides. For a practical understanding, the current review classified systematically the reported strategies in four subsections as follows: (1) carbon-carbon formation, (2) carbon-nitrogen bond formation, (3) carbon-chalcogen bond, and (4) carbon-halogen bond formation. Mechanistic aspects and reaction conditions are fully discussed to provide an understanding of the aspects that govern C-H functionalization in N-heteroarenes mediated by Selectfluor.
Collapse
Affiliation(s)
- Angel H Romero
- Grupo de Química Orgánica Medicinal, Instituto de Química Biológica, Facultad de Ciencias, Universidad de la República, Igua 4225, 11400, Montevideo, Uruguay.
| |
Collapse
|
11
|
Meger FS, Murphy JA. Recent Advances in C-H Functionalisation through Indirect Hydrogen Atom Transfer. Molecules 2023; 28:6127. [PMID: 37630379 PMCID: PMC10459052 DOI: 10.3390/molecules28166127] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2023] [Revised: 08/09/2023] [Accepted: 08/15/2023] [Indexed: 08/27/2023] Open
Abstract
The functionalisation of C-H bonds has been an enormous achievement in synthetic methodology, enabling new retrosynthetic disconnections and affording simple synthetic equivalents for synthons. Hydrogen atom transfer (HAT) is a key method for forming alkyl radicals from C-H substrates. Classic reactions, including the Barton nitrite ester reaction and Hofmann-Löffler-Freytag reaction, among others, provided early examples of HAT. However, recent developments in photoredox catalysis and electrochemistry have made HAT a powerful synthetic tool capable of introducing a wide range of functional groups into C-H bonds. Moreover, greater mechanistic insights into HAT have stimulated the development of increasingly site-selective protocols. Site-selectivity can be achieved through the tuning of electron density at certain C-H bonds using additives, a judicious choice of HAT reagent, and a solvent system. Herein, we describe the latest methods for functionalizing C-H/Si-H/Ge-H bonds using indirect HAT between 2018-2023, as well as a critical discussion of new HAT reagents, mechanistic aspects, substrate scopes, and background contexts of the protocols.
Collapse
Affiliation(s)
- Filip S. Meger
- Institute of Chemical Research of Catalonia (ICIQ), The Barcelona Institute of Science and Technology, 16 Avinguda dels Països Catalans, 43007 Tarragona, Catalonia, Spain
| | - John A. Murphy
- Department of Pure and Applied Chemistry, University of Strathclyde, 295 Cathedral Street, Glasgow G1 1XL, UK
| |
Collapse
|
12
|
Joshi H, Paul D, Sathyamoorthi S. Oxidations of Alcohols, Aldehydes, and Diols Using NaBr and Selectfluor. J Org Chem 2023; 88:11240-11252. [PMID: 37490704 PMCID: PMC10804234 DOI: 10.1021/acs.joc.3c01307] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/27/2023]
Abstract
We present protocols for the oxidation of alcohols and aldehydes and for the oxidative cyclization of diols which use a combination of Selectfluor and NaBr. For most substrates, the optimal solvent system is a 1:1 mixture of CH3CN/H2O, but, in select cases, biphasic 1:1 mixtures of EtOAc/H2O or CH2Cl2/H2O are superior. This procedure is operationally simple, uses inexpensive and readily available reagents, and tolerates a variety of functional groups. Mechanistic studies suggest that the active oxidant is hypobromous acid, generated by the almost instantaneous oxidation of Br- by Selectfluor in an aqueous milieu.
Collapse
Affiliation(s)
- Harshit Joshi
- Department of Medicinal Chemistry, University of Kansas, Lawrence, Kansas 66047, United States
| | - Debobrata Paul
- Department of Medicinal Chemistry, University of Kansas, Lawrence, Kansas 66047, United States
| | - Shyam Sathyamoorthi
- Department of Medicinal Chemistry, University of Kansas, Lawrence, Kansas 66047, United States
| |
Collapse
|
13
|
Abstract
Azines, such as pyridines, quinolines, pyrimidines, and pyridazines, are widespread components of pharmaceuticals. Their occurrence derives from a suite of physiochemical properties that match key criteria in drug design and is tunable by varying their substituents. Developments in synthetic chemistry, therefore, directly impact these efforts, and methods that can install various groups from azine C-H bonds are particularly valuable. Furthermore, there is a growing interest in late-stage functionalization (LSF) reactions that focus on advanced candidate compounds that are often complex structures with multiple heterocycles, functional groups, and reactive sites. Because of factors such as their electron-deficient nature and the effects of the Lewis basic N atom, azine C-H functionalization reactions are often distinct from their arene counterparts, and the application of these reactions in LSF contexts is difficult. However, there have been many significant advances in azine LSF reactions, and this review will describe this progress, much of which has occurred over the past decade. It is possible to categorize these reactions as radical addition processes, metal-catalyzed C-H activation reactions, and transformations occurring via dearomatized intermediates. Substantial variation in reaction design within each category indicates both the rich reactivity of these heterocycles and the creativity of the approaches involved.
Collapse
Affiliation(s)
- Celena M Josephitis
- Department of Chemistry, Colorado State University, Fort Collins, Colorado 80523, United States
| | - Hillary M H Nguyen
- Department of Chemistry, Colorado State University, Fort Collins, Colorado 80523, United States
| | - Andrew McNally
- Department of Chemistry, Colorado State University, Fort Collins, Colorado 80523, United States
| |
Collapse
|
14
|
Ni P, Yang L, Yang J, Cheng R, Zhu W, Ma Y, Ye J. para-Selective, Direct C(sp 2)-H Alkylation of Electron-Deficient Arenes by the Electroreduction Process. J Org Chem 2023; 88:5248-5253. [PMID: 37023248 DOI: 10.1021/acs.joc.2c02412] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/08/2023]
Abstract
Direct para-selective C(sp2)-H alkylation of electron-deficient arenes based on the electroreduction-enabled radical addition of alkyl bromides has been developed under mild conditions. In the absence of any metals and redox agents, the simple electrolysis system tolerates a variety of primary, secondary, and tertiary alkyl bromides and behaves as an important complement to the directed alkylation of the C(sp2)-H bond and the classic Friedel-Crafts alkylation. This electroreduction process provides a more straightforward, environmentally benign, and effective alkylation method for electron-deficient arenes.
Collapse
Affiliation(s)
- Pufan Ni
- Engineering Research Centre of Pharmaceutical Process Chemistry, Ministry of Education; Shanghai Key Laboratory of New Drug Design, School of Pharmacy, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, China
| | - Lei Yang
- Engineering Research Centre of Pharmaceutical Process Chemistry, Ministry of Education; Shanghai Key Laboratory of New Drug Design, School of Pharmacy, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, China
| | - Jiasheng Yang
- Engineering Research Centre of Pharmaceutical Process Chemistry, Ministry of Education; Shanghai Key Laboratory of New Drug Design, School of Pharmacy, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, China
| | - Ruihua Cheng
- School of Biomedical and Pharmaceutical Sciences, Guangdong University of Technology, Guangzhou 510006, China
| | - Weiping Zhu
- State Key Laboratory of Bioreactor Engineering, Shanghai Key Laboratory of Chemical Biology, School of Pharmacy, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, PR China
| | - Yueyue Ma
- School of Biomedical and Pharmaceutical Sciences, Guangdong University of Technology, Guangzhou 510006, China
| | - Jinxing Ye
- Engineering Research Centre of Pharmaceutical Process Chemistry, Ministry of Education; Shanghai Key Laboratory of New Drug Design, School of Pharmacy, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, China
- School of Biomedical and Pharmaceutical Sciences, Guangdong University of Technology, Guangzhou 510006, China
| |
Collapse
|
15
|
Saralaya SS, Shashiprabha, Kanakamajalu S. A comprehensive review of the disclosed approaches for the synthesis of Parvaquone, an anti-protozoan drug. J CHEM SCI 2023. [DOI: 10.1007/s12039-023-02145-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/30/2023]
|
16
|
Lu C, Histand G, Lin D. Visible light-induced direct alkylation of the purine C 8-H bond with ethers. Org Biomol Chem 2023; 21:3167-3171. [PMID: 36947139 DOI: 10.1039/d3ob00147d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/18/2023]
Abstract
The one-step visible light-induced direct alkylation of the C8-H bond for purine derivatives by ethers was developed using Eosin Y as the photocatalyst and t-BuOOH as the oxidant at room temperature. This method describes the coupling of the α-C of the ether to the C8 of purine. Of particular interest is that substrates include purines with various functional groups and even unprotected 9H-purines. The protocol provides an effective method for the synthesis of 8-alkylpurine derivatives with high atom economy and high regioselectivity.
Collapse
Affiliation(s)
- Changtong Lu
- Key Laboratory of Functional Molecular Engineering of Guangdong Province, School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou 510641, China.
| | - Gary Histand
- International School of Advanced Materials, South China University of Technology, Guangzhou 510641, China
| | - Dongen Lin
- Key Laboratory of Functional Molecular Engineering of Guangdong Province, School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou 510641, China.
| |
Collapse
|
17
|
Chen B, Huang Z, Hu Z, Liu X, Weng J. Visible Light Induced C2 Alkylation of 2
H
‐Benzoxazoles with Cycloalkanes and Ethers
via
Selectfluor‐Mediated Oxidation. ChemistrySelect 2023. [DOI: 10.1002/slct.202204773] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/17/2023]
Affiliation(s)
- Bo Chen
- College of Chemical Engineering Zhejiang University of Technology Hangzhou 310014 China
| | - Zhen Huang
- College of Chemical Engineering Zhejiang University of Technology Hangzhou 310014 China
| | - Zhi‐Gang Hu
- College of Chemical Engineering Zhejiang University of Technology Hangzhou 310014 China
| | - Xing‐Hai Liu
- College of Chemical Engineering Zhejiang University of Technology Hangzhou 310014 China
| | - Jian‐Quan Weng
- College of Chemical Engineering Zhejiang University of Technology Hangzhou 310014 China
| |
Collapse
|
18
|
Roy S, Panja S, Sahoo SR, Chatterjee S, Maiti D. Enroute sustainability: metal free C-H bond functionalisation. Chem Soc Rev 2023; 52:2391-2479. [PMID: 36924227 DOI: 10.1039/d0cs01466d] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/18/2023]
Abstract
The term "C-H functionalisation" incorporates C-H activation followed by its transformation. In a single line, this can be defined as the conversion of carbon-hydrogen bonds into carbon-carbon or carbon-heteroatom bonds. The catalytic functionalisation of C-H bonds using transition metals has emerged as an atom-economical technique to engender new bonds without activated precursors which can be considered as a major drawback while attempting large-scale synthesis. Replacing the transition-metal-catalysed approach with a metal-free strategy significantly offers an alternative route that is not only inexpensive but also environmentally benign to functionalize C-H bonds. Recently metal free synthetic approaches have been flourishing to functionalize C-H bonds, motivated by the search for greener, cost-effective, and non-toxic catalysts. In this review, we will highlight the comprehensive and up-to-date discussion on recent examples of ground-breaking research on green and sustainable metal-free C-H bond functionalisation.
Collapse
Affiliation(s)
- Sayan Roy
- Department of Chemistry, Indian Institute of Technology Bombay, Powai, Mumbai-400076, India.
| | - Subir Panja
- Department of Chemistry, Indian Institute of Technology Bombay, Powai, Mumbai-400076, India.
| | - Sumeet Ranjan Sahoo
- Department of Chemistry, Indian Institute of Technology Bombay, Powai, Mumbai-400076, India.
| | - Sagnik Chatterjee
- Department of Chemistry, Indian Institute of Technology Bombay, Powai, Mumbai-400076, India.
| | - Debabrata Maiti
- Department of Chemistry, Indian Institute of Technology Bombay, Powai, Mumbai-400076, India. .,Department of Interdisciplinary Program in Climate Studies, Indian Institute of Technology Bombay, Powai, Mumbai, 400076, India
| |
Collapse
|
19
|
Jiang Q, Liu X, Wang W, Chen Y, Yu M. Metal-free direct C-6-H alkylation of purines and purine nucleosides enabled by oxidative homolysis of 4-alkyl-1,4-dihydropyridines at room temperature. Org Biomol Chem 2023; 21:1744-1754. [PMID: 36723234 DOI: 10.1039/d2ob02070j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Herein we report the application of 4-alkyl-1,4-dihydropyridines (DHPs), which are easily prepared from inexpensive aldehydes in one step, for the direct site-specific C-H alkylation of purines and purine nucleosides. Despite there being three active C(sp2)-H bonds (C-2-H, C-6-H, and C-8-H) in the structure, the reactions still show high regioselectivity at the purinyl C-6-H position. Importantly, the reactions successfully avoid the use of transition metal catalysts and additional acids. Meanwhile, the protocols are not sensitive to moisture and require only persulfate as an oxidant. Besides, this method displays broad functional group compatibility and is easy to scale up. Notably, pharmaceutical purines, e.g. the natural product 6-hydroxymethyl nebularine isolated from basidiomycetes, can be smoothly prepared using this protocol.
Collapse
Affiliation(s)
- Qingsong Jiang
- School of Chemistry and Materials Science, Ludong University, Yantai 264025, Shandong Province, P. R. China.
| | - Xiguang Liu
- School of Chemistry and Materials Science, Ludong University, Yantai 264025, Shandong Province, P. R. China.
| | - Weili Wang
- School of Chemistry and Materials Science, Ludong University, Yantai 264025, Shandong Province, P. R. China.
| | - Yiwen Chen
- School of Chemistry and Materials Science, Ludong University, Yantai 264025, Shandong Province, P. R. China.
| | - Mingwu Yu
- School of Chemistry and Materials Science, Ludong University, Yantai 264025, Shandong Province, P. R. China.
| |
Collapse
|
20
|
Pan ZT, Shen LM, Dagnaw FW, Zhong JJ, Jian JX, Tong QX. Minisci reaction of heteroarenes and unactivated C(sp 3)-H alkanes via a photogenerated chlorine radical. Chem Commun (Camb) 2023; 59:1637-1640. [PMID: 36683529 DOI: 10.1039/d2cc06486c] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
Here, an efficient Minisci reaction of heteroarenes and unactivated C(sp3)-H alkanes was achieved using an inexpensive FeCl3 as a photocatalyst. The photogenerated chlorine radical contributed to the HAT of C-H and subsequently initiated this reaction. Surprisingly, salt water and even seawater can act as a chlorine radical source, which provided an enlightening idea for future organic synthesis methods.
Collapse
Affiliation(s)
- Zi-Tong Pan
- College of Chemistry and Chemical Engineering, Key Laboratory for Preparation and Application of Ordered Structural Material of Guangdong Province, and Guangdong Provincial Key Laboratory of Marine Disaster Prediction and Prevention, Shantou University, Shantou, Guangdong, 515063, China.
| | - Li-Miao Shen
- College of Chemistry and Chemical Engineering, Key Laboratory for Preparation and Application of Ordered Structural Material of Guangdong Province, and Guangdong Provincial Key Laboratory of Marine Disaster Prediction and Prevention, Shantou University, Shantou, Guangdong, 515063, China.
| | - Fentahun Wondu Dagnaw
- College of Chemistry and Chemical Engineering, Key Laboratory for Preparation and Application of Ordered Structural Material of Guangdong Province, and Guangdong Provincial Key Laboratory of Marine Disaster Prediction and Prevention, Shantou University, Shantou, Guangdong, 515063, China.
| | - Jian-Ji Zhong
- College of Chemistry and Chemical Engineering, Key Laboratory for Preparation and Application of Ordered Structural Material of Guangdong Province, and Guangdong Provincial Key Laboratory of Marine Disaster Prediction and Prevention, Shantou University, Shantou, Guangdong, 515063, China.
| | - Jing-Xin Jian
- College of Chemistry and Chemical Engineering, Key Laboratory for Preparation and Application of Ordered Structural Material of Guangdong Province, and Guangdong Provincial Key Laboratory of Marine Disaster Prediction and Prevention, Shantou University, Shantou, Guangdong, 515063, China.
| | - Qing-Xiao Tong
- College of Chemistry and Chemical Engineering, Key Laboratory for Preparation and Application of Ordered Structural Material of Guangdong Province, and Guangdong Provincial Key Laboratory of Marine Disaster Prediction and Prevention, Shantou University, Shantou, Guangdong, 515063, China.
| |
Collapse
|
21
|
Dai L, Zhang Z, Zhu G, Liu Y, Liu X, Zhang J, Rong L. Fluorohydroxylation and Hydration Reactions of para-Quinone Methides Promoted by Selectfluor. J Org Chem 2023; 88:1352-1363. [PMID: 36695008 DOI: 10.1021/acs.joc.2c02069] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
Selectfluor-promoted vicinal fluorohydroxylation and hydration reaction of para-quinone methides (p-QMs) were described, affording vicinal fluorohydrins and ketone/ether products in high yields. The hydration products were highly controlled by the electronic properties of substituents in the aromatic ring, and simultaneously, the amount of Selectfluor was completely different during the synthesis of ketone/ether products. This reaction also represents the first fluorohydroxylation of p-QMs, and the wide range of p-QMs makes the vicinal fluorohydroxylation of great significance.
Collapse
Affiliation(s)
- Lei Dai
- Chemistry and Materials Science, Jiangsu Normal University, Xuzhou, Jiangsu 221116, P. R. China
| | - Zhou Zhang
- Department of Chemical Engineering &Technology, China University of Mining and Technology, Xuzhou, Jiangsu 221116, P. R. China
| | - Guangzhou Zhu
- Chemistry and Materials Science, Jiangsu Normal University, Xuzhou, Jiangsu 221116, P. R. China
| | - Yun Liu
- Chemistry and Materials Science, Jiangsu Normal University, Xuzhou, Jiangsu 221116, P. R. China
| | - Xiaoqin Liu
- Chemistry and Materials Science, Jiangsu Normal University, Xuzhou, Jiangsu 221116, P. R. China
| | - Jinpeng Zhang
- Key Lab of Environment and Health, School of Public Health, Xuzhou Medical University, Xuzhou, Jiangsu 221004, P. R. China
| | - Liangce Rong
- Chemistry and Materials Science, Jiangsu Normal University, Xuzhou, Jiangsu 221116, P. R. China
| |
Collapse
|
22
|
Yu M, Jiang Q, Liu X, Chen Y, Sun K, Tian M, Wang W. Regiospecificity C(sp 2)-C(sp 3) Bond Construction between Purines and Alkenes to Synthesize C 6-Alkylpurines and Purine Nucleosides Using O 2 as the Oxidant. J Org Chem 2023; 88:1411-1423. [PMID: 36634372 DOI: 10.1021/acs.joc.2c02277] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
A highly site-selective and Markovnikov-type radical C6-H alkylation of purines with alkenes is achieved, allowing fast construction of the C(sp2)-C(sp3) bond at the C-6-position of purines and purine nucleosides using O2 as a green oxidant and alkenes as cheap alkylation reagents. The route was also a radical route to synthesize C6-alkyl-N7-substituted purines with potential steric hindrance between C6-alkyl groups and N7-substituted groups. This reaction is easily scaled up and has excellent functional group compatibility and broad substrate scopes. Moreover, the unstable intermediate was also separated, which was the key evidence for the reaction mechanism.
Collapse
Affiliation(s)
- Mingwu Yu
- School of Chemistry and Materials Science, Ludong University, Yantai 264025, P. R. China
| | - Qingsong Jiang
- School of Chemistry and Materials Science, Ludong University, Yantai 264025, P. R. China
| | - Xiguang Liu
- School of Chemistry and Materials Science, Ludong University, Yantai 264025, P. R. China
| | - Yiwen Chen
- School of Chemistry and Materials Science, Ludong University, Yantai 264025, P. R. China
| | - Kai Sun
- College of Chemistry and Chemical Engineering, Yantai University, Yantai 264025, Shandong, P. R. China
| | - Miao Tian
- College of Chemistry and Chemical Engineering, Yantai University, Yantai 264025, Shandong, P. R. China
| | - Weili Wang
- School of Chemistry and Materials Science, Ludong University, Yantai 264025, P. R. China
| |
Collapse
|
23
|
Diversification of pharmaceutical molecules via late-stage C(sp2)–H functionalization. GREEN SYNTHESIS AND CATALYSIS 2023. [DOI: 10.1016/j.gresc.2022.12.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
|
24
|
Bhakat M, Khatua B, Guin J. Photocatalytic Aerobic Coupling of Azaarenes and Alkanes via Nontraditional Cl • Generation. Org Lett 2022; 24:5276-5280. [PMID: 35839079 DOI: 10.1021/acs.orglett.2c01784] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
Abstract
Herein, we demonstrate a nonconventional photocatalytic generation of Cl• from a common chlorinated solvent, dichloroethane, under aerobic conditions and its successful utilization toward the cross-dehydrogenative coupling of alkanes and azaarenes via hydrogen atom transfer with Cl•. The process is free from chloride salt, toxic oxidant, and UV light. It is applicable to a broad spectrum of substrates. The proposed mechanism involving Cl• is supported by a series of mechanistic investigations.
Collapse
Affiliation(s)
- Manotosh Bhakat
- School of Chemical Sciences, Indian Association for the Cultivation of Science, 2A & 2B Raja S. C. Mullick Road, Jadavpur, Kolkata-700032, India
| | - Bitasik Khatua
- School of Chemical Sciences, Indian Association for the Cultivation of Science, 2A & 2B Raja S. C. Mullick Road, Jadavpur, Kolkata-700032, India
| | - Joyram Guin
- School of Chemical Sciences, Indian Association for the Cultivation of Science, 2A & 2B Raja S. C. Mullick Road, Jadavpur, Kolkata-700032, India
| |
Collapse
|
25
|
Facile synthesis of 1-substituted 4-H phthalazine, a versatile scaffold for chemically diverse phthalazines. Tetrahedron 2022. [DOI: 10.1016/j.tet.2022.132920] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
26
|
Ruan S, Zhou C, Li L, Wang L, Liu J, Li P. Microwave-accelerated and benzoyl peroxide (BPO)-initiated cyclization of 1,5-enynes having cyano groups with cyclic alkanes under metal-free conditions. Org Biomol Chem 2022; 20:3817-3822. [PMID: 35467683 DOI: 10.1039/d2ob00430e] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
A novel and efficient method for preparing exocyclic indan derivatives, with this method involving benzoyl peroxide (BPO)-initiated cyclization of 1,5-enynes having cyano groups with simple cyclic alkanes under microwave irradiation, has been developed. The presented approach showed advantages of simple conditions, an environmentally friendly protocol, good functional-group tolerance, and high yields of products.
Collapse
Affiliation(s)
- Shuchen Ruan
- Key Laboratory of Green and Precise Synthetic Chemistry, Ministry of Education, Huaibei Normal University, Huaibei, Anhui 235000, P. R. China.
| | - Chao Zhou
- Key Laboratory of Green and Precise Synthetic Chemistry, Ministry of Education, Huaibei Normal University, Huaibei, Anhui 235000, P. R. China.
| | - Laiqiang Li
- Key Laboratory of Green and Precise Synthetic Chemistry, Ministry of Education, Huaibei Normal University, Huaibei, Anhui 235000, P. R. China.
| | - Lei Wang
- Key Laboratory of Green and Precise Synthetic Chemistry, Ministry of Education, Huaibei Normal University, Huaibei, Anhui 235000, P. R. China. .,Advanced Research Institute and Department of Chemistry, Taizhou University, Taizhou, Zhejiang 318000, P. R. China.
| | - Jie Liu
- Key Laboratory of Green and Precise Synthetic Chemistry, Ministry of Education, Huaibei Normal University, Huaibei, Anhui 235000, P. R. China.
| | - Pinhua Li
- Key Laboratory of Green and Precise Synthetic Chemistry, Ministry of Education, Huaibei Normal University, Huaibei, Anhui 235000, P. R. China. .,Anhui Laboratory of Clean Catalytic Engineering and College of Chemical and Environmental Engineering, Anhui Polytechnic University, Wuhu, Anhui 241000, P. R. of China.
| |
Collapse
|
27
|
Zhang L, Pfund B, Wenger OS, Hu X. Oxidase‐Type C−H/C−H Coupling Using an Isoquinoline‐Derived Organic Photocatalyst. Angew Chem Int Ed Engl 2022; 61:e202202649. [PMID: 35253971 PMCID: PMC9310868 DOI: 10.1002/anie.202202649] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2022] [Indexed: 12/21/2022]
Abstract
Oxidase‐type oxidation is an attractive strategy in organic synthesis due to the use of O2 as the terminal oxidant. Organic photocatalysis can effect metal‐free oxidase chemistry. Nevertheless, current methods are limited in reaction scope, possibly due to the lack of suitable photocatalysts. Here we report an isoquinoline‐derived diaryl ketone‐type photocatalyst, which has much enhanced absorption of blue and visible light compared to conventional diaryl ketones. This photocatalyst enables dehydrogenative cross‐coupling of heteroarenes with unactivated and activated alkanes as well as aldehydes using air as the oxidant. A wide range of heterocycles with various functional groups are suitable substrates. Transient absorption and excited‐state quenching experiments point to an unconventional mechanism that involves an excited state “self‐quenching” process to generate the N‐radical cation form of the sensitizer, which subsequently abstracts a hydrogen atom from the alkane substrate to yield a reactive alkyl radical.
Collapse
Affiliation(s)
- Lei Zhang
- Laboratory of Inorganic Synthesis and Catalysis Institute of Chemical Sciences and Engineering École Polytechnique Fédérale de Lausanne (EPFL) ISIC-LSCI Lausanne Switzerland
- School of Chemistry and Material Sciences Hangzhou Institute of Advanced Study University of Chinese Academy of Sciences 1 Sub-lane Xiangshan, Hangzhou 310024 China
| | - Björn Pfund
- Department of Chemistry University of Basel 4056 Basel Switzerland
| | - Oliver S. Wenger
- Department of Chemistry University of Basel 4056 Basel Switzerland
| | - Xile Hu
- Laboratory of Inorganic Synthesis and Catalysis Institute of Chemical Sciences and Engineering École Polytechnique Fédérale de Lausanne (EPFL) ISIC-LSCI Lausanne Switzerland
| |
Collapse
|
28
|
Li L, Song X, Qi MF, Sun B. Weak Brønsted Base-Promoted Photoredox Catalysis for C–H Alkylation of Heteroarenes Mediated by Triplet Excited Diaryl Ketone. Tetrahedron Lett 2022. [DOI: 10.1016/j.tetlet.2022.153846] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
29
|
Zeng CL, Wang H, Gao D, Zhang Z, Ji D, He W, Liu CK, Yang Z, Fang Z, Guo K. CF 3SO 2Na-Mediated Visible-Light-Induced Cross-Dehydrogenative Coupling of Heteroarenes with Aliphatic C(sp 3)-H Bonds. Org Lett 2022; 24:3244-3248. [PMID: 35446591 DOI: 10.1021/acs.orglett.2c01032] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Minisci-type reaction is one of the important means to construct C(sp3)-H functionalization of heteroarenes. According to traditional methods, stoichiometric amounts of precious transition metal catalysts and chemical oxidants were required at high temperatures. Here, a green and gentle novel Minisci-type method was developed via visible-light-induced cross-dehydrogenative coupling of heteroarenes with aliphatic C(sp3)-H bonds under oxidant-free and transition-metal-catalyst-free conditions. Only the catalytic equivalent of CF3SO2Na and room temperature were required to maintain an efficient reaction.
Collapse
Affiliation(s)
- Cui-Lian Zeng
- College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing 211816, P.R. China
| | - Hao Wang
- College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing 211816, P.R. China
| | - Di Gao
- College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing 211816, P.R. China
| | - Zhen Zhang
- College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing 211816, P.R. China
| | - Dong Ji
- College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing 211816, P.R. China
| | - Wei He
- College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing 211816, P.R. China
| | - Cheng-Kou Liu
- College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing 211816, P.R. China
| | - Zhao Yang
- College of Engineering, China Pharmaceutical University, Nanjing 210003, P.R. China
| | - Zheng Fang
- College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing 211816, P.R. China.,State Key Laboratory of Materials-Oriented Chemical Engineering, Nanjing Tech University, Nanjing 211800, P.R. China
| | - Kai Guo
- College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing 211816, P.R. China.,State Key Laboratory of Materials-Oriented Chemical Engineering, Nanjing Tech University, Nanjing 211800, P.R. China
| |
Collapse
|
30
|
Wang M, Zhang Y, Yang X, Sun P. Phenanthrenequinone (PQ) catalyzed cross-dehydrogenative coupling of alkanes with quinoxalin-2(1 H)-ones and simple N-heteroarenes under visible light irradiation. Org Biomol Chem 2022; 20:2467-2472. [PMID: 35262545 DOI: 10.1039/d2ob00278g] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
A direct and convenient strategy to 3-alkylquinoxalin-2(1H)-ones and other alkyl N-heteroarenes via a photocatalyzed alkylation of quinoxalin-2(1H)-ones and other N-heterocycles with commercially available, low-cost alkanes under ambient conditions using phenanthrenequinone (PQ) as a photocatalyst was developed. This transformation has advantages of environment-friendly protocol, mild conditions, good functional-group tolerance, and high yields of products.
Collapse
Affiliation(s)
- Min Wang
- School of Chemistry and Materials Science, Jiangsu Provincial Key Laboratory of Material Cycle Processes and Pollution Control, Jiangsu Collaborative Innovation Center of Biomedical Functional Materials, Nanjing Normal University, Nanjing 210023, China. .,Key Laboratory of Green and Precise Synthetic Chemistry and Applications, Ministry of Education; Department of chemistry, Huaibei Normal University, Huaibei, Anhui 235000, China.
| | - Yicheng Zhang
- Key Laboratory of Green and Precise Synthetic Chemistry and Applications, Ministry of Education; Department of chemistry, Huaibei Normal University, Huaibei, Anhui 235000, China.
| | - Xinyu Yang
- Key Laboratory of Green and Precise Synthetic Chemistry and Applications, Ministry of Education; Department of chemistry, Huaibei Normal University, Huaibei, Anhui 235000, China.
| | - Peipei Sun
- School of Chemistry and Materials Science, Jiangsu Provincial Key Laboratory of Material Cycle Processes and Pollution Control, Jiangsu Collaborative Innovation Center of Biomedical Functional Materials, Nanjing Normal University, Nanjing 210023, China.
| |
Collapse
|
31
|
Tan Z, He X, Xu K, Zeng C. Electrophotocatalytic C-H Functionalization of N-Heteroarenes with Unactivated Alkanes under External Oxidant-Free Conditions. CHEMSUSCHEM 2022; 15:e202102360. [PMID: 34967138 DOI: 10.1002/cssc.202102360] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/05/2021] [Revised: 12/29/2021] [Indexed: 06/14/2023]
Abstract
The Minisci alkylation of N-heteroarenes with unactivated alkanes under external oxidant-free conditions provides an economically attractive route to access alkylated N-heteroarenes but remains underdeveloped. Herein, a new electrophotocatalytic strategy to access alkyl radicals from strong C(sp3 )-H bonds was reported for the following Minisci alkylation reactions in the absence of chemical oxidants. This strategy realized the first example of cerium-catalyzed Minisci alkylation reaction directly from abundant unactivated alkanes with excellent atom economy. It is anticipated that the general design principle would enrich catalytic strategies to explore the functionalizations of strong C(sp3 )-H bonds under external oxidant-free conditions with H2 evolution.
Collapse
Affiliation(s)
- Zhoumei Tan
- Faculty of Environment and Life, Beijing University of Technology, Beijing, 100124, P.R. China
| | - Xinrui He
- Faculty of Environment and Life, Beijing University of Technology, Beijing, 100124, P.R. China
| | - Kun Xu
- Faculty of Environment and Life, Beijing University of Technology, Beijing, 100124, P.R. China
| | - Chengchu Zeng
- Faculty of Environment and Life, Beijing University of Technology, Beijing, 100124, P.R. China
| |
Collapse
|
32
|
Zhang L, Pfund B, Wenger OS, Hu X. Oxidase‐Type C−H/C−H Coupling Using an Isoquinoline‐Derived Organic Photocatalyst. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202202649] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Lei Zhang
- Laboratory of Inorganic Synthesis and Catalysis Institute of Chemical Sciences and Engineering École Polytechnique Fédérale de Lausanne (EPFL) ISIC-LSCI Lausanne Switzerland
- School of Chemistry and Material Sciences Hangzhou Institute of Advanced Study University of Chinese Academy of Sciences 1 Sub-lane Xiangshan, Hangzhou 310024 China
| | - Björn Pfund
- Department of Chemistry University of Basel 4056 Basel Switzerland
| | - Oliver S. Wenger
- Department of Chemistry University of Basel 4056 Basel Switzerland
| | - Xile Hu
- Laboratory of Inorganic Synthesis and Catalysis Institute of Chemical Sciences and Engineering École Polytechnique Fédérale de Lausanne (EPFL) ISIC-LSCI Lausanne Switzerland
| |
Collapse
|
33
|
Zhang Q, Liu S, Lei J, Zhang Y, Meng C, Duan C, Jin Y. Iron-Catalyzed Photoredox Functionalization of Methane and Heavier Gaseous Alkanes: Scope, Kinetics, and Computational Studies. Org Lett 2022; 24:1901-1906. [DOI: 10.1021/acs.orglett.2c00224] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- Qingqing Zhang
- State Key Laboratory of Fine Chemicals, Zhang Dayu School of Chemistry, Dalian University of Technology, Dalian 116024, China
| | - Shuyang Liu
- State Key Laboratory of Fine Chemicals, Zhang Dayu School of Chemistry, Dalian University of Technology, Dalian 116024, China
| | - Jinglan Lei
- State Key Laboratory of Fine Chemicals, Zhang Dayu School of Chemistry, Dalian University of Technology, Dalian 116024, China
| | - Yongqiang Zhang
- State Key Laboratory of Fine Chemicals, Zhang Dayu School of Chemistry, Dalian University of Technology, Dalian 116024, China
| | - Changgong Meng
- State Key Laboratory of Fine Chemicals, Zhang Dayu School of Chemistry, Dalian University of Technology, Dalian 116024, China
| | - Chunying Duan
- State Key Laboratory of Fine Chemicals, Zhang Dayu School of Chemistry, Dalian University of Technology, Dalian 116024, China
| | - Yunhe Jin
- State Key Laboratory of Fine Chemicals, Zhang Dayu School of Chemistry, Dalian University of Technology, Dalian 116024, China
| |
Collapse
|
34
|
Thakur A, - M, Kumar I, Sharma U. Visible Light Induced Functionalization of C‐H Bonds: Opening of New Avenues in Organic Synthesis. ASIAN J ORG CHEM 2022. [DOI: 10.1002/ajoc.202100804] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Ankita Thakur
- CSIR-IHBT: Institute of Himalayan Bioresource Technology CSIR Chemical Technology Division INDIA
| | - Manisha -
- CSIR-IHBT: Institute of Himalayan Bioresource Technology CSIR Chemical Technology Division INDIA
| | - Inder Kumar
- CSIR-IHBT: Institute of Himalayan Bioresource Technology CSIR Chemical Technology Division INDIA
| | - Upendra Sharma
- CSIR-Institute of Himalayan Bioresource Technology Natural Product Chemistry and Process Development Division Palampur, IndiaPalampur 176061 Palampur INDIA
| |
Collapse
|
35
|
Matsumoto A, Yamamoto M, Maruoka K. Cationic DABCO-Based Catalyst for Site-Selective C–H Alkylation via Photoinduced Hydrogen-Atom Transfer. ACS Catal 2022. [DOI: 10.1021/acscatal.1c05484] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- Akira Matsumoto
- Graduate School of Pharmaceutical Sciences, Kyoto University, Sakyo, Kyoto 606-8501, Japan
| | - Masanori Yamamoto
- Graduate School of Pharmaceutical Sciences, Kyoto University, Sakyo, Kyoto 606-8501, Japan
| | - Keiji Maruoka
- Graduate School of Pharmaceutical Sciences, Kyoto University, Sakyo, Kyoto 606-8501, Japan
- School of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou 510006, China
| |
Collapse
|
36
|
Li J, Siang Tan S, Kyne SH, Wai Hong Chan P. Minisci‐Type Alkylation of
N
‐Heteroarenes by
N
‐(Acyloxy)phthalimide Esters Mediated by a Hantzsch Ester and Blue LED Light. Adv Synth Catal 2022. [DOI: 10.1002/adsc.202101195] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Jiacheng Li
- School of Chemistry Monash University Clayton Victoria 3800 Australia
| | - Suan Siang Tan
- School of Chemistry Monash University Clayton Victoria 3800 Australia
| | - Sara Helen Kyne
- School of Chemistry Monash University Clayton Victoria 3800 Australia
| | - Philip Wai Hong Chan
- Department of Biological Environment Jiyang College of Zhejiang A&F University Hang Zhou Shi, Zhuji 311800, People's Republic of China
- School of Chemistry Monash University Clayton Victoria 3800 Australia
| |
Collapse
|
37
|
Wang X, Zhang Q, Liu S, Li M, Li H, Duan C, Jin Y. Visible Light-Induced Metal-Free Benzylation of Quinones via Cross Dehydrogenation Coupling Reaction. CHINESE J ORG CHEM 2022. [DOI: 10.6023/cjoc202112018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
38
|
One-pot synthesis of heteroaromatic acetals via selectfluor-mediated tandem reaction of methyl quinoline-2-carboxylate and methanol. Tetrahedron 2022. [DOI: 10.1016/j.tet.2021.132607] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
39
|
Michelet V, Marsicano V, Arcadi A. Gold‐Catalyzed Regioselective Oxyfluorination / Oxydifluorination vs. Diketonization of Phthalimido‐Protected Propargylamines with Selectfluor. European J Org Chem 2021. [DOI: 10.1002/ejoc.202101524] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Veronique Michelet
- University of Cote d'Azur: Universite de Nice Sophia Antipolis CHEMISTRY Parc Valrose 06100 NICE FRANCE
| | - Vincenzo Marsicano
- Nice University: Universite de Nice Sophia Antipolis Chemistry Parc Valrose FRANCE
| | - Antonio Arcadi
- University of L'Aquila Department of Physical and Chemical Sciences: Universita degli Studi dell'Aquila Dipartimento di Scienze Fisiche e Chimiche Chemistry L'Aquila ITALY
| |
Collapse
|
40
|
Xu J, Cai H, Shen J, Shen C, Wu J, Zhang P, Liu X. Photo-Induced Cross-Dehydrogenative Alkylation of Heteroarenes with Alkanes under Aerobic Conditions. J Org Chem 2021; 86:17816-17832. [PMID: 34875167 DOI: 10.1021/acs.joc.1c02125] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
We report a Minisci-type cross-dehydrogenative alkylation in an aerobic atmosphere using abundant and inexpensive cerium chloride as a photocatalyst and air as an oxidant. This photoreaction exhibits excellent tolerance to functional groups and is suitable for both heteroarene and alkane substrates under mild conditions, generating the corresponding products in moderate-to-good yields. Our method provides an alternative approach for the late-stage functionalization of valuable substrates.
Collapse
Affiliation(s)
- Jun Xu
- Department of Chemistry, National University of Singapore, Singapore 117543, Singapore.,Center for Functional Materials, National University of Singapore Suzhou Research Institute, Suzhou 215123, China
| | - Heng Cai
- College of Material Chemistry and Chemical Engineering, Hangzhou Normal University, Hangzhou 311121, China
| | - Jiabin Shen
- College of Material Chemistry and Chemical Engineering, Hangzhou Normal University, Hangzhou 311121, China
| | - Chao Shen
- College of Material Chemistry and Chemical Engineering, Hangzhou Normal University, Hangzhou 311121, China
| | - Jie Wu
- Department of Chemistry, National University of Singapore, Singapore 117543, Singapore.,Center for Functional Materials, National University of Singapore Suzhou Research Institute, Suzhou 215123, China
| | - Pengfei Zhang
- College of Material Chemistry and Chemical Engineering, Hangzhou Normal University, Hangzhou 311121, China
| | - Xiaogang Liu
- Department of Chemistry, National University of Singapore, Singapore 117543, Singapore.,Center for Functional Materials, National University of Singapore Suzhou Research Institute, Suzhou 215123, China
| |
Collapse
|
41
|
Chalcogenative spirocyclization of N-aryl propiolamides with diselenides/disulfides promoted by Selectfluor. ZEITSCHRIFT FUR NATURFORSCHUNG SECTION B-A JOURNAL OF CHEMICAL SCIENCES 2021. [DOI: 10.1515/znb-2021-0154] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Abstract
A practical and efficient synthetic route to construct a variety of 3-arylselenenyl/3-arylthio spiro[4.5]trienones was developed using Selectfluor reagent as a mild oxidant. This reaction proceeds via a sequence of electrophilic cation addition, spirocyclization and dearomatization, then offers an approach to introduce Se/S-centered cation into the C–C triple bonds. The utility of this protocol were justified by the excellent compatibility of a wide range of functional groups, good yields and scalability under mild reaction conditions.
Collapse
|
42
|
Wang C, Shi H, Deng GJ, Huang H. Visible-light- and bromide-mediated photoredox Minisci alkylation of N-heteroarenes with ester acetates. Org Biomol Chem 2021; 19:9177-9181. [PMID: 34647121 DOI: 10.1039/d1ob01799c] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A visible-light-induced photoredox Minisci alkylation reaction of N-heteroarenes with ethyl acetate has been reported. The low-toxic ethyl acetate was used for the first time as an alkylation reagent. Hence, 4-quinazolinones, quinolines and pyridines reacted smoothly in the current reaction system. Mechanistic studies indicate that LiBr plays a key role to dramatically improve the efficiency of the reaction by the mediation of hydrogen atom transfer.
Collapse
Affiliation(s)
- Chunlian Wang
- Key Laboratory for Green Organic Synthesis and Application of Hunan Province, Key Laboratory of Environmentally Friendly Chemistry and Application of Ministry of Education, College of Chemistry, Xiangtan University, Xiangtan 411105, China.
| | - Hang Shi
- Key Laboratory for Green Organic Synthesis and Application of Hunan Province, Key Laboratory of Environmentally Friendly Chemistry and Application of Ministry of Education, College of Chemistry, Xiangtan University, Xiangtan 411105, China.
| | - Guo-Jun Deng
- Key Laboratory for Green Organic Synthesis and Application of Hunan Province, Key Laboratory of Environmentally Friendly Chemistry and Application of Ministry of Education, College of Chemistry, Xiangtan University, Xiangtan 411105, China.
| | - Huawen Huang
- Key Laboratory for Green Organic Synthesis and Application of Hunan Province, Key Laboratory of Environmentally Friendly Chemistry and Application of Ministry of Education, College of Chemistry, Xiangtan University, Xiangtan 411105, China.
| |
Collapse
|
43
|
Bell JD, Murphy JA. Recent advances in visible light-activated radical coupling reactions triggered by (i) ruthenium, (ii) iridium and (iii) organic photoredox agents. Chem Soc Rev 2021; 50:9540-9685. [PMID: 34309610 DOI: 10.1039/d1cs00311a] [Citation(s) in RCA: 180] [Impact Index Per Article: 45.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Photoredox chemistry with organic or transition metal agents has been reviewed in earlier years, but such is the pace of progress that we will overlap very little with earlier comprehensive reviews. This review first presents an overview of the area of research and then examines recent examples of C-C, C-N, C-O and C-S bond formations via radical intermediates with transition metal and organic radical promoters. Recent successes with Birch reductions are also included. The transition metal chemistry will be restricted to photocatalysts based on the most widely used metals, Ru and Ir, but includes coupling chemistries that take advantage of low-valent nickel, or occasionally copper, complexes to process the radicals that are formed. Our focus is on developments in the past 10 years (2011-2021). This period has also seen great advances in the chemistry of organic photoredox reagents and the review covers this area. The review is intended to present highlights and is not comprehensive.
Collapse
Affiliation(s)
- Jonathan D Bell
- Department of Pure and Applied Chemistry, University of Strathclyde, 295 Cathedral Street, Glasgow, G1 1XL, UK.
| | | |
Collapse
|
44
|
Li S, Su M, Sun J, Hu K, Jin J. Visible Light-Promoted Magnesium, Iron, and Nickel Catalysis Enabling C(sp 3)-H Lactonization of 2-Alkylbenzoic Acids. Org Lett 2021; 23:5842-5847. [PMID: 34236198 DOI: 10.1021/acs.orglett.1c01984] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
A mild and practical C(sp3)-H lactonization protocol has been achieved by merging photocatalysis and magnesium (iron, nickel) catalysis. A diverse range of 2-alkylbenzoic acids with a variety of substitution patterns could be transformed into the corresponding phthalide products. Based on the mechanistic experimentation and reported prior studies, a possible mechanism for the benzylic oxidative lactonization reaction was proposed with the hypothetic photoactive ternary complex formed between the 2-alkylbenzoic acid substrate, magnesium ion, and bromate anion.
Collapse
Affiliation(s)
- Sasa Li
- CAS Key Laboratory of Synthetic Chemistry of Natural Substances, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Lingling Road, Shanghai 200032, China
| | - Mincong Su
- CAS Key Laboratory of Synthetic Chemistry of Natural Substances, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Lingling Road, Shanghai 200032, China
| | - Jie Sun
- CAS Key Laboratory of Synthetic Chemistry of Natural Substances, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Lingling Road, Shanghai 200032, China
| | - Kunjun Hu
- CAS Key Laboratory of Synthetic Chemistry of Natural Substances, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Lingling Road, Shanghai 200032, China
| | - Jian Jin
- CAS Key Laboratory of Synthetic Chemistry of Natural Substances, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Lingling Road, Shanghai 200032, China
| |
Collapse
|
45
|
|
46
|
Xu C, Shen FQ, Feng G, Jin J. Visible-Light-Induced α-Amino C–H Bond Arylation Enabled by Electron Donor–Acceptor Complexes. Org Lett 2021; 23:3913-3918. [DOI: 10.1021/acs.orglett.1c00984] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Affiliation(s)
- Chang Xu
- Zhejiang Key Laboratory of Alternative Technologies for Fine Chemicals Process, Shaoxing University, Shaoxing 312000, China
| | - Fang-Qi Shen
- Zhejiang Key Laboratory of Alternative Technologies for Fine Chemicals Process, Shaoxing University, Shaoxing 312000, China
| | - Gaofeng Feng
- Zhejiang Key Laboratory of Alternative Technologies for Fine Chemicals Process, Shaoxing University, Shaoxing 312000, China
| | - Jian Jin
- CAS Key Laboratory of Synthetic Chemistry of Natural Substances, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai 200032, China
| |
Collapse
|
47
|
Capilato JN, Lectka T. Arene Amination Instead of Fluorination: Substitution Pattern Governs the Reactivity of Dialkoxybenzenes with Selectfluor. J Org Chem 2021; 86:5771-5777. [PMID: 33787260 DOI: 10.1021/acs.joc.1c00231] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Arene substitution patterns are well-known to affect the regioselectivity of a given transformation but not necessarily the type of reactivity. Herein, we report that the substitution pattern of alkoxyarenes dictates whether a putative one-electron or two-electron reaction predominates in reactions with Selectfluor. A series of amination products is presented, resulting from the single-electron oxidation of electron-rich arenes followed by direct C-H to C-N bond formation. We demonstrate the ability of this transformation to synthesize medicinally and biologically relevant nitrogen heterocycles. Lastly, this unusual "mechanistic switch" is probed with computational chemistry and competition experiments.
Collapse
Affiliation(s)
- Joseph N Capilato
- Department of Chemistry, Johns Hopkins University, 3400 North Charles Street, Baltimore, Maryland 21218, United States
| | - Thomas Lectka
- Department of Chemistry, Johns Hopkins University, 3400 North Charles Street, Baltimore, Maryland 21218, United States
| |
Collapse
|
48
|
Zhang L, Liu Z, Tian X, Zi Y, Duan S, Fang Y, Chen W, Jing H, Yang L, Yang X. Transition-Metal-Free C(sp 3)-H Coupling of Cycloalkanes Enabled by Single-Electron Transfer and Hydrogen Atom Transfer. Org Lett 2021; 23:1714-1719. [PMID: 33591768 DOI: 10.1021/acs.orglett.1c00135] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Here we report a unique transition-metal-free C(sp3)-H/C(sp3)-H coupling of cycloalkanes at room temperature. Unactivated cycloalkanes and 2-azaallyls underwent the combination process of single-electron transfer (SET) and hydrogen atom transfer (HAT) to deliver a wide variety of cycloalkane-functionalized products. This expedient approach enables C(sp3)-H/C(sp3)-H coupling of cycloalkanes under mild conditions without transition metals, initiators, and oxidants.
Collapse
Affiliation(s)
- Linlin Zhang
- Key Laboratory of Medicinal Chemistry for Natural Resource, Ministry of Education, Yunnan Provincial Center for Research & Development of Natural Products, and School of Chemical Science and Technology, Yunnan University, Kunming 650091, P. R. China
| | - Zhengfen Liu
- Key Laboratory of Medicinal Chemistry for Natural Resource, Ministry of Education, Yunnan Provincial Center for Research & Development of Natural Products, and School of Chemical Science and Technology, Yunnan University, Kunming 650091, P. R. China.,Faculty of Chemical and Environment Sciences, Qujing Normal University, Qujing 655011, P. R. China
| | - Xun Tian
- Key Laboratory of Medicinal Chemistry for Natural Resource, Ministry of Education, Yunnan Provincial Center for Research & Development of Natural Products, and School of Chemical Science and Technology, Yunnan University, Kunming 650091, P. R. China
| | - Yujin Zi
- Key Laboratory of Medicinal Chemistry for Natural Resource, Ministry of Education, Yunnan Provincial Center for Research & Development of Natural Products, and School of Chemical Science and Technology, Yunnan University, Kunming 650091, P. R. China
| | - Shengzu Duan
- Key Laboratory of Medicinal Chemistry for Natural Resource, Ministry of Education, Yunnan Provincial Center for Research & Development of Natural Products, and School of Chemical Science and Technology, Yunnan University, Kunming 650091, P. R. China.,School of Chemistry & Environment, Key Laboratory of Intelligent Supramolecular Chemistry at the University of Yunnan Province, Yunnan Minzu University, Kunming 650500, P. R. China
| | - Yongsheng Fang
- Key Laboratory of Medicinal Chemistry for Natural Resource, Ministry of Education, Yunnan Provincial Center for Research & Development of Natural Products, and School of Chemical Science and Technology, Yunnan University, Kunming 650091, P. R. China
| | - Wen Chen
- Key Laboratory of Medicinal Chemistry for Natural Resource, Ministry of Education, Yunnan Provincial Center for Research & Development of Natural Products, and School of Chemical Science and Technology, Yunnan University, Kunming 650091, P. R. China
| | - Hong Jing
- Key Laboratory of Medicinal Chemistry for Natural Resource, Ministry of Education, Yunnan Provincial Center for Research & Development of Natural Products, and School of Chemical Science and Technology, Yunnan University, Kunming 650091, P. R. China
| | - Lijuan Yang
- School of Chemistry & Environment, Key Laboratory of Intelligent Supramolecular Chemistry at the University of Yunnan Province, Yunnan Minzu University, Kunming 650500, P. R. China
| | - Xiaodong Yang
- Key Laboratory of Medicinal Chemistry for Natural Resource, Ministry of Education, Yunnan Provincial Center for Research & Development of Natural Products, and School of Chemical Science and Technology, Yunnan University, Kunming 650091, P. R. China
| |
Collapse
|
49
|
Wang M, Yin C, Hu P. Ag-Catalyzed Remote Unactivated C(sp 3)-H Heteroarylation of Free Alcohols in Water. Org Lett 2021; 23:722-726. [PMID: 33439025 DOI: 10.1021/acs.orglett.0c03944] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Catalyzed by silver salt, the unactivated C(sp3)-H heteroarylation of free alcohol at the δ position is realized under gentle thermal conditions in water through a radical procedure. Both protonic acids and Lewis acids are found to be efficient for activating pyridines for this Minisci-type reaction. The reaction enjoys a good functional group tolerance and substrate scope. Terminal secondary and tertiary alcohols are suitable substrates. With either electron-donating or -withdrawing groups, the electron-deficient heteroarene substrates generate the target products in moderate to good yields. A gram-scale experiment can be successfully operated. A radical blocking experiment and a radical clock experiment are studied to support the radical mechanism.
Collapse
Affiliation(s)
- Miao Wang
- Lehn Institute of Functional Materials, School of Chemistry, Sun Yat-Sen University, Guangzhou 510275, China
| | - Changzhen Yin
- Lehn Institute of Functional Materials, School of Chemistry, Sun Yat-Sen University, Guangzhou 510275, China
| | - Peng Hu
- Lehn Institute of Functional Materials, School of Chemistry, Sun Yat-Sen University, Guangzhou 510275, China
| |
Collapse
|
50
|
Metal-free direct C(sp3)−H functionalization of 2-alkylthiobenzoic acid to access 1,3-benzooxathiin-4-one. CHINESE CHEM LETT 2021. [DOI: 10.1016/j.cclet.2020.11.036] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|