1
|
Wang T, Dai JL, Jiang YF, Yan S, Wang JY. Construction of C-S and C-Se Bonds via Photocatalytic Aromatization-Driven Deconstructive Diversification of Spiro-Dihydroquinazolinones Derived from Unstrained Ketones. J Org Chem 2025; 90:6776-6788. [PMID: 40360484 DOI: 10.1021/acs.joc.5c00499] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/15/2025]
Abstract
A novel and robust deconstructive functionalization reaction of spiro-dihydroquinazolinones with sulfenylating reagents in the presence of base has been realized under visible light irradiation. This reaction enabled the direct ring-opening of unstrained cyclic ring systems, producing skeletally diverse functionalized quinazolinones with moderate to good yields. A range variety of sulfenylating reagents including diaryl disulfide, thiosulfonate, dithiosulfonate and 1-[(trifluoromethyl)thio]-2,5-pyrrolidinedione were compatible for this transformation. In addition, diaryl diselenide and selenosulfonate could also couple with spiro-dihydroquinazolinones to form C-Se Bonds. Mechanistic studies revealed that the reaction proceeds via a radical-radical coupling pathway.
Collapse
Affiliation(s)
- Tao Wang
- School of Pharmacy, Changzhou University, Changzhou, Jiangsu 213164, P. R. China
| | - Jin-Long Dai
- School of Pharmacy, Changzhou University, Changzhou, Jiangsu 213164, P. R. China
| | - Yi-Feng Jiang
- School of Pharmacy, Changzhou University, Changzhou, Jiangsu 213164, P. R. China
| | - Shenghu Yan
- School of Pharmacy, Changzhou University, Changzhou, Jiangsu 213164, P. R. China
| | - Jia-Yin Wang
- School of Pharmacy, Changzhou University, Changzhou, Jiangsu 213164, P. R. China
| |
Collapse
|
2
|
Chen X, Qian BC. Benzothiazolines Acting as Carbanion and Radical Transfer Reagents in Carbon-Carbon Bond Construction. Molecules 2025; 30:1711. [PMID: 40333676 PMCID: PMC12029269 DOI: 10.3390/molecules30081711] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2025] [Revised: 04/01/2025] [Accepted: 04/07/2025] [Indexed: 05/09/2025] Open
Abstract
Traditionally employed as hydrogenation reagents, benzothiazolines have emerged as versatile carbanion and radical transfer reagents, playing a vital role in the construction of various carbon-carbon bonds. The cutting-edge progress in photochemistry and radical chemistry have prompted the study of visible light-driven radical reactions, bringing benzothiazolines into a vibrant focus. Their chemical processes have been uncovered to encompass a variety of activation mechanisms, with five distinct modes having been identified. This work reviews the innovative applications of benzothiazolines as donors of alkyl or acyl groups, achieving hydroalkylation or hydroacylation and alkyl or acyl substitution. By examining their diverse activation mechanisms, this review highlights the potential of benzothiazolines serving as alkyl and acyl groups for further research and development. Moreover, this review will offer exemplary applications and inspiration to synthetic chemists, contributing to the ongoing evolution of benzothiazolines utility in organic synthesis.
Collapse
Affiliation(s)
| | - Bao-Chen Qian
- College of Medical Engineering, Jining Medical University, Jining 272000, China
| |
Collapse
|
3
|
Jing Y, Zhang L, Qiu L, Fang Y. Modular reductive radical-polar crossover-based acyl migration reactions of N-vinylimides with alkyl, silyl, and acyl radicals. RSC Adv 2025; 15:11582-11586. [PMID: 40236577 PMCID: PMC11997646 DOI: 10.1039/d5ra01542a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2025] [Accepted: 03/25/2025] [Indexed: 04/17/2025] Open
Abstract
Herein, novel SET reduction-based N → C acyl migration protocols for the preparation of functionalized α-amino ketones were successfully developed. In addition to alkyl and silyl radicals, acyl radicals derived from dihydroquinazolinones or acyl oxime acetates could react with enamides to give various 1,4-diketones. These photocatalytic radical addition/acyl migration cascade reactions feature broad substrate scope, good functional group compatibility, and mild reaction conditions.
Collapse
Affiliation(s)
- Yutao Jing
- College of Chemistry and Chemical Engineering, Taiyuan University of Technology No. 79 West Street Yingze Taiyuan 030024 China
| | - Li Zhang
- College of Basic Science, Zhejiang Pharmaceutical University No. 666 Siming Road Ningbo 315500 China
| | - Li Qiu
- College of Chemistry and Chemical Engineering, Taiyuan University of Technology No. 79 West Street Yingze Taiyuan 030024 China
| | - Yewen Fang
- School of Materials and Chemical Engineering, Ningbo University of Technology No. 201 Fenghua Road Ningbo 315211 China
- Zhejiang Institute of Tianjin University No. 201 Fenghua Road Ningbo 315211 China
| |
Collapse
|
4
|
Pal A, Sarkar S, Shibu A, Maity P, Sahoo B. Photocatalytic C-C bond thio(seleno)esterification of 1,2-diketone-derived pro-aromatic intermediates. Chem Commun (Camb) 2025; 61:4714-4717. [PMID: 40018890 DOI: 10.1039/d4cc06735e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/01/2025]
Abstract
We report an organophotocatalyst-enabled oxidant-free C-S/C-Se bond coupling of (un)symmetrical 1,2-diketones via pro-aromatic dihydroquinazolinones/benzothiazolines, employing readily accessible disulfides/diselenides. In this scalable and redox-neutral method, various dialkyl, di(hetero)aryl, and alkyl-aryl 1,2-diketones are expediently converted to S-aryl (S-alkyl) alkyl/(hetero)aryl thioesters and Se-alkyl aryl selenoesters with broad functional group compatibility in high efficiency.
Collapse
Affiliation(s)
- Amit Pal
- School of Chemistry, Indian Institute of Science Education and Research Thiruvananthapuram, Thiruvananthapuram 695551, Kerala, India.
| | - Sudip Sarkar
- School of Chemistry, Indian Institute of Science Education and Research Thiruvananthapuram, Thiruvananthapuram 695551, Kerala, India.
| | - Aaron Shibu
- School of Chemistry, Indian Institute of Science Education and Research Thiruvananthapuram, Thiruvananthapuram 695551, Kerala, India.
| | - Prakash Maity
- School of Chemistry, Indian Institute of Science Education and Research Thiruvananthapuram, Thiruvananthapuram 695551, Kerala, India.
| | - Basudev Sahoo
- School of Chemistry, Indian Institute of Science Education and Research Thiruvananthapuram, Thiruvananthapuram 695551, Kerala, India.
| |
Collapse
|
5
|
Huang X, Xiong R, Yi C, Bai M, Tang Y, Xu S, Li Y. A Radical Precursor Based on the Aromatization of p-Quinol Esters Enabled by Pyridine-Boryl Radical. J Org Chem 2025; 90:3093-3100. [PMID: 39948718 DOI: 10.1021/acs.joc.4c02831] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/01/2025]
Abstract
A class of prearomatic carboxylic acid p-quinol ester radical precursors has been developed successfully, which could undergo homolytic cleavage of the para C-O bond of p-quinol esters via pyridine-boryl radical-induced aromatization in the presence of pyridines and diboron reagents, affording the corresponding alkyl radical via decarboxylation from the carboxyl radical in situ. In addition, the prearomatic radical precursors were further applied in radical substitution with phenylsulfonyl compounds and radical self-coulpings. This method not only provides a new approach to the generation of a radical intermediate but also expands the application of boron radicals.
Collapse
Affiliation(s)
- Xiaoli Huang
- Department of Material Chemistry, School of Chemistry, Xi'an Jiaotong University, Xi'an 710049, P. R. China
- Shanxi Beihua Guanlv Chemical Co., LTD, Shanxi Yongji 044500, P. R. China
| | - Ruji Xiong
- School of Pharmacy, Health Science Center, Xi'an Jiaotong University, Xi'an 710049, P. R. China
| | - Cui Yi
- Department of Material Chemistry, School of Chemistry, Xi'an Jiaotong University, Xi'an 710049, P. R. China
| | - Meiqi Bai
- Department of Material Chemistry, School of Chemistry, Xi'an Jiaotong University, Xi'an 710049, P. R. China
| | - Yuhai Tang
- Department of Material Chemistry, School of Chemistry, Xi'an Jiaotong University, Xi'an 710049, P. R. China
| | - Silong Xu
- Department of Material Chemistry, School of Chemistry, Xi'an Jiaotong University, Xi'an 710049, P. R. China
| | - Yang Li
- Department of Material Chemistry, School of Chemistry, Xi'an Jiaotong University, Xi'an 710049, P. R. China
| |
Collapse
|
6
|
Bag S, Dhibar A, Moorthy S, Ashokan A, Sahoo B. Photocatalytic C-C Bond Azidation and Cyanation of Acyclic Ketones via a Pro-aromatic Intermediate. Org Lett 2025; 27:783-788. [PMID: 39792127 DOI: 10.1021/acs.orglett.4c04443] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2025]
Abstract
Herein, we report a formal C-C bond azidation and cyanation of unactivated aliphatic ketones using commercially available tosyl azide and cyanide, respectively. A visible-light-mediated organophotocatalyst enables radical azidation and cyanation of ketone-derived pro-aromatic dihydroquinazolinones (under mostly redox-neutral conditions) as supported by preliminary mechanistic studies. These metal-free and scalable protocols can be used to synthesize tertiary, secondary, and primary alkyl azides and nitriles with good functional group tolerance and postsynthetic diversification of the azide group, including bioconjugation.
Collapse
Affiliation(s)
- Sandip Bag
- School of Chemistry, Indian Institute of Science Education and Research Thiruvananthapuram, Thiruvananthapuram 695551, Kerala, India
| | - Amit Dhibar
- School of Chemistry, Indian Institute of Science Education and Research Thiruvananthapuram, Thiruvananthapuram 695551, Kerala, India
| | - Sruthi Moorthy
- School of Chemistry, Indian Institute of Science Education and Research Thiruvananthapuram, Thiruvananthapuram 695551, Kerala, India
| | - Akhila Ashokan
- School of Chemistry, Indian Institute of Science Education and Research Thiruvananthapuram, Thiruvananthapuram 695551, Kerala, India
| | - Basudev Sahoo
- School of Chemistry, Indian Institute of Science Education and Research Thiruvananthapuram, Thiruvananthapuram 695551, Kerala, India
| |
Collapse
|
7
|
Šimek M, Mahato S, Dehnert BW, Kwon O. Deacylative Homolysis of Ketone C(sp 3)-C(sp 2) Bonds: Streamlining Natural Product Transformations. J Am Chem Soc 2025; 147:2664-2674. [PMID: 39772625 PMCID: PMC12075819 DOI: 10.1021/jacs.4c15045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2025]
Abstract
The homolytic cleavage of C-C bonds adjacent to specific functional groups has lately emerged as a versatile approach for molecular diversification. Despite the ubiquity and synthetic utility of ketones, radical fragmentation of their α-C-C bonds has proven to be a formidable challenge. Here, we present a broadly applicable deacylative strategy designed to homolytically cleave aliphatic ketones of various complexities, including transformations of cycloalkanones into carboxylic acids tethered to C-centered free radicals that can be engaged in diverse radical-based processes. The method involves ketone activation through treatment with hydrogen peroxide, yielding gem-dihydroperoxides. Subsequent single-electron-transfer reduction mediated by a low-valent metal complex generates alkyl radicals that can be captured selectively with a radicophile of choice, including through catalytic cross-coupling. The logic of our deacylative functionalization is exemplified by the total synthesis of 14 natural products, one analogue, and two drugs starting from readily available natural products, showcasing its transformative power in complex settings. This approach obviates the need for complex reagents and allows the controlled conversion of ketones to reconstructed products, making the process highly applicable across a spectrum of domains.
Collapse
Affiliation(s)
- Michal Šimek
- Department of Chemistry and Biochemistry, University of California–Los Angeles, Los Angeles, California 90095-1569, United States; Present Address: Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences, Prague 160 00, Czech Republic
| | - Sujit Mahato
- Department of Chemistry and Biochemistry, University of California–Los Angeles, Los Angeles, California 90095-1569, United States
| | - Brady W. Dehnert
- Department of Chemistry and Biochemistry, University of California–Los Angeles, Los Angeles, California 90095-1569, United States
| | - Ohyun Kwon
- Department of Chemistry and Biochemistry, University of California–Los Angeles, Los Angeles, California 90095-1569, United States
| |
Collapse
|
8
|
Liu W, Liu X, Liu R, Zhao H, Xia Z. Self-Catalyzed, Visible-Light-Induced Selective C3-H Aroylation of Quinoxalin-2(1 H)-ones with Arylaldehydes by Air as an Oxidant. J Org Chem 2024; 89:7233-7242. [PMID: 38666895 DOI: 10.1021/acs.joc.4c00631] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/18/2024]
Abstract
A self-catalyzed, visible-light-induced, directly selective C3-H aroylation of quinoxalin-2(1H)-ones via energy transfer and hydrogen atom transfer (HAT) catalysis has been developed. The method is highly atom-economical, eco-friendly, and easy to handle. Notably, the reaction proceeded efficiently with ambient air as the sole oxidant at room temperature.
Collapse
Affiliation(s)
- Wenhao Liu
- Key Laboratory for Northern Urban Agriculture of Ministry of Agriculture and Rural Affairs, Beijing University of Agriculture, 102206 Beijing, China
| | - Xingyuan Liu
- Key Laboratory for Northern Urban Agriculture of Ministry of Agriculture and Rural Affairs, Beijing University of Agriculture, 102206 Beijing, China
| | - Runjiao Liu
- Key Laboratory for Northern Urban Agriculture of Ministry of Agriculture and Rural Affairs, Beijing University of Agriculture, 102206 Beijing, China
| | - Hanqing Zhao
- Key Laboratory for Northern Urban Agriculture of Ministry of Agriculture and Rural Affairs, Beijing University of Agriculture, 102206 Beijing, China
| | - Zihao Xia
- Key Laboratory for Northern Urban Agriculture of Ministry of Agriculture and Rural Affairs, Beijing University of Agriculture, 102206 Beijing, China
| |
Collapse
|
9
|
Patel SS, Gupta S, Tripathi CB. Organocatalyzed Hydroacylation of Enones by Photosensitization of Acyl Silanes. Chem Asian J 2024:e202400240. [PMID: 38600748 DOI: 10.1002/asia.202400240] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Revised: 04/10/2024] [Accepted: 04/10/2024] [Indexed: 04/12/2024]
Abstract
A mild protocol for hydroacylation of enones through photosensitization of acyl silanes with thioxanthone under blue light (455 nm) irradiation is reported. A Brønsted acid is used as a cocatalyst in the reaction. The versatility of the method is demonstrated through inter- and intramolecular hydroacylation reaction. The hydroacylation product is applied for synthesizing an anti-HCV agent. Mechanistic insights are also provided through control experiments.
Collapse
Affiliation(s)
- Shiv Shankar Patel
- Medicinal & Process Chemistry Division, CSIR-Central Drug Research Institute, Lucknow, 226031, India
| | - Samiksha Gupta
- Medicinal & Process Chemistry Division, CSIR-Central Drug Research Institute, Lucknow, 226031, India
| | - Chandra Bhushan Tripathi
- Medicinal & Process Chemistry Division, CSIR-Central Drug Research Institute, Lucknow, 226031, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| |
Collapse
|
10
|
Wang J, Niu K, Zhu H, Xu C, Deng C, Zhao W, Huang P, Lin H, Li D, Rosen J, Liu P, Allegretti F, Barth JV, Yang B, Björk J, Li Q, Chi L. Universal inter-molecular radical transfer reactions on metal surfaces. Nat Commun 2024; 15:3030. [PMID: 38589464 PMCID: PMC11001993 DOI: 10.1038/s41467-024-47252-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Accepted: 03/23/2024] [Indexed: 04/10/2024] Open
Abstract
On-surface synthesis provides tools to prepare low-dimensional supramolecular structures. Traditionally, reactive radicals are a class of single-electron species, serving as exceptional electron-withdrawing groups. On metal surfaces, however, such species are affected by conduction band screening effects that may even quench their unpaired electron characteristics. As a result, radicals are expected to be less active, and reactions catalyzed by surface-stabilized radicals are rarely reported. Herein, we describe a class of inter-molecular radical transfer reactions on metal surfaces. With the assistance of aryl halide precursors, the coupling of terminal alkynes is steered from non-dehydrogenated to dehydrogenated products, resulting in alkynyl-Ag-alkynyl bonds. Dehalogenated molecules are fully passivated by detached hydrogen atoms. The reaction mechanism is unraveled by various surface-sensitive technologies and density functional theory calculations. Moreover, we reveal the universality of this mechanism on metal surfaces. Our studies enrich the on-surface synthesis toolbox and develop a pathway for producing low-dimensional organic materials.
Collapse
Affiliation(s)
- Junbo Wang
- School of Physics and Information Technology, Shaanxi Normal University, Xi'an, 710119, China
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Soochow University, Suzhou, 215123, China
| | - Kaifeng Niu
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Soochow University, Suzhou, 215123, China
- Department of Physics, Chemistry and Biology, IFM, Linköping University, Linköping, 58183, Sweden
| | - Huaming Zhu
- School of Physics and Information Technology, Shaanxi Normal University, Xi'an, 710119, China
| | - Chaojie Xu
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Soochow University, Suzhou, 215123, China
| | - Chuan Deng
- School of Physics and Information Technology, Shaanxi Normal University, Xi'an, 710119, China
| | - Wenchao Zhao
- Physics Department E20, Technical University of Munich, James-Franck-Str. 1, 85748, Garching, Germany
| | - Peipei Huang
- School of Physics and Information Technology, Shaanxi Normal University, Xi'an, 710119, China
| | - Haiping Lin
- School of Physics and Information Technology, Shaanxi Normal University, Xi'an, 710119, China
| | - Dengyuan Li
- Key Laboratory for Advanced Materials and Feringa Nobel Prize Scientist Joint Research Center, Frontiers Science Center for Materiobiology and Dynamic Chemistry, State Key Laboratory of Chemical Engineering, School of Chemistry and Molecular Engineering, East China University of Science & Technology, Shanghai, 200237, China
| | - Johanna Rosen
- Department of Physics, Chemistry and Biology, IFM, Linköping University, Linköping, 58183, Sweden
| | - Peinian Liu
- Key Laboratory for Advanced Materials and Feringa Nobel Prize Scientist Joint Research Center, Frontiers Science Center for Materiobiology and Dynamic Chemistry, State Key Laboratory of Chemical Engineering, School of Chemistry and Molecular Engineering, East China University of Science & Technology, Shanghai, 200237, China
| | - Francesco Allegretti
- Physics Department E20, Technical University of Munich, James-Franck-Str. 1, 85748, Garching, Germany
| | - Johannes V Barth
- Physics Department E20, Technical University of Munich, James-Franck-Str. 1, 85748, Garching, Germany
| | - Biao Yang
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Soochow University, Suzhou, 215123, China.
- Physics Department E20, Technical University of Munich, James-Franck-Str. 1, 85748, Garching, Germany.
| | - Jonas Björk
- Department of Physics, Chemistry and Biology, IFM, Linköping University, Linköping, 58183, Sweden.
| | - Qing Li
- School of Physics and Information Technology, Shaanxi Normal University, Xi'an, 710119, China.
| | - Lifeng Chi
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Soochow University, Suzhou, 215123, China.
- Department of Materials Science and Engineering, Macau University of Science and Technology, Macau, 999078, China.
| |
Collapse
|
11
|
Wu H, Chen S, Liu C, Zhao Q, Wang Z, Jin Q, Sun S, Guo J, He X, Walsh PJ, Shang Y. Construction of C-S and C-Se Bonds from Unstrained Ketone Precursors under Photoredox Catalysis. Angew Chem Int Ed Engl 2024; 63:e202314790. [PMID: 38185472 DOI: 10.1002/anie.202314790] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2023] [Revised: 12/23/2023] [Accepted: 01/03/2024] [Indexed: 01/09/2024]
Abstract
A mild photoredox catalyzed construction of sulfides, disulfides, selenides, sulfoxides and sulfones from unstrained ketone precursors is introduced. Combination of this deacylative process with SN 2 or coupling reactions provides novel and convenient modular strategies toward unsymmetrical or symmetric disulfides. Reactivity studies favor a bromine radical that initiates a HAT (Hydrogen Atom Transfer) from the aminal intermediate resulting in expulsion of a C-centered radical that is intercepted to make C-S and C-Se bonds. Gram scale reactions, broad substrate scope and tolerance towards various functional groups render this method appealing for future applications in the synthesis of organosulfur and selenium complexes.
Collapse
Affiliation(s)
- Hao Wu
- Key Laboratory of Functional Molecular Solids, Ministry of Education, Anhui Laboratory of Molecule-Based Materials (State Key Laboratory Cultivation Base), College of Chemistry and Materials Science, Anhui Normal University, Wuhu, 241000, P. R. China
| | - Shuguang Chen
- Key Laboratory of Functional Molecular Solids, Ministry of Education, Anhui Laboratory of Molecule-Based Materials (State Key Laboratory Cultivation Base), College of Chemistry and Materials Science, Anhui Normal University, Wuhu, 241000, P. R. China
| | - Chunni Liu
- Key Laboratory of Functional Molecular Solids, Ministry of Education, Anhui Laboratory of Molecule-Based Materials (State Key Laboratory Cultivation Base), College of Chemistry and Materials Science, Anhui Normal University, Wuhu, 241000, P. R. China
| | - Quansheng Zhao
- Key Laboratory of Functional Molecular Solids, Ministry of Education, Anhui Laboratory of Molecule-Based Materials (State Key Laboratory Cultivation Base), College of Chemistry and Materials Science, Anhui Normal University, Wuhu, 241000, P. R. China
| | - Zhen Wang
- Key Laboratory of Functional Molecular Solids, Ministry of Education, Anhui Laboratory of Molecule-Based Materials (State Key Laboratory Cultivation Base), College of Chemistry and Materials Science, Anhui Normal University, Wuhu, 241000, P. R. China
| | - Qiren Jin
- Key Laboratory of Functional Molecular Solids, Ministry of Education, Anhui Laboratory of Molecule-Based Materials (State Key Laboratory Cultivation Base), College of Chemistry and Materials Science, Anhui Normal University, Wuhu, 241000, P. R. China
| | - Shijie Sun
- Key Laboratory of Functional Molecular Solids, Ministry of Education, Anhui Laboratory of Molecule-Based Materials (State Key Laboratory Cultivation Base), College of Chemistry and Materials Science, Anhui Normal University, Wuhu, 241000, P. R. China
| | - Jing Guo
- Key Laboratory of Functional Molecular Solids, Ministry of Education, Anhui Laboratory of Molecule-Based Materials (State Key Laboratory Cultivation Base), College of Chemistry and Materials Science, Anhui Normal University, Wuhu, 241000, P. R. China
| | - Xinwei He
- Key Laboratory of Functional Molecular Solids, Ministry of Education, Anhui Laboratory of Molecule-Based Materials (State Key Laboratory Cultivation Base), College of Chemistry and Materials Science, Anhui Normal University, Wuhu, 241000, P. R. China
| | - Patrick J Walsh
- Roy and Diana Vagelos Laboratories Department of Chemistry, University of Pennsylvania 231 South 34th Street, Philadelphia, PA 19104-6323, USA
| | - Yongjia Shang
- Key Laboratory of Functional Molecular Solids, Ministry of Education, Anhui Laboratory of Molecule-Based Materials (State Key Laboratory Cultivation Base), College of Chemistry and Materials Science, Anhui Normal University, Wuhu, 241000, P. R. China
| |
Collapse
|
12
|
Yang ML, Dong CL, Guan Z, He YH. Visible Light-Induced Hydroacylation of Benzylidenemalononitriles with Aroyl Chlorides Using Silane as a Hydrogen Donor. J Org Chem 2024. [PMID: 38163337 DOI: 10.1021/acs.joc.3c02616] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2024]
Abstract
A novel photoredox-catalyzed direct hydroacylation of benzylidenemalononitriles is described. In this method, aroyl chlorides are employed as a readily available and affordable source of acyl groups, while commercially available tris(trimethylsilyl)silane acts as both the hydrogen atom donor and electron donor. By eliminating the requirement for complex synthesis of acyl precursors and hydrogen atom-transfer (HAT) reagents, this approach offers a convenient and efficient strategy for the hydroacylation of benzylidenemalononitriles.
Collapse
Affiliation(s)
- Ming-Lin Yang
- Key Laboratory of Applied Chemistry of Chongqing Municipality, School of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, China
| | - Chun-Lin Dong
- Key Laboratory of Applied Chemistry of Chongqing Municipality, School of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, China
| | - Zhi Guan
- Key Laboratory of Applied Chemistry of Chongqing Municipality, School of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, China
| | - Yan-Hong He
- Key Laboratory of Applied Chemistry of Chongqing Municipality, School of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, China
| |
Collapse
|
13
|
Tsai ZN, Li LY, Paculba AS, Miñoza S, Tsao YT, Lin PS, Liao HH. Pro-aromatic Dihydroquinazolinones - From Multigram Synthesis to Reagents for Gram-scale Metallaphotoredox Reactions. Chem Asian J 2023:e202301004. [PMID: 38102804 DOI: 10.1002/asia.202301004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Revised: 12/14/2023] [Accepted: 12/15/2023] [Indexed: 12/17/2023]
Abstract
Dihydroquinazolinone (DHQZ) has recently been harnessed as a ketone-derived pro-aromatic reagent extensively employed in (metalla)photoredox reactions as versatile group transfer agents. In this work, we outline a column chromatography-free protocol for the multigram-scale synthesis of pro-aromatic DHQZs as well as its use in a gram-scale nickel/photoredox dual-catalyzed cross-coupling in single-batch, photoflow, and simultaneous multiple smaller batches. While the single-batch approach leveraged moderate yields, a simple plug-flow photoreactor also exhibited amenable productivity (up to 45 % yield) despite the use of a heterogeneous base. Meanwhile, performing the metallaphotoredox-catalyzed reaction in multiple smaller batches in an improvised photoreactor facilitated high yields of up to 59 % and good reproducibility, implying a convenient alternative in the absence of photoflow setups.
Collapse
Affiliation(s)
- Zong-Nan Tsai
- Department of Chemistry, National Sun Yat-sen University, Kaohsiung, Taiwan (ROC
| | - Li-Yun Li
- Department of Chemistry, National Sun Yat-sen University, Kaohsiung, Taiwan (ROC
| | - Aira Shayne Paculba
- Department of Chemistry, National Sun Yat-sen University, Kaohsiung, Taiwan (ROC
| | - Shinje Miñoza
- Department of Chemistry, National Sun Yat-sen University, Kaohsiung, Taiwan (ROC
| | - Yong-Ting Tsao
- Department of Chemistry, National Sun Yat-sen University, Kaohsiung, Taiwan (ROC
| | - Pei-Shan Lin
- Department of Chemistry, National Sun Yat-sen University, Kaohsiung, Taiwan (ROC
| | - Hsuan-Hung Liao
- Department of Chemistry, National Sun Yat-sen University, Kaohsiung, Taiwan (ROC
- Department of Applied and Medicinal Chemistry, Kaohsiung Medical University, Kaohsiung, Taiwan (ROC
- Green Hydrogen Research Center, National Sun Yat-sen University, Kaohsiung, Taiwan (ROC
| |
Collapse
|
14
|
Zhang Z, Zhu Q, Pyle D, Zhou X, Dong G. Methyl Ketones as Alkyl Halide Surrogates: A Deacylative Halogenation Approach for Strategic Functional Group Conversions. J Am Chem Soc 2023; 145:21096-21103. [PMID: 37712624 PMCID: PMC11102776 DOI: 10.1021/jacs.3c08176] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/16/2023]
Abstract
Alkyl halides are versatile precursors to access diverse functional groups (FGs). Due to their lability, the development of surrogates for alkyl halides is strategically important for complex molecule synthesis. Given the stability and ease of derivatization inherent in common alkyl ketones, here we report a deacylative halogenation approach to convert various methyl ketones to the corresponding alkyl chlorides, bromides, and iodides. The reaction is driven by forming an aromatic byproduct, i.e., 1,2,4-triazole, in which N'-methylpicolinohydrazonamide (MPHA) is employed to form a prearomatic intermediate and halogen atom-transfer (XAT) reagents are used to quench the alkyl radical intermediate. The reaction is efficient in yielding primary and secondary alkyl halides from a wide range of methyl ketones with broad FG tolerance. It also works for complex natural-product-derived and fluoro-containing substrates. In addition, one-pot conversions of methyl ketones to various other FGs and annulations with alkenes and alkynes through deacylative halogenation are realized. Moreover, an unusual iterative homologation of alkyl iodides is also demonstrated. Finally, mechanistic studies reveal an intriguing double XAT process for the deacylative iodination reaction, which could have implications beyond this work.
Collapse
Affiliation(s)
- Zining Zhang
- Department of Chemistry, University of Chicago, Chicago, Illinois 60637, United States
| | - Qi Zhu
- Department of Chemistry, University of Chicago, Chicago, Illinois 60637, United States
| | - Daniel Pyle
- Department of Chemistry, University of Chicago, Chicago, Illinois 60637, United States
| | - Xukai Zhou
- Department of Chemistry, University of Chicago, Chicago, Illinois 60637, United States
| | - Guangbin Dong
- Department of Chemistry, University of Chicago, Chicago, Illinois 60637, United States
| |
Collapse
|
15
|
Yedase GS, Arif M, Kuniyil R, Yatham VR. Photocatalytic Hydro Tri/Difluoromethylation of Alkenes with Bench Stable Tri/Difluoromethylating Reagents. Org Lett 2023; 25:6200-6205. [PMID: 37578816 DOI: 10.1021/acs.orglett.3c02413] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/15/2023]
Abstract
Herein, we demonstrate the synthesis and characterization of bench stable tri/difluoromethylating reagents and their potential applications in redox neutral hydro tri/difluoromethylation of alkenes enabled by visible light. The new tri/difluoromethylating reagents are obtained on a gram-scale through simply cyclocondensation of commercially available anthranilamide with phenyltrifluoro or difluoromethyl ketone. Preliminary mechanistic studies indicated that a canonical photoredox catalytic cycle is being operative. DFT studies support this and further reveal that deprotonation occurs before radical cleavage. DFT studies also show that the better yield with HCF2 reagent is attributed to the favorable expulsion of the corresponding radical moiety.
Collapse
Affiliation(s)
- Girish Suresh Yedase
- School of Chemistry, Indian Institute of Science Education and Research, Thiruvananthapuram 695551, India
| | - Munaifa Arif
- Department of Chemistry, Indian Institute of Technology Palakkad, Palakkad 678557, India
| | - Rositha Kuniyil
- Department of Chemistry, Indian Institute of Technology Palakkad, Palakkad 678557, India
| | - Veera Reddy Yatham
- School of Chemistry, Indian Institute of Science Education and Research, Thiruvananthapuram 695551, India
| |
Collapse
|
16
|
Bag S, Ojha S, Venugopalan S, Sahoo B. Photocatalytic Alkylation/Arylative Cyclization of N-Acrylamides of N-Heteroarenes and Arylamines with Dihydroquinazolinones from Unactivated Ketones. J Org Chem 2023; 88:12121-12130. [PMID: 37515554 DOI: 10.1021/acs.joc.3c01149] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/31/2023]
Abstract
We describe a visible-light photoredox-catalyzed alkylation/arylative cyclization of N-acrylamides─from 2-arylindoles, 2-arylbenzimidazoles, or N-substituted anilines─with ketone-derived dihydroquinazolinones, accessing indolo- and benzimidazolo[2,1-a]isoquinolines or 2-oxindoles. The consecutive incorporation of alkyl- and aryl-carbogenic motifs across a C=C bond via formal cleavage of ketone α-C-C and arene C-H bonds leads to the formation of five- and six-membered rings, with an all-carbon quaternary stereocenter. This dicarbofunctionalization elaborates aromatization-driven radical C-C functionalization of unactivated aliphatic ketones to construct diverse cyclic structures with functionality tolerance.
Collapse
Affiliation(s)
- Sandip Bag
- School of Chemistry, Indian Institute of Science Education and Research Thiruvananthapuram, Thiruvananthapuram - 695551, Kerala, India
| | - Shubham Ojha
- School of Chemistry, Indian Institute of Science Education and Research Thiruvananthapuram, Thiruvananthapuram - 695551, Kerala, India
| | - Sreelakshmi Venugopalan
- School of Chemistry, Indian Institute of Science Education and Research Thiruvananthapuram, Thiruvananthapuram - 695551, Kerala, India
| | - Basudev Sahoo
- School of Chemistry, Indian Institute of Science Education and Research Thiruvananthapuram, Thiruvananthapuram - 695551, Kerala, India
| |
Collapse
|
17
|
Mondal PP, Das S, Venugopalan S, Krishnan M, Sahoo B. Visible-Light-Photocatalyzed Dicarbofunctionalization of Conjugated Alkenes with Ketone-Based Dihydroquinazolinones. Org Lett 2023; 25:1441-1446. [PMID: 36820645 DOI: 10.1021/acs.orglett.3c00175] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/24/2023]
Abstract
A visible-light-photocatalyzed 1,2-arylalkylation of N-(arylsulfonyl)acrylamides with ketone-based dihydroquinazolinones is described. The formal C-C bond cleavage of aliphatic ketones is unified with tandem radical alkylation/1,4-aryl migration/desulfonylation to forge two different types of vicinal C-C bonds and construct an all-carbon quaternary α-stereocenter, thus enhancing the carbogenic complexity and tolerating diverse functionalities. Additional to telescopic synthesis and product diversification, this method features a radical dicarbofunctionalization of conjugated N-(arylsulfonyl)acrylamides with a nucleophilic alkyl radical precursor (dihydroquinazolinone) utilizing oxygen as a green oxidant at ambient temperature.
Collapse
Affiliation(s)
- Pinku Prasad Mondal
- School of Chemistry, Indian Institute of Science Education and Research Thiruvananthapuram, Thiruvananthapuram, 695551 Kerala, India
| | - Subham Das
- School of Chemistry, Indian Institute of Science Education and Research Thiruvananthapuram, Thiruvananthapuram, 695551 Kerala, India
| | - Sreelakshmi Venugopalan
- School of Chemistry, Indian Institute of Science Education and Research Thiruvananthapuram, Thiruvananthapuram, 695551 Kerala, India
| | - Malavika Krishnan
- School of Chemistry, Indian Institute of Science Education and Research Thiruvananthapuram, Thiruvananthapuram, 695551 Kerala, India
| | - Basudev Sahoo
- School of Chemistry, Indian Institute of Science Education and Research Thiruvananthapuram, Thiruvananthapuram, 695551 Kerala, India
| |
Collapse
|
18
|
Le Du E, Waser J. Recent progress in alkynylation with hypervalent iodine reagents. Chem Commun (Camb) 2023; 59:1589-1604. [PMID: 36656618 PMCID: PMC9904279 DOI: 10.1039/d2cc06168f] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2022] [Accepted: 12/23/2022] [Indexed: 01/20/2023]
Abstract
Although alkynes are one of the smallest functional groups, they are among the most versatile building blocks for organic chemistry, with applications ranging from biochemistry to material sciences. Alkynylation reactions have traditionally relied on the use of acetylenes as nucleophiles. The discovery and development of ethynyl hypervalent iodine reagents have allowed to greatly expand the transfer of alkynes as electrophilic synthons. In this feature article the progress in the field since 2018 will be presented. After a short introduction on alkynylation reactions and hypervalent iodine reagents, the developments in the synthesis of alkynyl hypervalent iodine reagents will be discussed. Their recent use in base-mediated and transition-metal catalyzed alkynylations will be described. Progress in radical-based alkynylations and atom-economical transformations will then be presented.
Collapse
Affiliation(s)
- Eliott Le Du
- Laboratory of Catalysis and Organic Synthesis, Institute of Chemical Sciences and Engineering École Polytechnique Fédérale de Lausanne EPFL, SB ISIC, LCSO, BCH 4306, 1015, Lausanne, Switzerland.
| | - Jérôme Waser
- Laboratory of Catalysis and Organic Synthesis, Institute of Chemical Sciences and Engineering École Polytechnique Fédérale de Lausanne EPFL, SB ISIC, LCSO, BCH 4306, 1015, Lausanne, Switzerland.
| |
Collapse
|
19
|
Spils J, Wirth T, Nachtsheim BJ. Two-step continuous-flow synthesis of 6-membered cyclic iodonium salts via anodic oxidation. Beilstein J Org Chem 2023; 19:27-32. [PMID: 36686040 PMCID: PMC9830492 DOI: 10.3762/bjoc.19.2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2022] [Accepted: 12/07/2022] [Indexed: 01/04/2023] Open
Abstract
We describe a multi-step continuous-flow procedure for the generation of six-membered diaryliodonium salts. The accompanying scalability and atom economy are significant improvements to existing batch methods. Benzyl acetates are submitted to this two-step procedure as highly available and cheap starting materials. An acid-catalyzed Friedel-Crafts alkylation followed by an anodic oxidative cyclization yielded a defined set of cyclic iodonium salts in a highly substrate-dependent yield.
Collapse
Affiliation(s)
- Julian Spils
- Institute for Organic and Analytical Chemistry, University of Bremen, Leobener Straße 7, 28359 Bremen, Germany
| | - Thomas Wirth
- School of Chemistry, Cardiff University, Park Place, Main Building, Cardiff CF10 3AT, UK
| | - Boris J Nachtsheim
- Institute for Organic and Analytical Chemistry, University of Bremen, Leobener Straße 7, 28359 Bremen, Germany
| |
Collapse
|
20
|
Fan X, Sun X, Ji M, Tong H, Zhang W, Sun Z, Chu W. Visible-Light-Induced Acylative Coupling of Benzoic Acid Derivatives with Alkenes to Dihydrochalcones. Org Lett 2022; 24:7271-7275. [PMID: 36190778 DOI: 10.1021/acs.orglett.2c02538] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
A strategy was developed for the visible-light-induced photocatalytic synthesis of dihydrochalcone via the deoxygenation and coupling of benzoic acid derivatives with alkenes using diphenyl sulfide as the O-transfer reagent. Under mild photoredox conditions, a series of dihydrochalcone derivatives were produced in moderate to good yields. A mechanism for the visible-light-induced free-radical coupling was proposed on the basis of the control experiments. The protocol provides a new strategy the generation of acyl radicals from carboxylic acids and the synthesis of dihydrochalcones.
Collapse
Affiliation(s)
- Xiaodong Fan
- †School of Chemistry and Materials Science, Heilongjiang University, Harbin, Heilongjiang 150080, P. R. China
| | - Xinhui Sun
- †School of Chemistry and Materials Science, Heilongjiang University, Harbin, Heilongjiang 150080, P. R. China
| | - Mengmeng Ji
- †School of Chemistry and Materials Science, Heilongjiang University, Harbin, Heilongjiang 150080, P. R. China
| | - Huixin Tong
- †School of Chemistry and Materials Science, Heilongjiang University, Harbin, Heilongjiang 150080, P. R. China
| | - Weiya Zhang
- †School of Chemistry and Materials Science, Heilongjiang University, Harbin, Heilongjiang 150080, P. R. China
| | - Zhizhong Sun
- †School of Chemistry and Materials Science, Heilongjiang University, Harbin, Heilongjiang 150080, P. R. China
| | - Wenyi Chu
- †School of Chemistry and Materials Science, Heilongjiang University, Harbin, Heilongjiang 150080, P. R. China
| |
Collapse
|
21
|
Pálvölgyi ÁM, Ehrschwendtner F, Schnürch M, Bica-Schröder K. Photocatalyst-free hydroacylations of electron-poor alkenes and enones under visible-light irradiation. Org Biomol Chem 2022; 20:7245-7249. [PMID: 36073152 PMCID: PMC9491158 DOI: 10.1039/d2ob01364a] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Accepted: 08/30/2022] [Indexed: 01/30/2024]
Abstract
Herein we present a photocatalyst- and additive-free radical hydroacylation of electron-poor double bonds under mild reaction conditions. Using 4-acyl-Hantzsch ester radical reservoirs, various Michael acceptors, enones and para-quinone methide substrates could be used. The protocol enabled further derivatizations and it could also be extended to a few unactivated alkenes. Moreover, the nature of the radical process was also investigated.
Collapse
Affiliation(s)
| | | | - Michael Schnürch
- Institute of Applied Synthetic Chemistry, TU Wien, 1060 Vienna, Austria.
| | | |
Collapse
|
22
|
Zheng H, Han Y, Sun J, Yan CG. Molecular diversity of the base-promoted reaction of phenacylmalononitriles with dialkyl but-2-ynedioates. Beilstein J Org Chem 2022; 18:991-998. [PMID: 36051560 PMCID: PMC9379639 DOI: 10.3762/bjoc.18.99] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2022] [Accepted: 07/26/2022] [Indexed: 11/23/2022] Open
Abstract
In the presence of tetrabutylammonium bromide (TBAB), the cycloaddition reaction of phenacylmalononitriles with dialkyl but-2-ynedioates in acetonitrile at room temperature resulted in 3,3-dicyano-5-hydroxy-5-arylcyclopent-1-ene-1,2-dicarboxylates in high yields. More importantly, the DABCO-promoted domino reaction of two molecules of each phenacylmalononitrile and dialkyl but-2-ynedioate in acetonitrile at room temperature afforded unique multifunctionalized carboxamide-bridged dicyclopentenes in moderate to good yields and with high diastereoselectivity.
Collapse
Affiliation(s)
- Hui Zheng
- College of the Chemistry & Chemical Engineering, Yangzhou University, China
| | - Ying Han
- College of the Chemistry & Chemical Engineering, Yangzhou University, China
| | - Jing Sun
- College of the Chemistry & Chemical Engineering, Yangzhou University, China
| | - Chao-Guo Yan
- College of the Chemistry & Chemical Engineering, Yangzhou University, China
| |
Collapse
|
23
|
Fu YH, Geng C, Shen GB, Wang K, Zhu XQ. Kinetic Studies of Hantzsch Ester and Dihydrogen Donors Releasing Two Hydrogen Atoms in Acetonitrile. ACS OMEGA 2022; 7:26416-26424. [PMID: 35936422 PMCID: PMC9352257 DOI: 10.1021/acsomega.2c02264] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/11/2022] [Accepted: 07/06/2022] [Indexed: 06/15/2023]
Abstract
In this work, kinetic studies on HEH2, 2-benzylmalononitrile, 2-benzyl-1H-indene-1,3(2H)-dione, 5-benzyl-2,2-dimethyl-1,3-dioxane-4,6-dione, 5-benzyl-1,3-dimethylpyrimidine-2,4,6(1H,3H,5H)-trione, 2-(9H-fluoren-9-yl)malononitrile, ethyl 2-cyano-2-(9H-fluoren-9-yl)acetate, diethyl 2-(9H-fluoren-9-yl)malonate, and the derivatives (28 XH2) releasing two hydrogen atoms were carried out. The thermokinetic parameters ΔG ⧧° of 28 dihydrogen donors (XH2) and the corresponding hydrogen atom acceptors (XH•) in acetonitrile at 298 K were determined. The abilities of releasing two hydrogen atoms for these organic dihydrogen donors were researched using their thermokinetic parameters ΔG ⧧°(XH2), which can be used not only to compare the H-donating ability of different XH2 qualitatively and quantitatively but also to predict the rates of HAT reactions. Predictions of rate constants for 12 HAT reactions using thermokinetic parameters were determined, and the reliabilities of the predicted results were also examined.
Collapse
Affiliation(s)
- Yan-Hua Fu
- College
of Chemistry and Environmental Engineering, Anyang Institute of Technology, Anyang, Henan 455000, P.R. China
| | - Cuihuan Geng
- College
of Chemistry and Environmental Engineering, Anyang Institute of Technology, Anyang, Henan 455000, P.R. China
| | - Guang-Bin Shen
- School
of Medical Engineering, Jining Medical University, Jining, Shandong 272000, P.R. China
| | - Kai Wang
- College
of Chemistry and Environmental Engineering, Anyang Institute of Technology, Anyang, Henan 455000, P.R. China
| | - Xiao-Qing Zhu
- Department of Chemistry, Nankai
University, Tianjin 300071, P.R. China
| |
Collapse
|
24
|
Fan X, He C, Ji M, Sun X, Luo H, Li C, Tong H, Zhang W, Sun Z, Chu W. Visible light-induced deoxygenation/cyclization of salicylic acid derivatives and aryl acetylene for the synthesis of flavonoids. Chem Commun (Camb) 2022; 58:6348-6351. [PMID: 35536025 DOI: 10.1039/d2cc01538b] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A visible-light-induced photocatalytic strategy for the synthesis of flavonoids has been developed through the deoxygenative/cyclization reaction of salicylic acid derivatives with aryl acetylene using diphenyl sulfide as an O-transfer reagent. Based on the controlled experiments, the mechanism of visible-light-induced free radical coupling cyclization was proposed. The protocol obtained 51 flavonoids in good yields and has been successfully applied to the synthesis of some natural flavones.
Collapse
Affiliation(s)
- Xiaodong Fan
- School of Chemistry and Materials Science, Heilongjiang University, Harbin 150080, P. R. China.
| | - Chaoyin He
- School of Chemistry and Materials Science, Heilongjiang University, Harbin 150080, P. R. China.
| | - Mengmeng Ji
- School of Chemistry and Materials Science, Heilongjiang University, Harbin 150080, P. R. China.
| | - Xinhui Sun
- School of Chemistry and Materials Science, Heilongjiang University, Harbin 150080, P. R. China.
| | - Huan Luo
- School of Chemistry and Materials Science, Heilongjiang University, Harbin 150080, P. R. China.
| | - Chao Li
- School of Chemistry and Materials Science, Heilongjiang University, Harbin 150080, P. R. China.
| | - Huixin Tong
- School of Chemistry and Materials Science, Heilongjiang University, Harbin 150080, P. R. China.
| | - Weiya Zhang
- School of Chemistry and Materials Science, Heilongjiang University, Harbin 150080, P. R. China.
| | - Zhizhong Sun
- School of Chemistry and Materials Science, Heilongjiang University, Harbin 150080, P. R. China.
| | - Wenyi Chu
- School of Chemistry and Materials Science, Heilongjiang University, Harbin 150080, P. R. China.
| |
Collapse
|
25
|
Shen GB, Qian BC, Zhang GS, Luo GZ, Fu YH, Zhu XQ. Thermodynamics regulated organic hydride/acid pairs as novel organic hydrogen reductants. Org Chem Front 2022. [DOI: 10.1039/d2qo01605b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
Organic hydride/acid pairs could realize transformation of N-substituted organic hydrides from hydride reductants to thermodynamics regulated hydrogen reductants on conveniently choosing suitable organic hydrides and acids with various acidities.
Collapse
Affiliation(s)
- Guang-Bin Shen
- School of Medical Engineering, Jining Medical University, Jining, Shandong, 272000, P. R. China
| | - Bao-Chen Qian
- School of Medical Engineering, Jining Medical University, Jining, Shandong, 272000, P. R. China
| | - Gao-Shuai Zhang
- School of Medical Engineering, Jining Medical University, Jining, Shandong, 272000, P. R. China
| | - Guang-Ze Luo
- School of Medical Engineering, Jining Medical University, Jining, Shandong, 272000, P. R. China
| | - Yan-Hua Fu
- College of Chemistry and Environmental Engineering, Anyang Institute of Technology, Anyang, Henan, 455000, China
| | - Xiao-Qing Zhu
- The State Key Laboratory of Elemento-Organic Chemistry, Department of Chemistry, Nankai University, Tianjin 300071, China
| |
Collapse
|
26
|
Xu Y, Wu Z, Wu X, Zhu C. Transition-Metal Free Radical-Mediated C—H Bond Alkynylation and Allylation of Ethers, Aldehydes and Amides. CHINESE J ORG CHEM 2022. [DOI: 10.6023/cjoc202207014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
|
27
|
Zheng H, Han Y, Xu FS, Sun J, Yan CG. Selective synthesis of multifunctionalized cyclopent-3-ene-1-carboxamides and 2-oxabicyclo[2.2.1]heptane derivatives. NEW J CHEM 2022. [DOI: 10.1039/d2nj03198a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Triethylamine promoted cycloaddition reaction of phenacylmalononitrile with o-hydroxychalcones or chalcone o-enolates to selectively give cyclopent-3-ene-1-carboxamides and 2-oxabicyclo[2.2.1]heptanes.
Collapse
Affiliation(s)
- Hui Zheng
- College of Chemistry & Chemical Engineering, Yangzhou University, Yangzhou 225002, China
| | - Ying Han
- College of Chemistry & Chemical Engineering, Yangzhou University, Yangzhou 225002, China
| | - Feng-Shun Xu
- College of Chemistry & Chemical Engineering, Yangzhou University, Yangzhou 225002, China
| | - Jing Sun
- College of Chemistry & Chemical Engineering, Yangzhou University, Yangzhou 225002, China
| | - Chao-Guo Yan
- College of Chemistry & Chemical Engineering, Yangzhou University, Yangzhou 225002, China
| |
Collapse
|
28
|
Lee SC, Li LY, Tsai ZN, Lee YH, Tsao YT, Huang PG, Cheng CK, Lin HB, Chen TW, Yang CH, Chiu CC, Liao HH. Aromatization as an Impetus to Harness Ketones for Metallaphotoredox-Catalyzed Benzoylation/Benzylation of (Hetero)arenes. Org Lett 2021; 24:85-89. [PMID: 34913706 DOI: 10.1021/acs.orglett.1c03672] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Herein we report ketones as feedstock materials in radical cross-coupling reactions under Ni/photoredox dual catalysis. In this approach, simple condensation first converts ketones into prearomatic intermediates that then act as activated radical sources for cross-coupling with aryl halides. Our strategy enables the direct benzylation/benzoylation of (hetero)arenes under mild reaction conditions with high functional group tolerance.
Collapse
Affiliation(s)
- Shao-Chi Lee
- Department of Chemistry, National Sun Yat-sen University, Kaohsiung 80424, Taiwan, R.O.C
| | - Li-Yun Li
- Department of Chemistry, National Sun Yat-sen University, Kaohsiung 80424, Taiwan, R.O.C
| | - Zong-Nan Tsai
- Department of Chemistry, National Sun Yat-sen University, Kaohsiung 80424, Taiwan, R.O.C
| | - Yi-Hsin Lee
- Department of Chemistry, National Sun Yat-sen University, Kaohsiung 80424, Taiwan, R.O.C
| | - Yong-Ting Tsao
- Department of Chemistry, National Sun Yat-sen University, Kaohsiung 80424, Taiwan, R.O.C
| | - Pin-Gong Huang
- Department of Chemistry, National Sun Yat-sen University, Kaohsiung 80424, Taiwan, R.O.C
| | - Cheng-Ku Cheng
- Department of Chemistry, National Sun Yat-sen University, Kaohsiung 80424, Taiwan, R.O.C
| | - Heng-Bo Lin
- Department of Chemistry, National Sun Yat-sen University, Kaohsiung 80424, Taiwan, R.O.C
| | - Ting-Wei Chen
- Department of Chemistry, National Sun Yat-sen University, Kaohsiung 80424, Taiwan, R.O.C
| | - Chung-Hsin Yang
- Department of Chemistry, National Sun Yat-sen University, Kaohsiung 80424, Taiwan, R.O.C
| | - Cheng-Chau Chiu
- Department of Chemistry, National Sun Yat-sen University, Kaohsiung 80424, Taiwan, R.O.C
| | - Hsuan-Hung Liao
- Department of Chemistry, National Sun Yat-sen University, Kaohsiung 80424, Taiwan, R.O.C
| |
Collapse
|
29
|
Zhou X, Xu Y, Dong G. Olefination via Cu-Mediated Dehydroacylation of Unstrained Ketones. J Am Chem Soc 2021; 143:20042-20048. [PMID: 34807585 DOI: 10.1021/jacs.1c09587] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The dehydroacylation of ketones to olefins is realized under mild conditions, which exhibits a unique reaction pathway involving aromatization-driven C-C cleavage to remove the acyl moiety, followed by Cu-mediated oxidative elimination to form an alkene between the α and β carbons. The newly adopted N'-methylpicolinohydrazonamide (MPHA) reagent is key to enable efficient cleavage of ketone C-C bonds at room temperature. Diverse alkyl- and aryl-substituted olefins, dienes, and special alkenes are generated with broad functional group tolerance. Strategic applications of this method are also demonstrated.
Collapse
Affiliation(s)
- Xukai Zhou
- Department of Chemistry, University of Chicago, Chicago, Illinois 60637, United States
| | - Yan Xu
- Department of Chemistry, University of Chicago, Chicago, Illinois 60637, United States
| | - Guangbin Dong
- Department of Chemistry, University of Chicago, Chicago, Illinois 60637, United States
| |
Collapse
|
30
|
Uchikura T, Fujii T, Moriyama K, Akiyama T. Visible-light driven, metal-free hydroalkylation of alkenes mediated by electron donor-acceptor complex using benzothiazolines. BULLETIN OF THE CHEMICAL SOCIETY OF JAPAN 2021. [DOI: 10.1246/bcsj.20210322] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Tatsuhiro Uchikura
- Department of Chemistry, Faculty of Science, Gakushuin University, 1-5-1, Mejiro, Toshima-ku, Tokyo, 171-8588
| | - Tatsuya Fujii
- Department of Chemistry, Faculty of Science, Gakushuin University, 1-5-1, Mejiro, Toshima-ku, Tokyo, 171-8588
| | - Kaworuko Moriyama
- Department of Chemistry, Faculty of Science, Gakushuin University, 1-5-1, Mejiro, Toshima-ku, Tokyo, 171-8588
| | - Takahiko Akiyama
- Department of Chemistry, Faculty of Science, Gakushuin University, 1-5-1, Mejiro, Toshima-ku, Tokyo, 171-8588
| |
Collapse
|
31
|
He XK, Lu J, Ye HB, Li L, Xuan J. Direct Photoexcitation of Benzothiazolines: Acyl Radical Generation and Application to Access Heterocycles. Molecules 2021; 26:6843. [PMID: 34833936 PMCID: PMC8624417 DOI: 10.3390/molecules26226843] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2021] [Revised: 11/08/2021] [Accepted: 11/11/2021] [Indexed: 11/28/2022] Open
Abstract
An acyl radical generation and functionalization strategy through direct photoexcitation of benzothiazolines has been developed. The formed acyl radical species can either be trapped by quinoxalin-2-ones to realize their C(3)-H functionalization or trigger a cascade radical cyclization with isonitriles to synthesise biologically important phenanthridines. The synthetic value of this protocol can be further illustrated by the modification of quinoxalin-2-ones, containing important natural products and drug-based complex molecules.
Collapse
Affiliation(s)
- Xiang-Kui He
- Anhui Province Key Laboratory of Chemistry for Inorganic, Organic Hybrid Functionalized Materials, College of Chemistry & Chemical Engineering, Anhui University, Hefei 230601, China; (X.-K.H.); (J.L.); (H.-B.Y.); (L.L.)
| | - Juan Lu
- Anhui Province Key Laboratory of Chemistry for Inorganic, Organic Hybrid Functionalized Materials, College of Chemistry & Chemical Engineering, Anhui University, Hefei 230601, China; (X.-K.H.); (J.L.); (H.-B.Y.); (L.L.)
| | - Hai-Bing Ye
- Anhui Province Key Laboratory of Chemistry for Inorganic, Organic Hybrid Functionalized Materials, College of Chemistry & Chemical Engineering, Anhui University, Hefei 230601, China; (X.-K.H.); (J.L.); (H.-B.Y.); (L.L.)
| | - Lei Li
- Anhui Province Key Laboratory of Chemistry for Inorganic, Organic Hybrid Functionalized Materials, College of Chemistry & Chemical Engineering, Anhui University, Hefei 230601, China; (X.-K.H.); (J.L.); (H.-B.Y.); (L.L.)
| | - Jun Xuan
- Anhui Province Key Laboratory of Chemistry for Inorganic, Organic Hybrid Functionalized Materials, College of Chemistry & Chemical Engineering, Anhui University, Hefei 230601, China; (X.-K.H.); (J.L.); (H.-B.Y.); (L.L.)
- Key Laboratory of Structure and Functional Regulation of Hybrid Materials (Anhui University), Ministry of Education, Hefei 230601, China
| |
Collapse
|
32
|
Yu WQ, Xie J, Chen Z, Xiong BQ, Liu Y, Tang KW. Visible-Light-Induced Transition-Metal-Free Nitrogen-Centered Radical Strategy for the Synthesis of 2-Acylated 9 H-Pyrrolo[1,2- a]indoles. J Org Chem 2021; 86:13720-13733. [PMID: 34523335 DOI: 10.1021/acs.joc.1c01834] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
A convenient and efficient visible-light-induced tandem acylation/cyclization of N-propargylindoles with aryl- or alkyl-substituted acyl oxime esters for the synthesis of 2-acyl-substituted 9H-pyrrolo[1,2-a]indoles under transition-metal-free conditions, which proceeds via nitrogen-centered radical-mediated cleavage of the C-C σ-bond in acyl oxime esters, is established. The aryl or alkyl acyl radicals, which come from acyl oxime esters, attack the C-C triple bonds in N-propargylindoles and then go through intramolecular cyclization/isomerization.
Collapse
Affiliation(s)
- Wen-Qin Yu
- Department of Chemistry and Chemical Engineering, Hunan Institute of Science and Technology, Yueyang 414006, China
| | - Jun Xie
- Department of Chemistry and Chemical Engineering, Hunan Institute of Science and Technology, Yueyang 414006, China
| | - Zan Chen
- Department of Chemistry and Chemical Engineering, Hunan Institute of Science and Technology, Yueyang 414006, China
| | - Bi-Quan Xiong
- Department of Chemistry and Chemical Engineering, Hunan Institute of Science and Technology, Yueyang 414006, China
| | - Yu Liu
- Department of Chemistry and Chemical Engineering, Hunan Institute of Science and Technology, Yueyang 414006, China
| | - Ke-Wen Tang
- Department of Chemistry and Chemical Engineering, Hunan Institute of Science and Technology, Yueyang 414006, China
| |
Collapse
|
33
|
Singh S, Nerella S, Pabbaraja S, Mehta G. Stitching Ynones with Nitromethanes: Domino Synthesis of Functionally Enriched Benzofurans and Benzothiophenes. J Org Chem 2021; 86:12093-12106. [PMID: 34414759 DOI: 10.1021/acs.joc.1c01104] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
A convenient one-pot benzannulation of regioisomeric 2- or 3-substituted furan and thiophene ynones with a range of nitromethanes has been discovered to directly access densely and diversely functionalized benzofurans and benzothiophenes. In this protocol, the nitro group in nitromethanes functions as recursive carbanion activator to setup tandem Michael addition-6π-electrocyclization, and its eventual sacrificial elimination facilitates aromatization and overall benzannulation. This benzannulation was also explored with furan/thiophene based o-halo ynones wherein a Michael addition-SNAr process operates and nitromethanes leave their imprint to deliver nitro substituted benzo-furans and -thiophenes.
Collapse
Affiliation(s)
- Shweta Singh
- Department of Organic Synthesis and Process Chemistry, CSIR - Indian Institute of Chemical Technology, Hyderabad 500007, India.,School of Chemistry, University of Hyderabad, Hyderabad 500046, India
| | - Sharanya Nerella
- Department of Organic Synthesis and Process Chemistry, CSIR - Indian Institute of Chemical Technology, Hyderabad 500007, India
| | - Srihari Pabbaraja
- Department of Organic Synthesis and Process Chemistry, CSIR - Indian Institute of Chemical Technology, Hyderabad 500007, India
| | - Goverdhan Mehta
- School of Chemistry, University of Hyderabad, Hyderabad 500046, India
| |
Collapse
|
34
|
Zhao H, Ni N, Li X, Cheng D, Xu X. The decarboxylation coupling reaction of α-keto acid with Baylis-Hillman carbonates by visible light photoredox catalysis. Polyhedron 2021. [DOI: 10.1016/j.poly.2021.115337] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
35
|
|
36
|
Xie P, Xue C, Wang C, Du D, Shi S. Merging CF 3SO 2Na photocatalysis with palladium catalysis to enable decarboxylative cross-coupling for the synthesis of aromatic ketones at room temperature. Org Chem Front 2021. [DOI: 10.1039/d1qo00438g] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
By merging CF3SO2Na-mediated photocatalysis with palladium catalysis, an efficient decarboxylative coupling strategy of α-keto acids and aryl boronic acids has been developed for the synthesis of aromatic ketones.
Collapse
Affiliation(s)
- Pan Xie
- College of Chemistry and Chemistry Engineering
- Shaanxi Key Laboratory of Chemistry Additives for Industry
- Shaanxi University of Science & Technology
- Xi'an 710021
- China
| | - Cheng Xue
- College of Chemistry and Chemistry Engineering
- Shaanxi Key Laboratory of Chemistry Additives for Industry
- Shaanxi University of Science & Technology
- Xi'an 710021
- China
| | - Cancan Wang
- College of Chemistry and Chemistry Engineering
- Shaanxi Key Laboratory of Chemistry Additives for Industry
- Shaanxi University of Science & Technology
- Xi'an 710021
- China
| | - Dongdong Du
- College of Chemistry and Chemistry Engineering
- Shaanxi Key Laboratory of Chemistry Additives for Industry
- Shaanxi University of Science & Technology
- Xi'an 710021
- China
| | - SanShan Shi
- College of Chemistry and Chemistry Engineering
- Shaanxi Key Laboratory of Chemistry Additives for Industry
- Shaanxi University of Science & Technology
- Xi'an 710021
- China
| |
Collapse
|
37
|
Shen GB, Fu YH, Zhu XQ. Thermodynamic Network Cards of Hantzsch Ester, Benzothiazoline, and Dihydrophenanthridine Releasing Two Hydrogen Atoms or Ions on 20 Elementary Steps. J Org Chem 2020; 85:12535-12543. [PMID: 32880175 DOI: 10.1021/acs.joc.0c01726] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
In this work, thermodynamic driving forces on 20 possible elementary steps of Hantzsch ester (HEH2), benzothiazoline (BTH2), and dihydrophenanthridine (PDH2) releasing two hydrogen atoms or ions were measured or derived from the related thermodynamic data using Hess' law in acetonitrile. Furthermore, thermodynamic network cards of HEH2, BTH2, and PDH2 releasing two hydrogen atoms or ions on 20 elementary steps were first established. Based on the thermodynamic network cards, hydride-donating, hydrogen-atom-donating, and electron-donating abilities of XH2 and XH-, and two hydrogen-atom(ion)-donating abilities of XH2 are discussed in detail. Obviously, the thermodynamic network cards of HEH2, BTH2, and PDH2 not only offer rational data guidance for organic synthetic chemists to properly choose an appropriate reducer among the three reducing agents to hydrogenate various unsaturated compounds but also strongly promote elucidatation of the detailed hydrogenation mechanisms.
Collapse
Affiliation(s)
- Guang-Bin Shen
- College of Chemistry, Nankai University, Tianjin 300071, China.,School of Medical Engineering, Jining Medical University, Jining, Shandong 272000, China
| | - Yan-Hua Fu
- College of Chemistry and Environmental Engineering, Anyang Institute of Technology, Anyang, Henan 455000, China
| | - Xiao-Qing Zhu
- The State Key Laboratory of Elemento-Organic Chemistry, College of Chemistry, Nankai University, Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin 300071, China
| |
Collapse
|
38
|
Uchikura T, Toda M, Mouri T, Fujii T, Moriyama K, Ibáñez I, Akiyama T. Radical Hydroalkylation and Hydroacylation of Alkenes by the Use of Benzothiazoline under Thermal Conditions. J Org Chem 2020; 85:12715-12723. [PMID: 32900192 DOI: 10.1021/acs.joc.0c01872] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The hydroalkylation and hydroacylation of electron-deficient alkenes proceeded smoothly by using benzothiazoline derivatives as radical-transfer reagents under thermal conditions without light irradiation or any additive. Both benzyl and benzoyl moieties were transferred efficiently.
Collapse
Affiliation(s)
- Tatsuhiro Uchikura
- Department of Chemistry, Faculty of Science, Gakushuin University, Mejiro, Toshima-ku, Tokyo 171-8588, Japan
| | - Mitsuhiro Toda
- Department of Chemistry, Faculty of Science, Gakushuin University, Mejiro, Toshima-ku, Tokyo 171-8588, Japan
| | - Toshiki Mouri
- Department of Chemistry, Faculty of Science, Gakushuin University, Mejiro, Toshima-ku, Tokyo 171-8588, Japan
| | - Tatsuya Fujii
- Department of Chemistry, Faculty of Science, Gakushuin University, Mejiro, Toshima-ku, Tokyo 171-8588, Japan
| | - Kaworuko Moriyama
- Department of Chemistry, Faculty of Science, Gakushuin University, Mejiro, Toshima-ku, Tokyo 171-8588, Japan
| | - Ignacio Ibáñez
- Department of Chemistry, Faculty of Science, Gakushuin University, Mejiro, Toshima-ku, Tokyo 171-8588, Japan
| | - Takahiko Akiyama
- Department of Chemistry, Faculty of Science, Gakushuin University, Mejiro, Toshima-ku, Tokyo 171-8588, Japan
| |
Collapse
|
39
|
Zhu DL, Wu Q, Young DJ, Wang H, Ren ZG, Li HX. Acyl Radicals from α-Keto Acids Using a Carbonyl Photocatalyst: Photoredox-Catalyzed Synthesis of Ketones. Org Lett 2020; 22:6832-6837. [DOI: 10.1021/acs.orglett.0c02351] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Affiliation(s)
- Da-Liang Zhu
- College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, China
| | - Qi Wu
- College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, China
| | - David James Young
- College of Engineering, Information Technology and Environment, Charles Darwin University, Darwin, Northern Territory 0909, Australia
| | - Hao Wang
- College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, China
| | - Zhi-Gang Ren
- College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, China
| | - Hong-Xi Li
- College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, China
| |
Collapse
|
40
|
Li L, Fang L, Wu W, Zhu J. Visible-Light-Mediated Intermolecular Radical Conjugate Addition for the Construction of Vicinal Quaternary Carbon Centers. Org Lett 2020; 22:5401-5406. [PMID: 32628495 DOI: 10.1021/acs.orglett.0c01724] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The visible light-driven organophotoredox catalysis is reported for the construction of vicinal quaternary carbon centers. Intermolecular conjugate addition of alkyl radicals, derived from 2,2-disubstituted dihydroquinazolinones, to Michael acceptors under blue light irradiation and rhodamine B catalysis allows the facile assembly of diverse, vicinal secondary/quaternary, tertiary/quaternary, and quaternary/quaternary carbon centers at room temperature. Our method provides a synthetically versatile protocol since both 2,2-disubstituted dihydroquinazolinones and Michael acceptors can be conveniently prepared from readily available ketones.
Collapse
Affiliation(s)
- Lei Li
- School of Chemistry and Chemical Engineering, State Key Laboratory of Coordination Chemistry, Nanjing National Laboratory of Microstructures, Collaborative Innovation Center of Chemistry for Life Sciences, Nanjing University, Nanjing 210023, China
| | - Lili Fang
- School of Chemistry and Chemical Engineering, State Key Laboratory of Coordination Chemistry, Nanjing National Laboratory of Microstructures, Collaborative Innovation Center of Chemistry for Life Sciences, Nanjing University, Nanjing 210023, China
| | - Weiping Wu
- School of Chemistry and Chemical Engineering, State Key Laboratory of Coordination Chemistry, Nanjing National Laboratory of Microstructures, Collaborative Innovation Center of Chemistry for Life Sciences, Nanjing University, Nanjing 210023, China
| | - Jin Zhu
- School of Chemistry and Chemical Engineering, State Key Laboratory of Coordination Chemistry, Nanjing National Laboratory of Microstructures, Collaborative Innovation Center of Chemistry for Life Sciences, Nanjing University, Nanjing 210023, China
| |
Collapse
|
41
|
Caspers LD, Spils J, Damrath M, Lork E, Nachtsheim BJ. One-Pot Synthesis and Conformational Analysis of Six-Membered Cyclic Iodonium Salts. J Org Chem 2020; 85:9161-9178. [PMID: 32539390 DOI: 10.1021/acs.joc.0c01125] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Two one-pot procedures for the construction of carbon-bridged diaryliodonium triflates and tetrafluoroborates are described. Strong Brønsted acids enable the effective Friedel-Crafts alkylation with diversely substituted o-iodobenzyl alcohol derivatives, providing diphenylmethane scaffolds, which are subsequently oxidized and cyclized to the corresponding dibenzo[b,e]iodininium salts. Based on NMR investigations and density functional theory (DFT) calculations, we could verify the so-far-undescribed existence of two stable isomers in cyclic iodonium salts substituted with aliphatic side chains in the carbon bridge.
Collapse
Affiliation(s)
- Lucien D Caspers
- Institute for Organic and Analytical Chemistry, University of Bremen, Leobener Straße 7, 28359 Bremen, Germany
| | - Julian Spils
- Institute for Organic and Analytical Chemistry, University of Bremen, Leobener Straße 7, 28359 Bremen, Germany
| | - Mattis Damrath
- Institute for Organic and Analytical Chemistry, University of Bremen, Leobener Straße 7, 28359 Bremen, Germany
| | - Enno Lork
- Institute for Inorganic Chemistry and Crystallography, University of Bremen, 28359 Bremen, Germany
| | - Boris J Nachtsheim
- Institute for Organic and Analytical Chemistry, University of Bremen, Leobener Straße 7, 28359 Bremen, Germany
| |
Collapse
|
42
|
Petzold D, Giedyk M, Chatterjee A, König B. A Retrosynthetic Approach for Photocatalysis. European J Org Chem 2020. [DOI: 10.1002/ejoc.201901421] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Daniel Petzold
- Department of Organic Chemistry University of Regensburg Universitätsstraße 31 93053 Regensburg Germany
| | - Maciej Giedyk
- Department of Organic Chemistry University of Regensburg Universitätsstraße 31 93053 Regensburg Germany
- Institute of Organic Chemistry Polish Academy of Sciences Kasprzaka 44/52 01‐224 Warsaw Poland
| | - Anamitra Chatterjee
- Department of Organic Chemistry University of Regensburg Universitätsstraße 31 93053 Regensburg Germany
| | - Burkhard König
- Department of Organic Chemistry University of Regensburg Universitätsstraße 31 93053 Regensburg Germany
| |
Collapse
|
43
|
Liu Y, Chen Z, Wang QL, Chen P, Xie J, Xiong BQ, Zhang PL, Tang KW. Visible Light-Catalyzed Cascade Radical Cyclization of N-Propargylindoles with Acyl Chlorides for the Synthesis of 2-Acyl-9H-pyrrolo[1,2-a]indoles. J Org Chem 2020; 85:2385-2394. [DOI: 10.1021/acs.joc.9b03090] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Affiliation(s)
- Yu Liu
- Department of Chemistry and Chemical Engineering, Hunan Institute of Science and Technology, Yueyang 414006, China
| | - Zan Chen
- Department of Chemistry and Chemical Engineering, Hunan Institute of Science and Technology, Yueyang 414006, China
| | - Qiao-Lin Wang
- Department of Chemistry and Chemical Engineering, Hunan Institute of Science and Technology, Yueyang 414006, China
| | - Pu Chen
- Department of Chemistry and Chemical Engineering, Hunan Institute of Science and Technology, Yueyang 414006, China
| | - Jun Xie
- Department of Chemistry and Chemical Engineering, Hunan Institute of Science and Technology, Yueyang 414006, China
| | - Bi-Quan Xiong
- Department of Chemistry and Chemical Engineering, Hunan Institute of Science and Technology, Yueyang 414006, China
| | - Pan-Liang Zhang
- Department of Chemistry and Chemical Engineering, Hunan Institute of Science and Technology, Yueyang 414006, China
| | - Ke-Wen Tang
- Department of Chemistry and Chemical Engineering, Hunan Institute of Science and Technology, Yueyang 414006, China
| |
Collapse
|
44
|
Uchikura T, Moriyama K, Toda M, Mouri T, Ibáñez I, Akiyama T. Benzothiazolines as radical transfer reagents: hydroalkylation and hydroacylation of alkenes by radical generation under photoirradiation conditions. Chem Commun (Camb) 2019; 55:11171-11174. [DOI: 10.1039/c9cc05336k] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Novel radical transfer reagents under photoirradiation conditions were developed by the use of benzothiazoline derivatives.
Collapse
Affiliation(s)
- Tatsuhiro Uchikura
- Department of Chemistry
- Faculty of Science
- Gakushuin University
- Tokyo 171-8588
- Japan
| | - Kaworuko Moriyama
- Department of Chemistry
- Faculty of Science
- Gakushuin University
- Tokyo 171-8588
- Japan
| | - Mitsuhiro Toda
- Department of Chemistry
- Faculty of Science
- Gakushuin University
- Tokyo 171-8588
- Japan
| | - Toshiki Mouri
- Department of Chemistry
- Faculty of Science
- Gakushuin University
- Tokyo 171-8588
- Japan
| | - Ignacio Ibáñez
- Department of Chemistry
- Faculty of Science
- Gakushuin University
- Tokyo 171-8588
- Japan
| | - Takahiko Akiyama
- Department of Chemistry
- Faculty of Science
- Gakushuin University
- Tokyo 171-8588
- Japan
| |
Collapse
|