1
|
Li WD, Fan J, Li CJ, Shi XY. Recent advances in carboxyl-directed dimerizations and cascade annulations via C-H activations. Chem Commun (Camb) 2025; 61:3967-3985. [PMID: 39945206 DOI: 10.1039/d4cc06722c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/05/2025]
Abstract
C-H functionalization provides an efficient route to construct complex organic molecules. The introduction of directing groups enhances the site-selectivity of the reaction. Carboxyl as a directing group can be easily transformed into other functional groups afterwards. Due to its good reactivity, it can undergo cascade annulation reactions to build valuable heterocycle skeletons in one pot. Moreover, carboxyl can easily be removed via decarboxylation, which allows it to serve as a unique traceless directing group in C-H functionalization. These characteristics make carboxyl a promising directing group, which is superior to nitrogen-containing compounds with strong coordination ability to a certain extent. This feature article reviews the applications of carboxyl as a classical directing group and a unique traceless-directing group in cascade annulation reactions to access diverse carbocycles and heterocycles.
Collapse
Affiliation(s)
- Wan-Di Li
- Key Laboratory of Syngas Conversion of Shaanxi Province, Key Laboratory for Macromolecular Science of Shaanxi Province, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an 710062, China.
| | - Juan Fan
- Key Laboratory of Syngas Conversion of Shaanxi Province, Key Laboratory for Macromolecular Science of Shaanxi Province, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an 710062, China.
| | - Chao-Jun Li
- Department of Chemistry, and FRQNT Centre for Green Chemistry and Catalysis, McGill University, Montreal, Quebec H3A 0B8, Canada.
| | - Xian-Ying Shi
- Key Laboratory of Syngas Conversion of Shaanxi Province, Key Laboratory for Macromolecular Science of Shaanxi Province, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an 710062, China.
| |
Collapse
|
2
|
Li WD, Wang X, Ma HY, Jia JW, Xiao YY, Shi XY. Additive-Controlled Divergent Synthesis of Fluorenone-4-carboxylic Acids and Diphenic Anhydrides via Rhodium-Catalyzed Oxidative Dimeric Cyclization of Aromatic Acids. Org Lett 2024; 26:7607-7613. [PMID: 39231445 DOI: 10.1021/acs.orglett.4c02714] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/06/2024]
Abstract
A rhodium-catalyzed one-pot access to valuable polycyclic frameworks of fluorenone-4-carboxylic acids and diphenic anhydrides via the oxidative dimeric cyclization of aromatic acids has been developed. This transformation proceeded via carboxyl-assisted 2-fold C-H activation followed by intramolecular Friedel-Crafts or dehydration reactions. The silver salt additive plays a vital role in the chemoselectivity of the products. Diphenic anhydride 3l exhibits a maximum fluorescence quantum yield of up to 59%.
Collapse
Affiliation(s)
- Wan-Di Li
- Key Laboratory of Syngas Conversion of Shaanxi Province, Key Laboratory for Macromolecular Science of Shaanxi Province, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an 710062, P.R. China
| | - Xue Wang
- Key Laboratory of Syngas Conversion of Shaanxi Province, Key Laboratory for Macromolecular Science of Shaanxi Province, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an 710062, P.R. China
| | - Hong-Yu Ma
- Key Laboratory of Syngas Conversion of Shaanxi Province, Key Laboratory for Macromolecular Science of Shaanxi Province, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an 710062, P.R. China
| | - Jing-Wen Jia
- Key Laboratory of Syngas Conversion of Shaanxi Province, Key Laboratory for Macromolecular Science of Shaanxi Province, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an 710062, P.R. China
| | - Yu-Yao Xiao
- Key Laboratory of Syngas Conversion of Shaanxi Province, Key Laboratory for Macromolecular Science of Shaanxi Province, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an 710062, P.R. China
| | - Xian-Ying Shi
- Key Laboratory of Syngas Conversion of Shaanxi Province, Key Laboratory for Macromolecular Science of Shaanxi Province, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an 710062, P.R. China
| |
Collapse
|
3
|
Vuagnat M, Jubault P, Besset T. Sequential ortho-/ meta-C-H functionalizations of N-tosyl-benzamides for the synthesis of polyfunctionalized arenes. Chem Commun (Camb) 2024; 60:2244-2247. [PMID: 38317563 DOI: 10.1039/d3cc05919g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2024]
Abstract
Selective one-pot sequential ortho-/meta-C-H functionalizations provided highly desirable polyfunctionalized arenes. Starting from readily available carboxylic acid derivatives, the concomitant formation of C-O and C-halogen bonds was achieved under mild reaction conditions (12 examples, up to 75% yield). The utility of the products was illustrated with post-functionalization reactions and Metiglinid synthesis.
Collapse
Affiliation(s)
- Martin Vuagnat
- INSA Rouen Normandie, Univ Rouen Normandie, CNRS, Normandie Univ, COBRA UMR 6014, Rouen F-76000, France.
| | - Philippe Jubault
- INSA Rouen Normandie, Univ Rouen Normandie, CNRS, Normandie Univ, COBRA UMR 6014, Rouen F-76000, France.
| | - Tatiana Besset
- INSA Rouen Normandie, Univ Rouen Normandie, CNRS, Normandie Univ, COBRA UMR 6014, Rouen F-76000, France.
| |
Collapse
|
4
|
Mondal S, Giri CK, Baidya M. Enaminone-directed ruthenium(II)-catalyzed C-H activation and annulation of arenes with diazonaphthoquinones for polycyclic benzocoumarins. Chem Commun (Camb) 2023; 59:13187-13190. [PMID: 37850468 DOI: 10.1039/d3cc03999d] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2023]
Abstract
The weakly coordinating enaminone functionality has been leveraged for a C-H bond activation strategy under ruthenium catalysis and employed in the regioselective annulative coupling of arenes with diazonaphthoquinones, offering polycyclic benzocoumarins in very high yields. The enaminone motif plays a dual role and the protocol operates through a Ru(II)/Ru(IV) catalytic pathway which is amenable to the diversification of various pharmacophore-coupled substrates.
Collapse
Affiliation(s)
- Sudeshna Mondal
- Department of Chemistry, Indian Institute of Technology Madras, Chennai 600 036, Tamil Nadu, India.
| | - Chandan Kumar Giri
- Department of Chemistry, Indian Institute of Technology Madras, Chennai 600 036, Tamil Nadu, India.
| | - Mahiuddin Baidya
- Department of Chemistry, Indian Institute of Technology Madras, Chennai 600 036, Tamil Nadu, India.
| |
Collapse
|
5
|
Yin F, Peng W, Wang C, Qu L, Chen X, Kong L, Wang X. Rhodium(III)‐ Catalyzed Cleavage of C‐C Bond and C‐H Bond Cascaded by Michael Addition for the Conversion of α‐Hydroxy Ketones to Phthalides and Isocoumarins. ASIAN J ORG CHEM 2022. [DOI: 10.1002/ajoc.202200024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Fucheng Yin
- China Pharmaceutical University School of Traditional Chinese Pharmacy Nanjing CHINA
| | - Wan Peng
- China Pharmaceutical University State Key Laboratory of Natural Medicines Nanjing CHINA
| | - Cheng Wang
- China Pharmaceutical University State Key Laboratory of Natural Medicines Nanjing CHINA
| | - Lailiang Qu
- China Pharmaceutical University State Key Laboratory of Natural Medicines Nanjing CHINA
| | - Xinye Chen
- China Pharmaceutical University State Key Laboratory of Natural Medicines Nanjing CHINA
| | - Lingyi Kong
- China Pharmaceutical University State Key Laboratory of Natural Medicines Nanjing CHINA
| | - Xiaobing Wang
- China Pharmaceutical University Department of Natural Medicinal Chemistry No. 24Tong Jia Xiang 210009 Nanjing CHINA
| |
Collapse
|
6
|
Li X, Li W, Wei W, Fan J, Liu Z, Shi X. Sequential Cobalt/Rhodium‐Catalyzed Tandem Cyclization of Aromatic Aldehydes with Acrylates for Preparing 3‐Substituted Phthalides in Oxygen Atmosphere and Neat Water. ASIAN J ORG CHEM 2021. [DOI: 10.1002/ajoc.202100725] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Xin‐Ran Li
- Key Laboratory of Syngas Conversion of Shaanxi Province Key Laboratory for Macromolecular Science of Shaanxi Province School of Chemistry and Chemical Engineering Shaanxi Normal University Xi'an 710062 P. R. China
| | - Wan‐Di Li
- Key Laboratory of Syngas Conversion of Shaanxi Province Key Laboratory for Macromolecular Science of Shaanxi Province School of Chemistry and Chemical Engineering Shaanxi Normal University Xi'an 710062 P. R. China
| | - Wen‐Ting Wei
- Key Laboratory of Syngas Conversion of Shaanxi Province Key Laboratory for Macromolecular Science of Shaanxi Province School of Chemistry and Chemical Engineering Shaanxi Normal University Xi'an 710062 P. R. China
| | - Juan Fan
- Key Laboratory of Syngas Conversion of Shaanxi Province Key Laboratory for Macromolecular Science of Shaanxi Province School of Chemistry and Chemical Engineering Shaanxi Normal University Xi'an 710062 P. R. China
| | - Zhong‐Wen Liu
- Key Laboratory of Syngas Conversion of Shaanxi Province Key Laboratory for Macromolecular Science of Shaanxi Province School of Chemistry and Chemical Engineering Shaanxi Normal University Xi'an 710062 P. R. China
| | - Xian‐Ying Shi
- Key Laboratory of Syngas Conversion of Shaanxi Province Key Laboratory for Macromolecular Science of Shaanxi Province School of Chemistry and Chemical Engineering Shaanxi Normal University Xi'an 710062 P. R. China
| |
Collapse
|
7
|
Jadhav PP, Kahar NM, Dawande SG. Ruthenium(II)-Catalyzed Highly Chemo- and Regioselective Oxidative C6 Alkenylation of Indole-7-carboxamides. Org Lett 2021; 23:8673-8677. [PMID: 34723545 DOI: 10.1021/acs.orglett.1c02948] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
We disclosed the first efficient method for highly chemo- and regioselective C6 alkenylation of indole-7-carboxamides using inexpensive Ru(II) catalyst through chelation assisted C-H bond activation. Electronically diverse indole-7-carboxamides and alkenes react efficiently to produce a wide range of C6 alkenyl indole derivatives. Further the C6 alkenyl indole-7-carboxamides modified to their derivatives through simple chemical transformations. The observed regioselectivity and kinetics has been evidenced by deuterium incorporation and intermolecular competitive studies. In addition, for mechanistic insights, the intermediates were analyzed by HRMS.
Collapse
Affiliation(s)
- Pankaj P Jadhav
- Department of Chemistry, Institute of Chemical Technology, Mumbai, Maharashtra 400019, India
| | - Nilesh M Kahar
- Department of Chemistry, Institute of Chemical Technology, Mumbai, Maharashtra 400019, India
| | - Sudam G Dawande
- Department of Chemistry, Institute of Chemical Technology, Mumbai, Maharashtra 400019, India
| |
Collapse
|
8
|
Giri CK, Dana S, Baidya M. Ruthenium(II)-catalyzed C-H activation and (4+2) annulation of aromatic hydroxamic acid esters with allylic amides. Chem Commun (Camb) 2021; 57:10536-10539. [PMID: 34553196 DOI: 10.1039/d1cc04422b] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
A (4+2) annulation under Ru(II)-catalysis is reported using aromatic hydroxamic acid esters as the oxidizing directing group and allylic amides as unactivated olefin coupling partners, delivering a wide variety of aminomethyl isoquinolinones in good to excellent yields. This annulation is distinctive as allylic congeners typically result in allylation and not the annulation. Late-stage derivatization of a bioactive synthetic bile acid has been showcased.
Collapse
Affiliation(s)
- Chandan Kumar Giri
- Department of Chemistry, Indian Institute of Technology Madras, Chennai 600 036, Tamil Nadu, India.
| | - Suman Dana
- Department of Chemistry, Indian Institute of Technology Madras, Chennai 600 036, Tamil Nadu, India.
| | - Mahiuddin Baidya
- Department of Chemistry, Indian Institute of Technology Madras, Chennai 600 036, Tamil Nadu, India.
| |
Collapse
|
9
|
Hu Z, Belitz F, Zhang G, Papp F, Gooßen LJ. Ru-Catalyzed ( E)-Specific ortho-C-H Alkenylation of Arenecarboxylic Acids by Coupling with Alkenyl Bromides. Org Lett 2021; 23:3541-3545. [PMID: 33885311 DOI: 10.1021/acs.orglett.1c00956] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
In the presence of [p-cymene)RuCl2]2, (E)-configured alkenyl bromides couple with aromatic carboxylates to form ortho-vinylbenzoic acids. This C-H vinylation proceeds in high yields without any activating phosphine ligands and has an excellent functional group tolerance. Starting from commonly available (E/Z )-mixtures of alkenyl bromides, (E)-configured vinyl arenes or dienes are formed exclusively. Mechanistic studies show that this selectivity is achieved because the (E)-configured alkenyl bromides undergo a smooth coupling, whereas the (Z)-isomers are rapidly eliminated with the formation of alkynes.
Collapse
Affiliation(s)
- Zhiyong Hu
- Evonik Chair of Organic Chemistry, Ruhr-Universität Bochum, Universitätsstraße 150, 44801 Bochum, Germany
| | - Florian Belitz
- Evonik Chair of Organic Chemistry, Ruhr-Universität Bochum, Universitätsstraße 150, 44801 Bochum, Germany
| | - Guodong Zhang
- Evonik Chair of Organic Chemistry, Ruhr-Universität Bochum, Universitätsstraße 150, 44801 Bochum, Germany
| | - Florian Papp
- Evonik Chair of Organic Chemistry, Ruhr-Universität Bochum, Universitätsstraße 150, 44801 Bochum, Germany
| | - Lukas J Gooßen
- Evonik Chair of Organic Chemistry, Ruhr-Universität Bochum, Universitätsstraße 150, 44801 Bochum, Germany
| |
Collapse
|
10
|
Das J, Mal DK, Maji S, Maiti D. Recent Advances in External-Directing-Group-Free C–H Functionalization of Carboxylic Acids without Decarboxylation. ACS Catal 2021. [DOI: 10.1021/acscatal.1c00176] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Affiliation(s)
- Jayabrata Das
- Department of Chemistry, Indian Institute of Technology Bombay, Powai, Mumbai 400076, India
| | - Dibya Kanti Mal
- Department of Chemistry, Indian Institute of Technology Bombay, Powai, Mumbai 400076, India
| | - Suman Maji
- Department of Chemistry, Indian Institute of Technology Bombay, Powai, Mumbai 400076, India
| | - Debabrata Maiti
- Department of Chemistry, Indian Institute of Technology Bombay, Powai, Mumbai 400076, India
| |
Collapse
|
11
|
Mandal A, Bera R, Baidya M. Regioselective C-H Alkenylation and Unsymmetrical Bis-olefination of Heteroarene Carboxylic Acids with Ruthenium Catalysis in Water. J Org Chem 2021; 86:62-73. [PMID: 33251801 DOI: 10.1021/acs.joc.0c02215] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
An efficient weak carboxylate-assisted oxidative cross-dehydrogenative C-H/C-H coupling (CDC) of heteroarenes with readily available olefins has been devised employing water as green solvent under ruthenium(II) catalysis. The reaction is operationally simple, accommodates a large variety of heteroaromatic carboxylic acids as well as olefins, and facilitates a diverse array of high-value olefin-tethered heteroarenes in high yields (up to 87%). The potential of this ortho-C-H bond activation strategy has also been exploited toward tunable synthesis of densely functionalized heteroarenes through challenging unsymmetrical bis-olefination process in a one-pot sequential fashion. Mechanistic investigation demonstrates a reversible ruthenation process and C-H metalation step might not be involved in the rate-determining step.
Collapse
Affiliation(s)
- Anup Mandal
- Department of Chemistry, Indian Institute of Technology Madras, Chennai 600 036, Tamil Nadu, India
| | - Ratnadeep Bera
- Department of Chemistry, Indian Institute of Technology Madras, Chennai 600 036, Tamil Nadu, India
| | - Mahiuddin Baidya
- Department of Chemistry, Indian Institute of Technology Madras, Chennai 600 036, Tamil Nadu, India
| |
Collapse
|
12
|
Liang X, Xiong M, Zhu H, Shi K, Zhou Y, Pan Y. Copper/Palladium Bimetallic System for the Synthesis of Isobenzofuranones through [4 + 1] Annulation between Propiophenones and Benzoic Acids. Org Lett 2020; 22:9568-9573. [DOI: 10.1021/acs.orglett.0c03627] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Affiliation(s)
- Xiao Liang
- Department of Chemistry, Zhejiang University, Hangzhou 310027, Zhejiang, P. R. China
| | - Mingteng Xiong
- Department of Chemistry, Zhejiang University, Hangzhou 310027, Zhejiang, P. R. China
| | - Heping Zhu
- Department of Chemistry, Zhejiang University, Hangzhou 310027, Zhejiang, P. R. China
| | - Keqiang Shi
- Department of Chemistry, Zhejiang University, Hangzhou 310027, Zhejiang, P. R. China
| | - Yifeng Zhou
- College of Life Sciences, China Jiliang University, Hangzhou 310018, Zhejiang, P. R. China
| | - Yuanjiang Pan
- Department of Chemistry, Zhejiang University, Hangzhou 310027, Zhejiang, P. R. China
| |
Collapse
|
13
|
Wang R, Xu H, Li T, Zhang Y, Wang S, Chen G, Li C, Zhao H. Iridium/Copper‐Catalyzed Oxidative C−H/O−H Annulation of Benzoic Acids with Saturated Ketones for Accessing 3‐Substituted Phthalides. ChemCatChem 2020. [DOI: 10.1002/cctc.202001214] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Affiliation(s)
- Rui Wang
- School of Chemistry and Chemical Engineering University of Jinan Jinan Shandong 250022 P. R. China
| | - Hongyan Xu
- School of Chemistry and Chemical Engineering University of Jinan Jinan Shandong 250022 P. R. China
| | - Tingting Li
- School of Chemistry and Chemical Engineering University of Jinan Jinan Shandong 250022 P. R. China
| | - Ying Zhang
- School of Chemistry and Chemical Engineering University of Jinan Jinan Shandong 250022 P. R. China
| | - Shoufeng Wang
- School of Chemistry and Chemical Engineering University of Jinan Jinan Shandong 250022 P. R. China
| | - Guozhu Chen
- School of Chemistry and Chemical Engineering University of Jinan Jinan Shandong 250022 P. R. China
| | - Cuncheng Li
- School of Chemistry and Chemical Engineering University of Jinan Jinan Shandong 250022 P. R. China
| | - Huaiqing Zhao
- School of Chemistry and Chemical Engineering University of Jinan Jinan Shandong 250022 P. R. China
- State Key Laboratory of Structural Chemistry Fujian Institute of Research on the Structure of Matter Chinese Academy of Sciences Fuzhou Fujian 350002 P. R. China
| |
Collapse
|
14
|
Mandal A, Garai B, Dana S, Bera R, Baidya M. Cross-Dehydrogenative Coupling/Annulation of Arene Carboxylic Acids and Alkenes in Water with Ruthenium(II) Catalyst and Air. Chem Asian J 2020; 15:4009-4013. [PMID: 33090685 DOI: 10.1002/asia.202001087] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2020] [Revised: 10/10/2020] [Indexed: 12/29/2022]
Abstract
A cross-dehydrogenative coupling of arene carboxylic acids with olefins is reported with ruthenium(II) catalyst employing air and water as green oxidant and solvent, respectively. It offers a robust synthesis of valuable phthalide molecules. A one-pot sequential strategy is also disclosed to access Heck-type products that are apparently difficult to make directly from arene carboxylic acids.
Collapse
Affiliation(s)
- Anup Mandal
- Department of Chemistry, Indian Institute of Technology Madras, Chennai, 600 036, Tamil Nadu, India
| | - Bholanath Garai
- Department of Chemistry, Indian Institute of Technology Madras, Chennai, 600 036, Tamil Nadu, India
| | - Suman Dana
- Department of Chemistry, Indian Institute of Technology Madras, Chennai, 600 036, Tamil Nadu, India
| | - Ratnadeep Bera
- Department of Chemistry, Indian Institute of Technology Madras, Chennai, 600 036, Tamil Nadu, India
| | - Mahiuddin Baidya
- Department of Chemistry, Indian Institute of Technology Madras, Chennai, 600 036, Tamil Nadu, India
| |
Collapse
|
15
|
Yugandar S, Morita T, Nakamura H. Rhodium(III)-catalysed decarboxylative C-H functionalization of isoxazoles with alkenes and sulfoxonium ylides. Org Biomol Chem 2020; 18:8625-8628. [PMID: 33084719 DOI: 10.1039/d0ob02027c] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Decarboxylative C-H functionalization of isoxazoles with electron-deficient alkenes and sulfoxonium ylides at the C5 position was achieved in the presence of rhodium(iii) catalysts to give the corresponding alkenylation and acylmethylation products, respectively.
Collapse
Affiliation(s)
- Somaraju Yugandar
- Laboratory of Chemistry and Life Science, Innovative Institute of Research Tokyo Institute of Technology, 4259 Nagatsuta-cho, Midori-ku, Yokohama 226-8503, Japan.
| | - Taiki Morita
- Laboratory of Chemistry and Life Science, Innovative Institute of Research Tokyo Institute of Technology, 4259 Nagatsuta-cho, Midori-ku, Yokohama 226-8503, Japan.
| | - Hiroyuki Nakamura
- Laboratory of Chemistry and Life Science, Innovative Institute of Research Tokyo Institute of Technology, 4259 Nagatsuta-cho, Midori-ku, Yokohama 226-8503, Japan.
| |
Collapse
|
16
|
Dana S, Giri CK, Baidya M. Ruthenium(II)-catalyzed amide directed spiroannulation with naphthoquinones: access to spiro-isoindolinone frameworks. Chem Commun (Camb) 2020; 56:13048-13051. [PMID: 33001082 DOI: 10.1039/d0cc05438k] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A mild ruthenium(ii)-catalyzed spiroannulation between benzamides and naphthoquinones is developed for the succinct synthesis of biologically relevant spiro-isoindolinone scaffolds. A base promoted transannulation of spirocyclic products en route to valuable benzo[b]phenanthridinetriones in good yields has also been accomplished.
Collapse
Affiliation(s)
- Suman Dana
- Department of Chemistry, Indian Institute of Technology Madras, Chennai 600 036, Tamil Nadu, India.
| | - Chandan Kumar Giri
- Department of Chemistry, Indian Institute of Technology Madras, Chennai 600 036, Tamil Nadu, India.
| | - Mahiuddin Baidya
- Department of Chemistry, Indian Institute of Technology Madras, Chennai 600 036, Tamil Nadu, India.
| |
Collapse
|
17
|
Yu S, Lv N, Hong C, Liu Z, Zhang Y. Rh-Catalyzed Annulation of Benzoic Acids, Formaldehyde, and Malonates via ortho-Hydroarylation to Indanones. Org Lett 2020; 22:8354-8358. [PMID: 33157567 DOI: 10.1021/acs.orglett.0c02986] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
A three-component reaction from readily available low-cost materials of benzoic acids, formaldehyde, and malonates for the preparation of indanones by rhodium catalysis is reported. The annulation is initiated by an ortho-hydroarylation of benzoic acids, and a Lewis acid is not required. The solvent has a significant influence to the reaction, and 2-substituted or nonsubstituted indanones are obtained by the change of solvent.
Collapse
Affiliation(s)
- Shuling Yu
- Department of Chemistry, Zhejiang University, Hangzhou 310027, China
| | - Ningning Lv
- Department of Chemistry, Zhejiang University, Hangzhou 310027, China
| | - Chao Hong
- Department of Chemistry, Zhejiang University, Hangzhou 310027, China
| | - Zhanxiang Liu
- Department of Chemistry, Zhejiang University, Hangzhou 310027, China
| | - Yuhong Zhang
- Department of Chemistry, Zhejiang University, Hangzhou 310027, China.,State Key Laboratory of Applied Organic Chemistry, Lanzhou University, Lanzhou 730000, China
| |
Collapse
|
18
|
Wang YC, Huang YH, Tsai HC, Basha RS, Chou CM. Palladium-Catalyzed Proaromatic C(Alkenyl)–H Olefination: Synthesis of Densely Functionalized 1,3-Dienes. Org Lett 2020; 22:6765-6770. [DOI: 10.1021/acs.orglett.0c02241] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Affiliation(s)
- Yu-Chun Wang
- Department of Applied Chemistry, National University of Kaohsiung, 700 Kaohsiung University Road,
Nanzih District, Kaohsiung 81148, Taiwan
| | - Yen-Hsiang Huang
- Department of Applied Chemistry, National University of Kaohsiung, 700 Kaohsiung University Road,
Nanzih District, Kaohsiung 81148, Taiwan
| | - Hung-Chang Tsai
- Department of Applied Chemistry, National University of Kaohsiung, 700 Kaohsiung University Road,
Nanzih District, Kaohsiung 81148, Taiwan
| | - R. Sidick Basha
- Department of Applied Chemistry, National University of Kaohsiung, 700 Kaohsiung University Road,
Nanzih District, Kaohsiung 81148, Taiwan
| | - Chih-Ming Chou
- Department of Applied Chemistry, National University of Kaohsiung, 700 Kaohsiung University Road,
Nanzih District, Kaohsiung 81148, Taiwan
| |
Collapse
|
19
|
Ghosh K, Rit RK, Shankar M, Mukherjee K, Sahoo AK. Directing Group Assisted Unsymmetrical Multiple Functionalization of Arene C-H Bonds. CHEM REC 2020; 20:1017-1042. [PMID: 32779389 DOI: 10.1002/tcr.202000063] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2020] [Revised: 07/09/2020] [Accepted: 07/10/2020] [Indexed: 12/28/2022]
Abstract
Multiple C-H bond functionalizations promptly install diverse groups on the molecular framework and consequently fabricate complex molecular entities. This review briefly surveys the conceptual development of directing group assisted unsymmetrical multiple functionalization of arene C(sp2 )-H bonds, which is exceedingly appealing and highly important.
Collapse
Affiliation(s)
- Koushik Ghosh
- School of Chemistry, University of Hyderabad, Hyderabad, 500046, India
| | - Raja K Rit
- School of Chemistry, University of Hyderabad, Hyderabad, 500046, India
| | - Majji Shankar
- School of Chemistry, University of Hyderabad, Hyderabad, 500046, India
| | - Kallol Mukherjee
- School of Chemistry, University of Hyderabad, Hyderabad, 500046, India
| | - Akhila K Sahoo
- School of Chemistry, University of Hyderabad, Hyderabad, 500046, India
| |
Collapse
|
20
|
Ghosh K, Ghosh A, Mukherjee K, Rit RK, Sahoo AK. Sulfoximine-Assisted Unsymmetrical Twofold C-H Functionalization of Arenes. J Org Chem 2020; 85:8618-8626. [PMID: 32519873 DOI: 10.1021/acs.joc.0c01010] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
An unprecedented ruthenium (Ru)-catalyzed twofold unsymmetrical annulation of 3-O/N-allyl benzoic acid derivatives with isocyanates for the construction of dihydro-furan/indole-fused phthalimide scaffolds is discussed. This double-unsymmetrical functionalization of both o,o'-C-H bonds of arene moiety is explicitly viable under the influence of methylphenyl sulfoximine directing group constructing three different [C-C/C-C(O)/N-C(O)] bonds under a single catalytic system. A broad scope with all six-carbon-substituted arene motifs, control experiments, and gram-scale synthesis make the synthetic model viable and significant.
Collapse
Affiliation(s)
- Koushik Ghosh
- School of Chemistry, University of Hyderabad, Hyderabad 500046, India
| | - Arghadip Ghosh
- School of Chemistry, University of Hyderabad, Hyderabad 500046, India
| | - Kallol Mukherjee
- School of Chemistry, University of Hyderabad, Hyderabad 500046, India
| | - Raja K Rit
- School of Chemistry, University of Hyderabad, Hyderabad 500046, India
| | - Akhila K Sahoo
- School of Chemistry, University of Hyderabad, Hyderabad 500046, India
| |
Collapse
|
21
|
Yuan Y, Guo X, Zhang X, Li B, Huang Q. Access to 5H-benzo[a]carbazol-6-ols and benzo[6,7]cyclohepta[1,2-b]indol-6-ols via rhodium-catalyzed C–H activation/carbenoid insertion/aldol-type cyclization. Org Chem Front 2020. [DOI: 10.1039/d0qo00820f] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
The rhodium-catalyzed mono-ortho C–H activation/carbenoid insertion/aldol-type cyclization of 3-aldehyde-2-phenyl-1H-indoles with diazo compounds has been developed.
Collapse
Affiliation(s)
- Yumeng Yuan
- Fujian Key Laboratory of Polymer Materials
- College of Chemistry & Materials Science
- Fujian Normal University
- Fuzhou
- P.R. China
| | - Xiemin Guo
- Fujian Key Laboratory of Polymer Materials
- College of Chemistry & Materials Science
- Fujian Normal University
- Fuzhou
- P.R. China
| | - Xiaofeng Zhang
- Fujian Key Laboratory of Polymer Materials
- College of Chemistry & Materials Science
- Fujian Normal University
- Fuzhou
- P.R. China
| | - Buhong Li
- MOE Key Laboratory of Optoelectronic Science and Technology for Medicine
- Fujian Key Laboratory for Photonics Technology
- Fujian Normal University
- Fuzhou
- P. R. China
| | - Qiufeng Huang
- Fujian Key Laboratory of Polymer Materials
- College of Chemistry & Materials Science
- Fujian Normal University
- Fuzhou
- P.R. China
| |
Collapse
|
22
|
Mandal A, Dana S, Chowdhury D, Baidya M. Recent Advancements in Transition-Metal-Catalyzed One-Pot Twofold Unsymmetrical Difunctionalization of Arenes. Chem Asian J 2019; 14:4074-4086. [PMID: 31584753 DOI: 10.1002/asia.201901213] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2019] [Revised: 09/28/2019] [Indexed: 12/14/2022]
Abstract
Transition-metal-catalyzed direct C-H bond activation reactions have been embraced as a powerful synthetic tool to access diverse functionalized arenes. However, site-selective incorporation of multiple distinct functionalities in an arene has always been a formidable challenge. Recent efforts from the synthetic community have disclosed a few dynamic synthetic approaches to fabricate multifunctionalized arenes in one-pot using a single catalytic system. These reports manifested the immense potential of such approaches to expedite contemporary organic synthesis towards building molecular complexity. In this minireview, we have illustrated the recent progress in this area, highlighting the contribution from several synthetic chemists including our group.
Collapse
Affiliation(s)
- Anup Mandal
- Department of Chemistry, Indian Institute of Technology Madras, Chennai, 600036, Tamil Nadu, India
| | - Suman Dana
- Department of Chemistry, Indian Institute of Technology Madras, Chennai, 600036, Tamil Nadu, India
| | - Deepan Chowdhury
- Department of Chemistry, Indian Institute of Technology Madras, Chennai, 600036, Tamil Nadu, India
| | - Mahiuddin Baidya
- Department of Chemistry, Indian Institute of Technology Madras, Chennai, 600036, Tamil Nadu, India
| |
Collapse
|