1
|
Yang J, Wu S, Chu YL, Hu M, Li JH. Iron-Catalyzed Three-Component Reactions of Cyclopropanols with Alkenes and N-Heteroarenes via Ring-Opening and C-H Functionalization. J Org Chem 2025; 90:6871-6880. [PMID: 40361297 DOI: 10.1021/acs.joc.5c00853] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/15/2025]
Abstract
An iron-catalyzed ring-opening multicomponent reaction of cyclopropyl alcohols with alkenes and N-heteroarenes involving aryl C(sp2)-H functionalization was developed. This protocol facilitates the regioselective introduction of both the β-carbonyl moiety and an N-heteroarene group across the C═C bond of the alkene, thus allowing a straightforward, efficient, and facile access to 5-heteroarene ketones. In this process, this strategy relies on β-carbonyl alkyl radical formation from the ring-opening of cyclopropyl alcohols, addition across C═C bonds, and heteroaryl C(sp2)-H functionalization cascades. This general approach displays excellent selectivity control and broad functional-group tolerance.
Collapse
Affiliation(s)
- Jie Yang
- State Key Laboratory Base of Eco-Chemical Engineering, College of Chemical Engineering, Qingdao University of Science and Technology, Qingdao 266042, China
| | - Shuang Wu
- State Key Laboratory Base of Eco-Chemical Engineering, College of Chemical Engineering, Qingdao University of Science and Technology, Qingdao 266042, China
| | - Yan-Lin Chu
- State Key Laboratory Base of Eco-Chemical Engineering, College of Chemical Engineering, Qingdao University of Science and Technology, Qingdao 266042, China
| | - Ming Hu
- State Key Laboratory Base of Eco-Chemical Engineering, College of Chemical Engineering, Qingdao University of Science and Technology, Qingdao 266042, China
| | - Jin-Heng Li
- State Key Laboratory Base of Eco-Chemical Engineering, College of Chemical Engineering, Qingdao University of Science and Technology, Qingdao 266042, China
- State Key Laboratory of Applied Organic Chemistry, Lanzhou University, Lanzhou 730000, China
- School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang 453007, Henan, China
| |
Collapse
|
2
|
Peng S, Su T, Yang X, Li JJ, Wan J, Ni HL, Cao P, Hu P, Wang BQ, Chen B. Rhodium-catalyzed isomerization of homoallylic alcohols with a tethered carbonyl group: pathway to 1,6-diketones. Org Biomol Chem 2025. [PMID: 40366315 DOI: 10.1039/d5ob00473j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/15/2025]
Abstract
Herein, we report a rhodium-catalyzed isomerization of homoallylic alcohols with a tethered carbonyl group to synthesize structurally diverse unsymmetrical 1,6-diketones with atom, step, and redox economy. By introducing chiral ligands, good enantioselective isomerization products can be obtained. The utility of this reaction was also demonstrated with diverse transformations.
Collapse
Affiliation(s)
- Shuang Peng
- College of Chemistry and Materials Science, Sichuan Normal University, Chengdu 610068, People's Republic of China.
| | - Tong Su
- College of Chemistry and Materials Science, Sichuan Normal University, Chengdu 610068, People's Republic of China.
| | - Xuan Yang
- College of Chemistry and Materials Science, Sichuan Normal University, Chengdu 610068, People's Republic of China.
| | - Jia-Jie Li
- College of Chemistry and Materials Science, Sichuan Normal University, Chengdu 610068, People's Republic of China.
| | - Jie Wan
- College of Chemistry and Materials Science, Sichuan Normal University, Chengdu 610068, People's Republic of China.
| | - Hai-Liang Ni
- College of Chemistry and Materials Science, Sichuan Normal University, Chengdu 610068, People's Republic of China.
| | - Peng Cao
- College of Chemistry and Materials Science, Sichuan Normal University, Chengdu 610068, People's Republic of China.
| | - Ping Hu
- College of Chemistry and Materials Science, Sichuan Normal University, Chengdu 610068, People's Republic of China.
| | - Bi-Qin Wang
- College of Chemistry and Materials Science, Sichuan Normal University, Chengdu 610068, People's Republic of China.
| | - Bin Chen
- College of Chemistry and Materials Science, Sichuan Normal University, Chengdu 610068, People's Republic of China.
| |
Collapse
|
3
|
Chen F, Li X, Liu KY, He DW, You LY, Wang CL, Guo JY, Tian SY, Wang SM, Lai YX, Zheng Y, Lv Y, Sun K. Three-Component Reaction of Cyclopropanols, DABSO, and N-(Sulfonyl)acrylamides: Preparation of Sulfone-Bridged 1,7-Dicarbonyl Compounds. Org Lett 2024; 26:7170-7175. [PMID: 39159424 DOI: 10.1021/acs.orglett.4c02613] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/21/2024]
Abstract
A cascade reaction of cyclopropyl alcohols, DABSO (1,4-diazoniabicyclo[2.2.2]octane-1,4-disulfinate), and N-(sulfonyl)acrylamides has been developed. This tandem process went through a cyclopropanol ring opening and Michael addition sequence. The γ-keto sulfinate generated from the reaction between cyclopropanol and DABSO serves as the nucleophilic reagent, and N-(sulfonyl)acrylamide is used as the Michael addition acceptor. By utilizing this strategy, multitudinous sulfone-bridged 1,7-dicarbonyl compounds that contain both a β-sulfonyl amide unit and γ-keto sulfone skeleton were conveniently synthesized.
Collapse
Affiliation(s)
- Fei Chen
- Henan Provincial Engineering and Technology Research Center for Precise Synthesis of Fluorine-Containing Drugs, College of Chemistry and Chemical Engineering, Anyang Normal University, Anyang, 455000, People's Republic of China
| | - Xiao Li
- Henan Provincial Engineering and Technology Research Center for Precise Synthesis of Fluorine-Containing Drugs, College of Chemistry and Chemical Engineering, Anyang Normal University, Anyang, 455000, People's Republic of China
| | - Ke-Ying Liu
- Henan Provincial Engineering and Technology Research Center for Precise Synthesis of Fluorine-Containing Drugs, College of Chemistry and Chemical Engineering, Anyang Normal University, Anyang, 455000, People's Republic of China
| | - Dong-Wang He
- Henan Provincial Engineering and Technology Research Center for Precise Synthesis of Fluorine-Containing Drugs, College of Chemistry and Chemical Engineering, Anyang Normal University, Anyang, 455000, People's Republic of China
| | - Liu-Yan You
- Henan Provincial Engineering and Technology Research Center for Precise Synthesis of Fluorine-Containing Drugs, College of Chemistry and Chemical Engineering, Anyang Normal University, Anyang, 455000, People's Republic of China
| | - Chen-Lu Wang
- Henan Provincial Engineering and Technology Research Center for Precise Synthesis of Fluorine-Containing Drugs, College of Chemistry and Chemical Engineering, Anyang Normal University, Anyang, 455000, People's Republic of China
| | - Jun-Ya Guo
- Henan Provincial Engineering and Technology Research Center for Precise Synthesis of Fluorine-Containing Drugs, College of Chemistry and Chemical Engineering, Anyang Normal University, Anyang, 455000, People's Republic of China
| | - Si-Yu Tian
- Henan Provincial Engineering and Technology Research Center for Precise Synthesis of Fluorine-Containing Drugs, College of Chemistry and Chemical Engineering, Anyang Normal University, Anyang, 455000, People's Republic of China
| | - Shu-Man Wang
- Henan Provincial Engineering and Technology Research Center for Precise Synthesis of Fluorine-Containing Drugs, College of Chemistry and Chemical Engineering, Anyang Normal University, Anyang, 455000, People's Republic of China
| | - Yu-Xin Lai
- Henan Provincial Engineering and Technology Research Center for Precise Synthesis of Fluorine-Containing Drugs, College of Chemistry and Chemical Engineering, Anyang Normal University, Anyang, 455000, People's Republic of China
| | - Yang Zheng
- Henan Provincial Engineering and Technology Research Center for Precise Synthesis of Fluorine-Containing Drugs, College of Chemistry and Chemical Engineering, Anyang Normal University, Anyang, 455000, People's Republic of China
| | - Yunhe Lv
- Henan Provincial Engineering and Technology Research Center for Precise Synthesis of Fluorine-Containing Drugs, College of Chemistry and Chemical Engineering, Anyang Normal University, Anyang, 455000, People's Republic of China
| | - Kai Sun
- College of Chemistry and Chemical Engineering, Yantai University, Yantai, 264005, People's Republic of China
| |
Collapse
|
4
|
Xu Z, Zhou M, Feng Y, Han Z, Li Y, Yang G, Wang X, Zhang K, Liu S. Fe(III)-Triggered Radical Arylation of Arene Moieties from Cyclopropanols to Construct Dibenzocyclohepta/octanones: Synthesis of N-Acetylcolchinol- O-methyl ether. Org Lett 2024; 26:6950-6954. [PMID: 38980313 DOI: 10.1021/acs.orglett.4c02047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/10/2024]
Abstract
Tricyclic 6-7-6 and 6-8-6 carbon ring systems are present in numerous biologically active natural molecules. However, simple and efficient synthetic approaches to these scaffolds remain challenging. Herein, we report a versatile strategy for constructing these ring systems via Fe(NO3)3-triggered radical arylation of arenes starting from cyclopropanols. This synthetic utility has been demonstrated in the synthesis of the natural product N-acetylcolchinol-O-methyl ether.
Collapse
Affiliation(s)
- Zelin Xu
- The State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy, Nankai University, Tianjin 300350, People's Republic of China
| | - Meichen Zhou
- The State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy, Nankai University, Tianjin 300350, People's Republic of China
| | - Yuer Feng
- The State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy, Nankai University, Tianjin 300350, People's Republic of China
| | - Ziyu Han
- The State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy, Nankai University, Tianjin 300350, People's Republic of China
| | - Yaoyao Li
- The State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy, Nankai University, Tianjin 300350, People's Republic of China
| | - Guang Yang
- The State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy, Nankai University, Tianjin 300350, People's Republic of China
| | - Xin Wang
- The State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy, Nankai University, Tianjin 300350, People's Republic of China
| | - Kun Zhang
- The State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy, Nankai University, Tianjin 300350, People's Republic of China
| | - Shuangwei Liu
- The State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy, Nankai University, Tianjin 300350, People's Republic of China
| |
Collapse
|
5
|
Wu SY, Li Y, Shen P, Yang XH, Ran GY. Palladium-catalysed fragmentary esterification-induced allylic alkylation of allyl carbonates and cyclic vinylogous anhydrides. Chem Commun (Camb) 2024; 60:1416-1419. [PMID: 38204402 DOI: 10.1039/d3cc05758e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2024]
Abstract
An unprecedented palladium-catalysed fragmentary esterification-induced allylic alkylation (FEAA) of cyclic vinylogous anhydrides (CVAs) and allyl carbonates has been disclosed. The protocol features broad sp3-rich scaffold tolerance, rendering highly functionalized 1,6 and 1,7-dicarbonyls in up to high yields and diastereoselectivities. Three-component FEAA is also well tolerant to generate 1,6-dicarbonyls through the addition of extra O/N-nucleophiles. Furthermore, cyclic allyl carbonate-involved FEAA provides an efficient approach for the synthesis of structurally complex medium-sized rings.
Collapse
Affiliation(s)
- Shu-Yi Wu
- Department of Medicinal Chemistry, College of Pharmacy, Chongqing Medical University, Chongqing 400016, China.
| | - Yang Li
- Department of Medicinal Chemistry, College of Pharmacy, Chongqing Medical University, Chongqing 400016, China.
| | - Peng Shen
- Department of Medicinal Chemistry, College of Pharmacy, Chongqing Medical University, Chongqing 400016, China.
| | - Xin-Han Yang
- Department of Medicinal Chemistry, College of Pharmacy, Chongqing Medical University, Chongqing 400016, China.
| | - Guang-Yao Ran
- Department of Medicinal Chemistry, College of Pharmacy, Chongqing Medical University, Chongqing 400016, China.
| |
Collapse
|
6
|
Liu C, Wang J, Liu X, Feng J, Du D. NHC-catalyzed radical acylation of cycloalkyl silyl peroxides to access 1,6-,1,7-, and 1,8-diketones. Chem Commun (Camb) 2023; 59:13175-13178. [PMID: 37850247 DOI: 10.1039/d3cc04765b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2023]
Abstract
An unprecedented N-heterocyclic carbene (NHC)-catalyzed radical acylation of cycloalkyl silyl peroxides was developed using readily available aldehydes as the acylating agents. This protocol provides an exceptionally useful method for the efficient and rapid synthesis of long-chain 1,6-/1,7-/1,8-diketones, especially unsymmetrical ones. This strategy also has the advantages of mild conditions, good functional group compatibility, and potential applications in the late-stage functionalization of aldehydes with bioactive fragments and in the construction of long-chain complex bioactive molecules.
Collapse
Affiliation(s)
- Chaolei Liu
- State Key Laboratory of Natural Medicines, School of Science, China Pharmaceutical University, Nanjing 210009, P. R. China.
| | - Jingyi Wang
- State Key Laboratory of Natural Medicines, School of Science, China Pharmaceutical University, Nanjing 210009, P. R. China.
| | - Xinlong Liu
- State Key Laboratory of Natural Medicines, School of Science, China Pharmaceutical University, Nanjing 210009, P. R. China.
| | - Jie Feng
- State Key Laboratory of Natural Medicines, School of Science, China Pharmaceutical University, Nanjing 210009, P. R. China.
| | - Ding Du
- State Key Laboratory of Natural Medicines, School of Science, China Pharmaceutical University, Nanjing 210009, P. R. China.
| |
Collapse
|
7
|
Liu S, Su X, Jiang D, Xiong H, Miao D, Fu L, Qiu H, He L, Zhang M. Arylation of Cyclopropanol with Pyrrole: Asymmetric Synthesis of Indolizidine 167B, Indolizidine 209D, and Monomorine I. Org Lett 2023; 25:2058-2062. [PMID: 36930849 DOI: 10.1021/acs.orglett.3c00406] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/19/2023]
Abstract
A Fe(NO3)3-mediated ring-opening arylation of cyclopropanol with the electron-rich pyrrole has been developed, which might proceed through oxidative radical ring opening of cyclopropanol followed by cyclization to the pyrrole motif and then aromatization. This method enables direct arylation of cyclopropanol without prefunctionalization and thus allows rapid access to a diverse array of chiral 5,6,7,8-tetrahydroindolizines from easily available chiral amino acid esters. The synthetic utility has been demonstrated by the asymmetric synthesis of alklaoids (-)-indolizidine 167B, (+)-indolizidine 209D, (+)-monomorine I, and a natural product analogue.
Collapse
Affiliation(s)
- Shuangwei Liu
- Chongqing Key Laboratory of Natural Product Synthesis and Drug Research, Innovative Drug Research Center, School of Pharmaceutical Sciences, Chongqing University, Chongqing 401331, China
| | - Xiaojiao Su
- Chongqing Key Laboratory of Natural Product Synthesis and Drug Research, Innovative Drug Research Center, School of Pharmaceutical Sciences, Chongqing University, Chongqing 401331, China
| | - Dan Jiang
- Chongqing Key Laboratory of Natural Product Synthesis and Drug Research, Innovative Drug Research Center, School of Pharmaceutical Sciences, Chongqing University, Chongqing 401331, China
| | - Hongbing Xiong
- Chongqing Key Laboratory of Natural Product Synthesis and Drug Research, Innovative Drug Research Center, School of Pharmaceutical Sciences, Chongqing University, Chongqing 401331, China
| | - Dingyin Miao
- Chongqing Key Laboratory of Natural Product Synthesis and Drug Research, Innovative Drug Research Center, School of Pharmaceutical Sciences, Chongqing University, Chongqing 401331, China
| | - Lin Fu
- Central Nervous System Drug Key Laboratory of Sichuan Province, Luzhou, Sichuan 646000, China
| | - Hanyue Qiu
- Chongqing Key Laboratory of Natural Product Synthesis and Drug Research, Innovative Drug Research Center, School of Pharmaceutical Sciences, Chongqing University, Chongqing 401331, China.,Central Nervous System Drug Key Laboratory of Sichuan Province, Luzhou, Sichuan 646000, China
| | - Ling He
- Chongqing Key Laboratory of Natural Product Synthesis and Drug Research, Innovative Drug Research Center, School of Pharmaceutical Sciences, Chongqing University, Chongqing 401331, China
| | - Min Zhang
- Chongqing Key Laboratory of Natural Product Synthesis and Drug Research, Innovative Drug Research Center, School of Pharmaceutical Sciences, Chongqing University, Chongqing 401331, China.,Key Laboratory of Prevention and Treatment of Cardiovascular and Cerebrovascular Diseases, Ministry of Education, Gannan Medical University, Ganzhou 341000, China
| |
Collapse
|
8
|
Zhang X, Yang TM, Hu LM, Hu XH. Stereoselective Iron-Catalyzed Alkylation of Enamides with Cyclopropanols via Oxidative C(sp 2)–H Functionalization. Org Lett 2022; 24:8677-8682. [DOI: 10.1021/acs.orglett.2c03563] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Affiliation(s)
- Xing Zhang
- Institute of Advanced Synthesis, School of Chemistry and Molecular Engineering, Nanjing Tech University, Nanjing 211816, China
| | - Tian-Ming Yang
- Institute of Advanced Synthesis, School of Chemistry and Molecular Engineering, Nanjing Tech University, Nanjing 211816, China
| | - Lu-Min Hu
- Institute of Advanced Synthesis, School of Chemistry and Molecular Engineering, Nanjing Tech University, Nanjing 211816, China
| | - Xu-Hong Hu
- Institute of Advanced Synthesis, School of Chemistry and Molecular Engineering, Nanjing Tech University, Nanjing 211816, China
| |
Collapse
|
9
|
Deng H, Cheng Q, Cai H, Zhang D, Zhang QF. Ring Opening of Cyclopropyl Ketones with 1,3-Diketones for the Synthesis of 1,6-Diketone Derivatives. Tetrahedron Lett 2022. [DOI: 10.1016/j.tetlet.2022.154257] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
10
|
Yao J, Hu D, Zhang JQ, Zhang Y, Ma X, Liu J, Wang J, Ni B, Ren H. Ring-Opening Selenation of Cyclopropanol for the Selective Synthesis of β-Hydroxy-Substituted Selenylated Ketones. J Org Chem 2022; 87:14685-14694. [DOI: 10.1021/acs.joc.2c02004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Jun Yao
- Advanced Research Institute and Department of Chemistry, Taizhou University, Jiaojiang 318000, China
| | - Dandan Hu
- Advanced Research Institute and Department of Chemistry, Taizhou University, Jiaojiang 318000, China
| | - Jun-Qi Zhang
- Advanced Research Institute and Department of Chemistry, Taizhou University, Jiaojiang 318000, China
| | - Yili Zhang
- Advanced Research Institute and Department of Chemistry, Taizhou University, Jiaojiang 318000, China
| | - Xinyi Ma
- Advanced Research Institute and Department of Chemistry, Taizhou University, Jiaojiang 318000, China
| | - Jiang Liu
- Advanced Research Institute and Department of Chemistry, Taizhou University, Jiaojiang 318000, China
| | - Jiali Wang
- Advanced Research Institute and Department of Chemistry, Taizhou University, Jiaojiang 318000, China
| | - Bukuo Ni
- Department of Chemistry, Texas A&M University-Commerce, Commerce, Texas 75429-3011, United States
| | - Hongjun Ren
- Advanced Research Institute and Department of Chemistry, Taizhou University, Jiaojiang 318000, China
- School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang 453000, China
| |
Collapse
|
11
|
Feng T, Liu C, Wu Z, Wu X, Zhu C. Redox-neutral manganese-catalyzed synthesis of 1-pyrrolines. Chem Sci 2022; 13:2669-2673. [PMID: 35340851 PMCID: PMC8890122 DOI: 10.1039/d2sc00015f] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2022] [Accepted: 02/09/2022] [Indexed: 11/21/2022] Open
Abstract
This report describes a manganese-catalyzed radical [3 + 2] cyclization of cyclopropanols and oxime ethers, leading to valuable multi-functional 1-pyrrolines. In this redox-neutral process, the oxime ethers function as internal oxidants and H-donors. The reaction involves sequential rupture of C-C, C-H and N-O bonds and proceeds under mild conditions. This intermolecular protocol provides an efficient approach for the synthesis of structurally diverse 1-pyrrolines.
Collapse
Affiliation(s)
- Tingting Feng
- Key Laboratory of Organic Synthesis of Jiangsu Province, College of Chemistry, Chemical Engineering and Materials Science, Soochow University 199 Ren-Ai Road Suzhou Jiangsu 215123 People's Republic of China
| | - Canxiang Liu
- Key Laboratory of Organic Synthesis of Jiangsu Province, College of Chemistry, Chemical Engineering and Materials Science, Soochow University 199 Ren-Ai Road Suzhou Jiangsu 215123 People's Republic of China
| | - Zhen Wu
- Key Laboratory of Organic Synthesis of Jiangsu Province, College of Chemistry, Chemical Engineering and Materials Science, Soochow University 199 Ren-Ai Road Suzhou Jiangsu 215123 People's Republic of China
| | - Xinxin Wu
- Key Laboratory of Organic Synthesis of Jiangsu Province, College of Chemistry, Chemical Engineering and Materials Science, Soochow University 199 Ren-Ai Road Suzhou Jiangsu 215123 People's Republic of China
| | - Chen Zhu
- Key Laboratory of Organic Synthesis of Jiangsu Province, College of Chemistry, Chemical Engineering and Materials Science, Soochow University 199 Ren-Ai Road Suzhou Jiangsu 215123 People's Republic of China
- Frontiers Science Center for Transformative Molecules, Shanghai Jiao Tong University 800 Dongchuan Road Shanghai 200240 People's Republic of China
| |
Collapse
|
12
|
Lee M, Heo J, Kim D, Chang S. On the Origin of Rh-Catalyzed Selective Ring-Opening Amidation of Substituted Cyclopropanols to Access β 2-Amino Ketones. J Am Chem Soc 2022; 144:3667-3675. [PMID: 35167292 DOI: 10.1021/jacs.1c12934] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
β2-Amino carbonyls, an α-substituted β-amino scaffold, hold a prominent place in the development of new pharmaceuticals and peptidomimetics. Herein, we report a highly efficient Rh-catalyzed ring-opening amidation of substituted cyclopropanols, which turned out to serve as a linchpin for the selective synthesis of β2-amino ketones to outcompete the formation of β3-isomers. Instead of the generally accepted rationale to consider steric factors for the β2-selectivity, orbital interaction was elucidated to play a more critical role in the amidative ring-opening of cyclopropanols to generate the key Rh-C intermediate. Subsequent inner-sphere acylnitrene transfer was achieved in excellent efficiency (TON > 5000) by using readily accessible dioxazolones as the amino source to afford β2-amino ketones with broad applicability.
Collapse
Affiliation(s)
- Minhan Lee
- Department of Chemistry, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Korea.,Center for Catalytic Hydrocarbon Functionalization, Institute for Basic Science (IBS), Daejeon 34141, Korea
| | - Joon Heo
- Department of Chemistry, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Korea.,Center for Catalytic Hydrocarbon Functionalization, Institute for Basic Science (IBS), Daejeon 34141, Korea
| | - Dongwook Kim
- Department of Chemistry, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Korea.,Center for Catalytic Hydrocarbon Functionalization, Institute for Basic Science (IBS), Daejeon 34141, Korea
| | - Sukbok Chang
- Department of Chemistry, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Korea.,Center for Catalytic Hydrocarbon Functionalization, Institute for Basic Science (IBS), Daejeon 34141, Korea
| |
Collapse
|
13
|
Vellakkaran M, Kim T, Hong S. Visible-Light-Induced C4-Selective Functionalization of Pyridinium Salts with Cyclopropanols. Angew Chem Int Ed Engl 2022; 61:e202113658. [PMID: 34734455 DOI: 10.1002/anie.202113658] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2021] [Indexed: 12/12/2022]
Abstract
The site-selective C-H functionalization of heteroarenes is of considerable importance for streamlining the rapid modification of bioactive molecules. Herein, we report a general strategy for visible-light-induced β-carbonyl alkylation at the C4 position of pyridines with high site selectivity using various cyclopropanols and N-amidopyridinium salts. In this process, hydrogen-atom transfer between the generated sulfonamidyl radicals and O-H bonds of cyclopropanols generates β-carbonyl radicals, providing efficient access to synthetically valuable β-pyridylated (aryl)ketones, aldehydes, and esters with broad functional-group tolerance. In addition, the mild method serves as an effective tool for the site-selective late-stage functionalization of complex and medicinally relevant molecules.
Collapse
Affiliation(s)
- Mari Vellakkaran
- Center for Catalytic Hydrocarbon Functionalizations, Institute for Basic Science (IBS).,Department of Chemistry, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 34141, Republic of Korea
| | - Taehwan Kim
- Center for Catalytic Hydrocarbon Functionalizations, Institute for Basic Science (IBS).,Department of Chemistry, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 34141, Republic of Korea
| | - Sungwoo Hong
- Center for Catalytic Hydrocarbon Functionalizations, Institute for Basic Science (IBS).,Department of Chemistry, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 34141, Republic of Korea
| |
Collapse
|
14
|
Vellakkaran M, Kim T, Hong S. Visible‐Light‐Induced C4‐Selective Functionalization of Pyridinium Salts with Cyclopropanols. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202113658] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Mari Vellakkaran
- Center for Catalytic Hydrocarbon Functionalizations Institute for Basic Science (IBS)
- Department of Chemistry Korea Advanced Institute of Science and Technology (KAIST) Daejeon 34141 Republic of Korea
| | - Taehwan Kim
- Center for Catalytic Hydrocarbon Functionalizations Institute for Basic Science (IBS)
- Department of Chemistry Korea Advanced Institute of Science and Technology (KAIST) Daejeon 34141 Republic of Korea
| | - Sungwoo Hong
- Center for Catalytic Hydrocarbon Functionalizations Institute for Basic Science (IBS)
- Department of Chemistry Korea Advanced Institute of Science and Technology (KAIST) Daejeon 34141 Republic of Korea
| |
Collapse
|
15
|
Tatarinova IV, Lobanova NA, Ushakov IA, Schmidt EY, Trofimov BA. Diastereomerically pure rarely functionalized alkenoyl dihydropyrans, 1,6-diketones, and cyclopentanes from acetylene gas and ketones. Org Biomol Chem 2022; 20:6593-6605. [DOI: 10.1039/d2ob01068b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Alkenoyl dihydropyrans stereoselectively assembled from acetylene gas, ketones and aldehydes in two steps are diastereoselectively transformed into difficult-to-access, rarely functionalized 1,6-diketones and cyclopentanes.
Collapse
Affiliation(s)
- Inna V. Tatarinova
- A.E. Favorsky Irkutsk Institute of Chemistry, Siberian Branch of the Russian Academy of Sciences 1 Favorsky Str., 664033 Irkutsk, Russia
| | - Natal'ya A. Lobanova
- A.E. Favorsky Irkutsk Institute of Chemistry, Siberian Branch of the Russian Academy of Sciences 1 Favorsky Str., 664033 Irkutsk, Russia
| | - Igor’ A. Ushakov
- A.E. Favorsky Irkutsk Institute of Chemistry, Siberian Branch of the Russian Academy of Sciences 1 Favorsky Str., 664033 Irkutsk, Russia
| | - Elena Yu. Schmidt
- A.E. Favorsky Irkutsk Institute of Chemistry, Siberian Branch of the Russian Academy of Sciences 1 Favorsky Str., 664033 Irkutsk, Russia
| | - Boris A. Trofimov
- A.E. Favorsky Irkutsk Institute of Chemistry, Siberian Branch of the Russian Academy of Sciences 1 Favorsky Str., 664033 Irkutsk, Russia
| |
Collapse
|
16
|
Wang J, Li X. Asymmetric β-Arylation of Cyclopropanols Enabled by Photoredox and Nickel Dual Catalysis. Chem Sci 2022; 13:3020-3026. [PMID: 35382467 PMCID: PMC8905987 DOI: 10.1039/d1sc07237d] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2021] [Accepted: 02/16/2022] [Indexed: 11/21/2022] Open
Abstract
The enantioselective functionalization and transformation of readily available cyclopropyl compounds are synthetically appealing yet challenging topics in organic synthesis. Here we report an asymmetric β-arylation of cyclopropanols with aryl bromides...
Collapse
Affiliation(s)
- Jianhua Wang
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), NMPA Key Laboratory for Technology Research and Evaluation of Drug Products, School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University Jinan Shandong 250012 China
| | - Xiaoxun Li
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), NMPA Key Laboratory for Technology Research and Evaluation of Drug Products, School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University Jinan Shandong 250012 China
| |
Collapse
|
17
|
Mane BB, Waghmode SB. Iron-Catalyzed Ring Opening of Cyclopropanols and Their 1,6-Conjugate Addition to p-Quinone Methides. J Org Chem 2021; 86:17774-17781. [PMID: 34813312 DOI: 10.1021/acs.joc.1c02059] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
A novel iron-catalyzed ring opening of cyclopropanols and their 1,6-conjugate addition to p-quinone methides for accessing substituted phenols is disclosed. In this protocol, various cyclopropanols are converted to alkyl radicals and undergo 1,6-conjugate addition to p-quinone methides toward C-C bond formation. The salient features of this methodology include operationally simple and mild reaction conditions, environmentally benign protocol, high efficiency, inexpensive catalyst, good to excellent yield, and a wide range of substrate scope.
Collapse
Affiliation(s)
- Baliram B Mane
- Department of Chemistry, Savitribai Phule Pune University (Formerly University of Pune), Ganeshkhind, Pune 411007, India
| | - Suresh B Waghmode
- Department of Chemistry, Savitribai Phule Pune University (Formerly University of Pune), Ganeshkhind, Pune 411007, India
| |
Collapse
|
18
|
Shirsath SR, Chandgude SM, Muthukrishnan M. Iron catalyzed tandem ring opening/1,6-conjugate addition of cyclopropanols with p-quinone methides: new access to γ,γ-diaryl ketones. Chem Commun (Camb) 2021; 57:13582-13585. [PMID: 34846388 DOI: 10.1039/d1cc05997a] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
An iron(III) catalyzed tandem ring opening/1,6-conjugate addition of cyclopropanols to p-quinone methides leading to γ,γ-diaryl ketones has been described. This catalytic protocol provides a novel and efficient method to access γ,γ-diaryl ketone derivatives in good to excellent yields with high functional group tolerance. Importantly, γ,γ-diaryl ketone can be further functionalized to give a versatile set of useful products.
Collapse
Affiliation(s)
- Sachin R Shirsath
- Division of Organic Chemistry, CSIR-National Chemical Laboratory, Pune 411008, India. .,Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Sagar M Chandgude
- Division of Organic Chemistry, CSIR-National Chemical Laboratory, Pune 411008, India.
| | - M Muthukrishnan
- Division of Organic Chemistry, CSIR-National Chemical Laboratory, Pune 411008, India. .,Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| |
Collapse
|
19
|
Bera N, Samanta S, Sarkar D. Stereoselective Synthesis of Oxacycles via Ruthenium-Catalyzed Atom-Economic Coupling of Propargyl Alcohols and Michael Acceptors. J Org Chem 2021; 86:16369-16395. [PMID: 34735155 DOI: 10.1021/acs.joc.1c01758] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Synthesis of β-hydroxyenones and its application toward development of tetrahydro-4H-pyran-4-one in an atom-economic fashion is limited. This manuscript describes a ruthenium-catalyzed atom-economic coupling of pent-2-yne-1,5-diols and Michael acceptors as an efficient route for the synthesis of β-hydroxyenones with excellent yields and high regioselectivity. The β-hydroxyenones further undergo a 6-endo trig cyclization under acid-catalyzed conditions to deliver the tetrahydro-4H-pyran-4-ones with high diastereoselectivity. An intramolecular aldol condensation under mild basic conditions and palladium-catalyzed oxidative aromatization was developed for the synthesis of hexahydro-6H-isochromen-6-ones and isochromanols, respectively, from highly substituted tetrahydro-4H-pyran-4-ones with excellent yield and diastereoselectivity. Overall, this work demonstrates the synthetic potential toward the synthesis of oxacycles like tetrahydro-4H-pyran-4-ones, hexahydro-6H-isochromen-6-ones, and isochromanols via an atom-economic catalysis.
Collapse
Affiliation(s)
- Nabakumar Bera
- Department of Chemistry, National Institute of Technology, Rourkela, Rourkela769008, India
| | - Shantanu Samanta
- Department of Chemistry, National Institute of Technology, Rourkela, Rourkela769008, India
| | - Debayan Sarkar
- Department of Chemistry, National Institute of Technology, Rourkela, Rourkela769008, India
| |
Collapse
|
20
|
Zhang SX, Ding Y, Wang JJ, Shen C, Zhou X, Chu XQ, Ma M, Shen ZL. Titanium(IV)-Mediated Ring-Opening/Dehydroxylative Cross-Coupling of Diaryl-Substituted Methanols with Cyclopropanol Derivatives. J Org Chem 2021; 86:15753-15760. [PMID: 34628862 DOI: 10.1021/acs.joc.1c01790] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
A titanium(IV)-mediated ring-opening/dehydroxylative cross-coupling of diaryl-substituted methanols with a cyclopropanol derivative was developed. The reactions proceeded efficiently to provide synthetically useful γ,γ-diaryl esters in moderate to good yields, which could be applied to the functionalization of complex molecules derived from bioactive fenofibrate and isoxepac and the synthesis of a precursor of Zoloft.
Collapse
Affiliation(s)
- Si-Xuan Zhang
- Technical Institute of Fluorochemistry (TIF), Institute of Advanced Synthesis, School of Chemistry and Molecular Engineering, Nanjing Tech University, Nanjing 211816, China
| | - Yan Ding
- Technical Institute of Fluorochemistry (TIF), Institute of Advanced Synthesis, School of Chemistry and Molecular Engineering, Nanjing Tech University, Nanjing 211816, China
| | - Jun-Jie Wang
- Technical Institute of Fluorochemistry (TIF), Institute of Advanced Synthesis, School of Chemistry and Molecular Engineering, Nanjing Tech University, Nanjing 211816, China
| | - Chuanji Shen
- College of Biological, Chemical Science and Engineering, Jiaxing University, 118 Jiahang Road, Jiaxing 314001, China
| | - Xiaocong Zhou
- College of Biological, Chemical Science and Engineering, Jiaxing University, 118 Jiahang Road, Jiaxing 314001, China
| | - Xue-Qiang Chu
- Technical Institute of Fluorochemistry (TIF), Institute of Advanced Synthesis, School of Chemistry and Molecular Engineering, Nanjing Tech University, Nanjing 211816, China
| | - Mengtao Ma
- College of Science, Nanjing Forestry University, Nanjing 210037, China
| | - Zhi-Liang Shen
- Technical Institute of Fluorochemistry (TIF), Institute of Advanced Synthesis, School of Chemistry and Molecular Engineering, Nanjing Tech University, Nanjing 211816, China
| |
Collapse
|
21
|
Affiliation(s)
- Yen-Chu Lu
- Department of Chemistry, Rice University, 6500 Main St., Houston, Texas 77005, United States
| | - Julian G. West
- Department of Chemistry, Rice University, 6500 Main St., Houston, Texas 77005, United States
| |
Collapse
|
22
|
Lou C, Wang X, Lv L, Li Z. Iron-Catalyzed Ring-Opening Reactions of Cyclopropanols with Alkenes and TBHP: Synthesis of 5-Oxo Peroxides. Org Lett 2021; 23:7608-7612. [PMID: 34528812 DOI: 10.1021/acs.orglett.1c02824] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The ring opening of cyclopropanols is rarely used in multicomponent reactions. Herein we report the three-component reaction of cyclopropanols with alkenes and tert-butyl hydroperoxide (TBHP) catalyzed by an iron catalyst. This protocol enables the incorporation of both the β-carbonyl fragment and a peroxy unit across the C═C double bond regioselectively, thus allowing an efficient, facile access to 5-oxo peroxides. Modification of the biologically active molecules and various downstream derivatizations of the peroxides are also demonstrated.
Collapse
Affiliation(s)
- Chenhao Lou
- Department of Chemistry, Renmin University of China, Beijing 100872, China
| | - Xin Wang
- Department of Chemistry, Renmin University of China, Beijing 100872, China
| | - Leiyang Lv
- Department of Chemistry, Renmin University of China, Beijing 100872, China
| | - Zhiping Li
- Department of Chemistry, Renmin University of China, Beijing 100872, China
| |
Collapse
|
23
|
Wang S, Miao E, Wang H, Song B, Huang W, Yang W. Rh-Catalyzed cascade C-H activation/C-C cleavage/cyclization of carboxylic acids with cyclopropanols. Chem Commun (Camb) 2021; 57:5929-5932. [PMID: 34013935 DOI: 10.1039/d1cc01778k] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Merging both C-H and C-C activation in a tandem process is a marked challenge. A novel Rh(iii)-catalyzed C-H activation/ring opening C-C cleavage/cyclization of carboxylic acids with cyclopropanols was developed for the synthesis of 3-substituted phthalides and α,β-butenolides. This reaction displays excellent functional group tolerance with respect to both carboxylic acids and cyclopropanols and features relatively mild conditions. Remarkably, the utility of this method was highlighted by the rapid construction of bioactive compounds bearing a 3-substituted phthalide framework via late-stage functionalization.
Collapse
Affiliation(s)
- Siqi Wang
- CAS Key Laboratory of Receptor Research, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zuchongzhi Road, Pudong, Shanghai 201203, China. and University of Chinese Academy of Sciences, No. 19A Yuquan Road, Beijing 100049, China
| | - Erfei Miao
- CAS Key Laboratory of Receptor Research, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zuchongzhi Road, Pudong, Shanghai 201203, China. and University of Chinese Academy of Sciences, No. 19A Yuquan Road, Beijing 100049, China
| | - Hao Wang
- CAS Key Laboratory of Receptor Research, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zuchongzhi Road, Pudong, Shanghai 201203, China. and University of Chinese Academy of Sciences, No. 19A Yuquan Road, Beijing 100049, China
| | - Bichao Song
- CAS Key Laboratory of Receptor Research, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zuchongzhi Road, Pudong, Shanghai 201203, China. and University of Chinese Academy of Sciences, No. 19A Yuquan Road, Beijing 100049, China
| | - Wei Huang
- CAS Key Laboratory of Receptor Research, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zuchongzhi Road, Pudong, Shanghai 201203, China. and University of Chinese Academy of Sciences, No. 19A Yuquan Road, Beijing 100049, China and School of Pharmaceutical Science and Technology, Hangzhou Institute of Advanced Study, Hangzhou 310024, China
| | - Weibo Yang
- CAS Key Laboratory of Receptor Research, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zuchongzhi Road, Pudong, Shanghai 201203, China. and University of Chinese Academy of Sciences, No. 19A Yuquan Road, Beijing 100049, China and School of Pharmaceutical Science and Technology, Hangzhou Institute of Advanced Study, Hangzhou 310024, China
| |
Collapse
|
24
|
Wang J, Liu X, Wu Z, Li F, Zhang ML, Mi Y, Wei J, Zhou Y, Liu L. Ag-Catalyzed ring-opening of tertiary cycloalkanols for C-H functionalization of cyclic aldimines. Chem Commun (Camb) 2021; 57:1506-1509. [PMID: 33443251 DOI: 10.1039/d0cc07181a] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
We firstly describe a silver-catalyzed direct C-H functionalization of cyclic aldimines with cyclopropanols and cyclobutanols via a radical-mediated C-C bond cleavage strategy. The desired products were generated in decent yields with wide substrate scope under mild reaction conditions. In addition, a gram-scale reaction and synthetic transformation of the product were performed.
Collapse
Affiliation(s)
- Jingjing Wang
- Henan Engineering Laboratory of Green Synthesis for Pharmaceuticals, College of Chemistry and Chemical Engineering, Shangqiu Normal University, Shangqiu, Henan 476000, China.
| | - Xue Liu
- College of Chemistry, Zhengzhou University, Zhengzhou, Henan 450052, China
| | - Ziyan Wu
- Henan Engineering Laboratory of Green Synthesis for Pharmaceuticals, College of Chemistry and Chemical Engineering, Shangqiu Normal University, Shangqiu, Henan 476000, China.
| | - Feng Li
- Henan Engineering Laboratory of Green Synthesis for Pharmaceuticals, College of Chemistry and Chemical Engineering, Shangqiu Normal University, Shangqiu, Henan 476000, China.
| | - Ming-Liang Zhang
- Henan Engineering Laboratory of Green Synthesis for Pharmaceuticals, College of Chemistry and Chemical Engineering, Shangqiu Normal University, Shangqiu, Henan 476000, China.
| | - Yiman Mi
- Henan Engineering Laboratory of Green Synthesis for Pharmaceuticals, College of Chemistry and Chemical Engineering, Shangqiu Normal University, Shangqiu, Henan 476000, China.
| | - Junhao Wei
- Henan Engineering Laboratory of Green Synthesis for Pharmaceuticals, College of Chemistry and Chemical Engineering, Shangqiu Normal University, Shangqiu, Henan 476000, China.
| | - Yao Zhou
- College of Chemistry and Chemical Engineering, Hubei Normal University, Huangshi, Hubei 435002, China.
| | - Lantao Liu
- Henan Engineering Laboratory of Green Synthesis for Pharmaceuticals, College of Chemistry and Chemical Engineering, Shangqiu Normal University, Shangqiu, Henan 476000, China. and College of Chemistry, Zhengzhou University, Zhengzhou, Henan 450052, China
| |
Collapse
|
25
|
McDonald TR, Mills LR, West MS, Rousseaux SAL. Selective Carbon–Carbon Bond Cleavage of Cyclopropanols. Chem Rev 2020; 121:3-79. [DOI: 10.1021/acs.chemrev.0c00346] [Citation(s) in RCA: 99] [Impact Index Per Article: 19.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Affiliation(s)
- Tyler R. McDonald
- Davenport Research Laboratories, Department of Chemistry, University of Toronto, 80 St. George Street, Toronto, ON M5S 3H6, Canada
| | - L. Reginald Mills
- Davenport Research Laboratories, Department of Chemistry, University of Toronto, 80 St. George Street, Toronto, ON M5S 3H6, Canada
| | - Michael S. West
- Davenport Research Laboratories, Department of Chemistry, University of Toronto, 80 St. George Street, Toronto, ON M5S 3H6, Canada
| | - Sophie A. L. Rousseaux
- Davenport Research Laboratories, Department of Chemistry, University of Toronto, 80 St. George Street, Toronto, ON M5S 3H6, Canada
| |
Collapse
|
26
|
Liu X, Du D, Li S, Wang X, Xu C, Wang M. Defluorinative Ring‐Opening Indolylation of Siloxydifluorocyclopropanes: Controlled Synthesis of α‐Fluoro‐β‐Indolyl‐Propanones for Carbazole Construction. Adv Synth Catal 2020. [DOI: 10.1002/adsc.202000865] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Affiliation(s)
- Xiaowei Liu
- Jilin Province Key Laboratory of Organic Functional Molecular Design & Synthesis College of Chemistry Northeast Normal University Changchun 130024 People's Republic of China
| | - Dongxu Du
- Jilin Province Key Laboratory of Organic Functional Molecular Design & Synthesis College of Chemistry Northeast Normal University Changchun 130024 People's Republic of China
| | - Shuting Li
- Jilin Province Key Laboratory of Organic Functional Molecular Design & Synthesis College of Chemistry Northeast Normal University Changchun 130024 People's Republic of China
| | - Xin Wang
- First Hospital of Bethune Jilin University Changchun 130021 People's Republic of China
| | - Cong Xu
- Jilin Province Key Laboratory of Organic Functional Molecular Design & Synthesis College of Chemistry Northeast Normal University Changchun 130024 People's Republic of China
| | - Mang Wang
- Jilin Province Key Laboratory of Organic Functional Molecular Design & Synthesis College of Chemistry Northeast Normal University Changchun 130024 People's Republic of China
| |
Collapse
|
27
|
Cheng BQ, Zhang SX, Cui YY, Chu XQ, Rao W, Xu H, Han GZ, Shen ZL. Copper(II)-Mediated Ring Opening/Alkynylation of Tertiary Cyclopropanols by Using Nonmodified Terminal Alkynes. Org Lett 2020; 22:5456-5461. [DOI: 10.1021/acs.orglett.0c01828] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Bu-Qing Cheng
- Institute of Advanced Synthesis, School of Chemistry and Molecular Engineering, Nanjing Tech University, Nanjing 211816, China
| | - Si-Xuan Zhang
- Institute of Advanced Synthesis, School of Chemistry and Molecular Engineering, Nanjing Tech University, Nanjing 211816, China
| | - Yan-Ying Cui
- Institute of Advanced Synthesis, School of Chemistry and Molecular Engineering, Nanjing Tech University, Nanjing 211816, China
| | - Xue-Qiang Chu
- Institute of Advanced Synthesis, School of Chemistry and Molecular Engineering, Nanjing Tech University, Nanjing 211816, China
| | - Weidong Rao
- Jiangsu Provincial Key Lab for the Chemistry and Utilization of Agro-Forest Biomass, College of Chemical Engineering, Nanjing Forestry University, Nanjing 210037, China
| | - Haiyan Xu
- School of Environmental and Chemical Engineering, Jiangsu University of Science and Technology, Zhenjiang, Jiangsu 212003, China
| | - Guo-Zhi Han
- Institute of Advanced Synthesis, School of Chemistry and Molecular Engineering, Nanjing Tech University, Nanjing 211816, China
| | - Zhi-Liang Shen
- Institute of Advanced Synthesis, School of Chemistry and Molecular Engineering, Nanjing Tech University, Nanjing 211816, China
| |
Collapse
|
28
|
Li J, Zheng Y, Huang M, Li W. Ni-Catalyzed Denitrogenative Cross-Coupling of Benzotriazinones and Cyclopropanols: An Easy Access to Functionalized β-Aryl Ketones. Org Lett 2020; 22:5020-5024. [DOI: 10.1021/acs.orglett.0c01579] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Affiliation(s)
- Jincan Li
- College of Science, University of Shanghai for Science and Technology, Shanghai 200093, China
| | - Yan Zheng
- College of Science, University of Shanghai for Science and Technology, Shanghai 200093, China
| | - Mingxian Huang
- College of Science, University of Shanghai for Science and Technology, Shanghai 200093, China
| | - Wanfang Li
- College of Science, University of Shanghai for Science and Technology, Shanghai 200093, China
| |
Collapse
|
29
|
Zeng X, Wang X, Zhang Y, Zhu L, Zhao Y. A silver-catalyzed radical ring-opening reaction of cyclopropanols with sulfonyl oxime ethers. Org Biomol Chem 2020; 18:3734-3739. [PMID: 32364186 DOI: 10.1039/d0ob00055h] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
A silver-catalyzed ring-opening reaction of cyclopropanols with sulfonyl oxime ethers has been developed. The protocol was conducted under mild reaction conditions to provide a series of γ-keto oxime ethers with moderate to good yields. The reaction proceeded in a stereoselective manner for CF3-containing oxime ethers to provide a single stereoisomer, while an inseparable E and Z mixture was obtained for CN-containing oxime ethers. Mechanistic studies indicate that the reaction proceeded via a radical mechanism.
Collapse
Affiliation(s)
- Xiaobao Zeng
- School of Pharmacy, Nantong University, 19 Qixiu Road, Nantong, Jiangsu Province 226001, People's Republic of China.
| | - Xin Wang
- School of Pharmacy, Nantong University, 19 Qixiu Road, Nantong, Jiangsu Province 226001, People's Republic of China.
| | - Yanan Zhang
- School of Pharmacy, Nantong University, 19 Qixiu Road, Nantong, Jiangsu Province 226001, People's Republic of China.
| | - Li Zhu
- School of Pharmacy, Nantong University, 19 Qixiu Road, Nantong, Jiangsu Province 226001, People's Republic of China.
| | - Yu Zhao
- School of Pharmacy, Nantong University, 19 Qixiu Road, Nantong, Jiangsu Province 226001, People's Republic of China.
| |
Collapse
|
30
|
Laktsevich-Iskryk MV, Varabyeva NA, Kazlova VV, Zhabinskii VN, Khripach VA, Hurski AL. Visible-Light-Promoted Catalytic Ring-Opening Isomerization of 1,2-Disubstituted Cyclopropanols to Linear Ketones. European J Org Chem 2020. [DOI: 10.1002/ejoc.202000094] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Affiliation(s)
| | - Nastassia A. Varabyeva
- Institute of Bioorganic Chemistry; National Academy of Sciences of Belarus; Kuprevich str. 5/2 220141 Minsk Belarus
| | - Volha V. Kazlova
- Institute of Bioorganic Chemistry; National Academy of Sciences of Belarus; Kuprevich str. 5/2 220141 Minsk Belarus
| | - Vladimir N. Zhabinskii
- Institute of Bioorganic Chemistry; National Academy of Sciences of Belarus; Kuprevich str. 5/2 220141 Minsk Belarus
| | - Vladimir A. Khripach
- Institute of Bioorganic Chemistry; National Academy of Sciences of Belarus; Kuprevich str. 5/2 220141 Minsk Belarus
| | - Alaksiej L. Hurski
- Institute of Bioorganic Chemistry; National Academy of Sciences of Belarus; Kuprevich str. 5/2 220141 Minsk Belarus
| |
Collapse
|
31
|
Le Bras J, Muzart J. Pd-catalyzed reactions of cyclopropanols, cyclobutanols and cyclobutenols. Tetrahedron 2020. [DOI: 10.1016/j.tet.2019.130879] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
32
|
Hong L, Spielmeyer A, Pfeiffer J, Wegner HA. Domino lignin depolymerization and reconnection to complex molecules mediated by boryl radicals. Catal Sci Technol 2020. [DOI: 10.1039/d0cy00558d] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Lignin has been demonstrated as a source of complex molecules via a boryl-mediated domino degradation/reconnection process.
Collapse
Affiliation(s)
- Longcheng Hong
- Institute of Organic Chemistry
- Justus Liebig University
- 35392 Gießen
- Germany
- Center for Materials Research (LaMa)
| | - Astrid Spielmeyer
- Institute of Food Chemistry and Food Biotechnology
- Justus Liebig University
- 35392 Gießen
- Germany
| | - Janin Pfeiffer
- Institute of Food Chemistry and Food Biotechnology
- Justus Liebig University
- 35392 Gießen
- Germany
| | - Hermann A. Wegner
- Institute of Organic Chemistry
- Justus Liebig University
- 35392 Gießen
- Germany
- Center for Materials Research (LaMa)
| |
Collapse
|