1
|
Newar UD, Boruah DJ, Bhuyan A, Nayak A, Maurya RA. Visible-light-induced copper-catalyzed oxidative esterification of α-azidoketones with diazoacetates: access to α-acyloxyacetates. Org Biomol Chem 2024; 22:5414-5418. [PMID: 38881326 DOI: 10.1039/d4ob00590b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/18/2024]
Abstract
A copper(II)-catalyzed 1,8-diazabicyclo[5.4.0]undec-7-ene (DBU)-mediated synthesis of α-acyloxyacetates from α-azidoketones and diazoacetates under visible light at room temperature is described. This reaction involves an oxidative esterification process, leading to the formation of two new C-O bonds with the elimination of dinitrogen molecules in the overall process. 20 examples of α-acyloxyacetates were synthesized in high yields (70-86%) by coupling various α-azidoketones with diazoacetates. α-Azidoketones containing electron-donating groups (Me, MeO), electron-withdrawing groups (CN, NO2), halogen atoms (Cl, Br), and other aryl groups are compatible with various substituted diazoacetates (ethyl, tertiary butyl, benzyl), resulting in the formation of α-acyloxyacetates.
Collapse
Affiliation(s)
- Uma Devi Newar
- Applied Organic Chemistry Group, Chemical Sciences & Technology Division, CSIR-North East Institute of Science & Technology (NEIST), Jorhat-785006, Assam, India.
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad-201002, India
| | - Dhruba Jyoti Boruah
- Applied Organic Chemistry Group, Chemical Sciences & Technology Division, CSIR-North East Institute of Science & Technology (NEIST), Jorhat-785006, Assam, India.
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad-201002, India
| | - Arnav Bhuyan
- Applied Organic Chemistry Group, Chemical Sciences & Technology Division, CSIR-North East Institute of Science & Technology (NEIST), Jorhat-785006, Assam, India.
| | - Abhimanyu Nayak
- Applied Organic Chemistry Group, Chemical Sciences & Technology Division, CSIR-North East Institute of Science & Technology (NEIST), Jorhat-785006, Assam, India.
| | - Ram Awatar Maurya
- Applied Organic Chemistry Group, Chemical Sciences & Technology Division, CSIR-North East Institute of Science & Technology (NEIST), Jorhat-785006, Assam, India.
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad-201002, India
| |
Collapse
|
2
|
Wan Q, Wu XD, Hou ZW, Ma Y, Wang L. Organophotoelectrocatalytic C(sp 2)-H alkylation of heteroarenes with unactivated C(sp 3)-H compounds. Chem Commun (Camb) 2024; 60:5502-5505. [PMID: 38699797 DOI: 10.1039/d4cc01335b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/05/2024]
Abstract
An organophotoelectrocatalytic method for the C(sp2)-H alkylation of heteroarenes with unactivated C(sp3)-H compounds through dehydrogenation cross-coupling has been developed. The C(sp2)-H alkylation combines organic catalysis, photochemistry and electrochemistry, avoiding the need for external metal-reagents, HAT-reagents, and oxidants. This protocol exhibits good substrate tolerance and functional group compatibility, providing a straightforward and powerful pathway to access a variety of alkylated heteroarenes under green conditions.
Collapse
Affiliation(s)
- Qinhui Wan
- Advanced Research Institute and School of Pharmaceutical Sciences, Taizhou University, Jiaojiang, Zhejiang, 318000, P. R. China.
| | - Xia-Die Wu
- Advanced Research Institute and School of Pharmaceutical Sciences, Taizhou University, Jiaojiang, Zhejiang, 318000, P. R. China.
| | - Zhong-Wei Hou
- Advanced Research Institute and School of Pharmaceutical Sciences, Taizhou University, Jiaojiang, Zhejiang, 318000, P. R. China.
| | - Yongmin Ma
- Advanced Research Institute and School of Pharmaceutical Sciences, Taizhou University, Jiaojiang, Zhejiang, 318000, P. R. China.
| | - Lei Wang
- Advanced Research Institute and School of Pharmaceutical Sciences, Taizhou University, Jiaojiang, Zhejiang, 318000, P. R. China.
- College of Material Chemistry and Chemical Engineering, Key Laboratory of Organosilicon Chemistry and Material Technology, Ministry of Education, Hangzhou Normal University, Hangzhou, 311121, Zhejiang, P. R. China
| |
Collapse
|
3
|
Song HY, Liu MY, Huang J, Wang D, Jiang J, Chen JY, Yang TB, He WM. Photosynthesis of 3-Alkylated Coumarins from Carboxylic Acids Catalyzed by a Na 2S-Based Electron Donor-Acceptor Complex. J Org Chem 2023; 88:2288-2295. [PMID: 36738288 DOI: 10.1021/acs.joc.2c02679] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
A simple and practical electron donor-acceptor (EDA) strategy to synthesize various 3-alkylated coumarins from easily available coumarins and naturally abundant carboxylic acids under photocatalyst-, oxidant-, and additive-free and mild conditions is reported. Using Na2S as the catalytic electron donor, a series of primary, secondary, and tertiary carbon radicals can be efficiently generated, and the EDA complex can be regenerated without an alkaline additive.
Collapse
Affiliation(s)
- Hai-Yang Song
- School of Chemistry and Chemical Engineering, University of South China, Hengyang 421001, China
| | - Mei-Yi Liu
- School of Chemistry and Chemical Engineering, University of South China, Hengyang 421001, China
| | - Jing Huang
- School of Chemistry and Chemical Engineering, University of South China, Hengyang 421001, China
| | - Dan Wang
- School of Chemistry and Chemical Engineering, University of South China, Hengyang 421001, China
| | - Jun Jiang
- School of Chemistry and Chemical Engineering, University of South China, Hengyang 421001, China
| | - Jin-Yang Chen
- School of Chemistry and Chemical Engineering, University of South China, Hengyang 421001, China
| | - Tian-Bao Yang
- National Engineering Research Center of Low-Carbon Processing and Utilization of Forest Biomass, Nanjing Forestry University, Nanjing 210037, China
| | - Wei-Min He
- School of Chemistry and Chemical Engineering, University of South China, Hengyang 421001, China
| |
Collapse
|
4
|
Kim JK, Liu Y, Gong M, Li Y, Huang M, Wu Y. A facile visible-light-induced one-pot synthesis of 3-alkyl coumarins from simple salicylaldehydes. Tetrahedron 2023. [DOI: 10.1016/j.tet.2023.133249] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
|
5
|
Beaudelot J, Oger S, Peruško S, Phan TA, Teunens T, Moucheron C, Evano G. Photoactive Copper Complexes: Properties and Applications. Chem Rev 2022; 122:16365-16609. [PMID: 36350324 DOI: 10.1021/acs.chemrev.2c00033] [Citation(s) in RCA: 93] [Impact Index Per Article: 31.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
Photocatalyzed and photosensitized chemical processes have seen growing interest recently and have become among the most active areas of chemical research, notably due to their applications in fields such as medicine, chemical synthesis, material science or environmental chemistry. Among all homogeneous catalytic systems reported to date, photoactive copper(I) complexes have been shown to be especially attractive, not only as alternative to noble metal complexes, and have been extensively studied and utilized recently. They are at the core of this review article which is divided into two main sections. The first one focuses on an exhaustive and comprehensive overview of the structural, photophysical and electrochemical properties of mononuclear copper(I) complexes, typical examples highlighting the most critical structural parameters and their impact on the properties being presented to enlighten future design of photoactive copper(I) complexes. The second section is devoted to their main areas of application (photoredox catalysis of organic reactions and polymerization, hydrogen production, photoreduction of carbon dioxide and dye-sensitized solar cells), illustrating their progression from early systems to the current state-of-the-art and showcasing how some limitations of photoactive copper(I) complexes can be overcome with their high versatility.
Collapse
Affiliation(s)
- Jérôme Beaudelot
- Laboratoire de Chimie Organique, Service de Chimie et PhysicoChimie Organiques, Université libre de Bruxelles (ULB), Avenue F. D. Roosevelt 50 - CP160/06, 1050Brussels, Belgium.,Laboratoire de Chimie Organique et Photochimie, Service de Chimie et PhysicoChimie Organiques, Université libre de Bruxelles (ULB), Avenue F. D. Roosevelt 50 - CP160/08, 1050Brussels, Belgium
| | - Samuel Oger
- Laboratoire de Chimie Organique, Service de Chimie et PhysicoChimie Organiques, Université libre de Bruxelles (ULB), Avenue F. D. Roosevelt 50 - CP160/06, 1050Brussels, Belgium
| | - Stefano Peruško
- Laboratoire de Chimie Organique, Service de Chimie et PhysicoChimie Organiques, Université libre de Bruxelles (ULB), Avenue F. D. Roosevelt 50 - CP160/06, 1050Brussels, Belgium.,Organic Synthesis Division, Department of Chemistry, University of Antwerp, Groenenborgerlaan 171, 2020Antwerp, Belgium
| | - Tuan-Anh Phan
- Laboratoire de Chimie Organique et Photochimie, Service de Chimie et PhysicoChimie Organiques, Université libre de Bruxelles (ULB), Avenue F. D. Roosevelt 50 - CP160/08, 1050Brussels, Belgium
| | - Titouan Teunens
- Laboratoire de Chimie Organique et Photochimie, Service de Chimie et PhysicoChimie Organiques, Université libre de Bruxelles (ULB), Avenue F. D. Roosevelt 50 - CP160/08, 1050Brussels, Belgium.,Laboratoire de Chimie des Matériaux Nouveaux, Université de Mons, Place du Parc 20, 7000Mons, Belgium
| | - Cécile Moucheron
- Laboratoire de Chimie Organique et Photochimie, Service de Chimie et PhysicoChimie Organiques, Université libre de Bruxelles (ULB), Avenue F. D. Roosevelt 50 - CP160/08, 1050Brussels, Belgium
| | - Gwilherm Evano
- Laboratoire de Chimie Organique, Service de Chimie et PhysicoChimie Organiques, Université libre de Bruxelles (ULB), Avenue F. D. Roosevelt 50 - CP160/06, 1050Brussels, Belgium
| |
Collapse
|
6
|
Anti-Markovnikov ring-opening of sulfonium salts with alkynes by visible light/copper catalysis. Sci China Chem 2022. [DOI: 10.1007/s11426-022-1373-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
7
|
Yang X, Yu W. Promoting effect of water on light and phenanthroline-diphosphine Cu(I) complex-initiated iodine atom transfer cyclisation. Chem Commun (Camb) 2022; 58:11693-11696. [PMID: 36177844 DOI: 10.1039/d2cc04324f] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Water can greatly facilitate the iodine atom transfer cyclisation of 2-allyloxy(or prop-2-yn-1-yloxy)-3-iodo tetrahydropyrans and tetrahydrofurans initiated by phenanthroline-diphosphine Cu(I) complexes under 455 nm light irradiation. Good yields were obtained in a mixture of acetonitrile and water (1 : 4, v/v) or in pure water, whereas no reaction took place in acetonitrile under the otherwise same conditions. The copper complexes are virtually heterogeneous in the water-dominant reaction media, which is believed to be a main reason for the beneficial effect of water.
Collapse
Affiliation(s)
- Xue Yang
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, China.
| | - Wei Yu
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, China.
| |
Collapse
|
8
|
Li GN, Li HC, Lu Z, Yu B. CuCl-photocatalyzed C-H amination of benzoxazoles. Org Biomol Chem 2022; 20:5125-5128. [PMID: 35704388 DOI: 10.1039/d2ob00687a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The direct coupling of benzoxazoles and amines was realized by visible light irradiation and CuCl catalysis. Various aminated benzoxazoles were successfully synthesized under mild conditions with air as an oxidant.
Collapse
Affiliation(s)
- Guan-Nan Li
- Green Catalysis Center, College of Chemistry, Zhengzhou University, Zhengzhou 450001, China. .,Department of Chemistry, Zhejiang University, Hangzhou, Zhejiang 310058, China.
| | - Hao-Cong Li
- Green Catalysis Center, College of Chemistry, Zhengzhou University, Zhengzhou 450001, China.
| | - Zhan Lu
- Green Catalysis Center, College of Chemistry, Zhengzhou University, Zhengzhou 450001, China. .,Department of Chemistry, Zhejiang University, Hangzhou, Zhejiang 310058, China.
| | - Bing Yu
- Green Catalysis Center, College of Chemistry, Zhengzhou University, Zhengzhou 450001, China.
| |
Collapse
|
9
|
Utilization of photocatalysts in decarboxylative coupling of carboxylic N-hydroxyphthalimide (NHPI) esters. ARAB J CHEM 2022. [DOI: 10.1016/j.arabjc.2022.103922] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
|
10
|
Li DS, Liu T, Hong Y, Cao CL, Wu J, Deng HP. Stop-Flow Microtubing Reactor-Assisted Visible Light-Induced Hydrogen-Evolution Cross Coupling of Heteroarenes with C(sp 3)–H Bonds. ACS Catal 2022. [DOI: 10.1021/acscatal.2c01087] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Dong-Sheng Li
- Jiangsu Key Laboratory of Pesticide Science and Department of Chemistry, College of Sciences, Nanjing Agricultural University, Nanjing 210095, People’s Republic of China
| | - Tao Liu
- Department of Chemistry, National University of Singapore, 3 Science Drive 3, Singapore 117543, Republic of Singapore
| | - Yang Hong
- Jiangsu Key Laboratory of Pesticide Science and Department of Chemistry, College of Sciences, Nanjing Agricultural University, Nanjing 210095, People’s Republic of China
| | - Chen-Lin Cao
- Jiangsu Key Laboratory of Pesticide Science and Department of Chemistry, College of Sciences, Nanjing Agricultural University, Nanjing 210095, People’s Republic of China
| | - Jie Wu
- Department of Chemistry, National University of Singapore, 3 Science Drive 3, Singapore 117543, Republic of Singapore
- National University of Singapore (Suzhou) Research Institute, No. 377 Lin Quan Street, Suzhou Industrial Park, Suzhou, Jiangsu 215123, People’s Republic of China
| | - Hong-Ping Deng
- Jiangsu Key Laboratory of Pesticide Science and Department of Chemistry, College of Sciences, Nanjing Agricultural University, Nanjing 210095, People’s Republic of China
| |
Collapse
|
11
|
Ji X, Yang Z, Wu X, Deng GJ, Huang H. Photoredox Neutral Decarboxylative Hydroxyalkylations of Heteroarenes with α-Keto Acids. J Org Chem 2022; 87:4168-4182. [PMID: 35212524 DOI: 10.1021/acs.joc.1c03007] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Photoredox neutral decarboxylative hydroxyalkylations of heteroarenes with α-keto acids under mild conditions are described. Stable and readily available α-keto acids were employed as hydroxyalkylating reagents with only CO2 released as the byproduct. A range of aromatic and aliphatic α-keto acids were successfully converted into hydroxyalkylated products with various heteroarenes. This transformation proceeded through a decarboxylation/Minisci addition/SCS sequence, generating a variety of valuable hydroxyalkylated heteroarenes.
Collapse
Affiliation(s)
- Xiaochen Ji
- Key Laboratory for Green Organic Synthesis and Application of Hunan Province, Key Laboratory of Environmentally Friendly Chemistry and Application of Ministry of Education, College of Chemistry, Xiangtan University, Xiangtan 411105, China.,School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang 453007, China
| | - Zhonglin Yang
- Key Laboratory for Green Organic Synthesis and Application of Hunan Province, Key Laboratory of Environmentally Friendly Chemistry and Application of Ministry of Education, College of Chemistry, Xiangtan University, Xiangtan 411105, China
| | - Xinzhuang Wu
- Key Laboratory for Green Organic Synthesis and Application of Hunan Province, Key Laboratory of Environmentally Friendly Chemistry and Application of Ministry of Education, College of Chemistry, Xiangtan University, Xiangtan 411105, China
| | - Guo-Jun Deng
- Key Laboratory for Green Organic Synthesis and Application of Hunan Province, Key Laboratory of Environmentally Friendly Chemistry and Application of Ministry of Education, College of Chemistry, Xiangtan University, Xiangtan 411105, China.,School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang 453007, China
| | - Huawen Huang
- Key Laboratory for Green Organic Synthesis and Application of Hunan Province, Key Laboratory of Environmentally Friendly Chemistry and Application of Ministry of Education, College of Chemistry, Xiangtan University, Xiangtan 411105, China.,School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang 453007, China
| |
Collapse
|
12
|
Abstract
In recent years, visible light-induced transition metal catalysis has emerged as a new paradigm in organic photocatalysis, which has led to the discovery of unprecedented transformations as well as the improvement of known reactions. In this subfield of photocatalysis, a transition metal complex serves a double duty by harvesting photon energy and then enabling bond forming/breaking events mostly via a single catalytic cycle, thus contrasting the established dual photocatalysis in which an exogenous photosensitizer is employed. In addition, this approach often synergistically combines catalyst-substrate interaction with photoinduced process, a feature that is uncommon in conventional photoredox chemistry. This Review describes the early development and recent advances of this emerging field.
Collapse
Affiliation(s)
- Kelvin Pak Shing Cheung
- Department of Chemistry and Biochemistry, The University of Texas at Dallas, Richardson, Texas 75080, United States
| | - Sumon Sarkar
- Department of Chemistry and Biochemistry, The University of Texas at Dallas, Richardson, Texas 75080, United States
| | - Vladimir Gevorgyan
- Department of Chemistry and Biochemistry, The University of Texas at Dallas, Richardson, Texas 75080, United States
| |
Collapse
|
13
|
Li J, Siang Tan S, Kyne SH, Wai Hong Chan P. Minisci‐Type Alkylation of
N
‐Heteroarenes by
N
‐(Acyloxy)phthalimide Esters Mediated by a Hantzsch Ester and Blue LED Light. Adv Synth Catal 2022. [DOI: 10.1002/adsc.202101195] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Jiacheng Li
- School of Chemistry Monash University Clayton Victoria 3800 Australia
| | - Suan Siang Tan
- School of Chemistry Monash University Clayton Victoria 3800 Australia
| | - Sara Helen Kyne
- School of Chemistry Monash University Clayton Victoria 3800 Australia
| | - Philip Wai Hong Chan
- Department of Biological Environment Jiyang College of Zhejiang A&F University Hang Zhou Shi, Zhuji 311800, People's Republic of China
- School of Chemistry Monash University Clayton Victoria 3800 Australia
| |
Collapse
|
14
|
Li X, Jiang M, Zhu X, Song X, Deng Q, Lv J, Yang D. A desulphurization strategy for Sonogashira couplings by visible light/copper catalysis. Org Chem Front 2022. [DOI: 10.1039/d1qo01548f] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
We have developed a new copper-based photocatalyst, [(binap)(tpy)Cu]Cl, and applied it in the visible-light promoted Sonogashira coupling reactions.
Collapse
Affiliation(s)
- Xuan Li
- Key Laboratory of Optic-electric Sensing and Analytical Chemistry for Life Science, MOE, College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao, 266042, P. R. China
| | - Min Jiang
- Key Laboratory of Bioorganic Phosphorus Chemistry and Chemical Biology (Ministry of Education), Department of Chemistry, Tsinghua University, Beijing 100084, People's Republic of China
- College of Materials, Chemistry and Chemical Engineering, Hangzhou Normal University, Hangzhou, 310036, P. R. China
| | - Xiaolong Zhu
- Key Laboratory of Optic-electric Sensing and Analytical Chemistry for Life Science, MOE, College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao, 266042, P. R. China
| | - Xiuyan Song
- Key Laboratory of Optic-electric Sensing and Analytical Chemistry for Life Science, MOE, College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao, 266042, P. R. China
| | - Qirong Deng
- Key Laboratory of Optic-electric Sensing and Analytical Chemistry for Life Science, MOE, College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao, 266042, P. R. China
| | - Jian Lv
- Key Laboratory of Optic-electric Sensing and Analytical Chemistry for Life Science, MOE, College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao, 266042, P. R. China
| | - Daoshan Yang
- Key Laboratory of Optic-electric Sensing and Analytical Chemistry for Life Science, MOE, College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao, 266042, P. R. China
- Key Laboratory of Bioorganic Phosphorus Chemistry and Chemical Biology (Ministry of Education), Department of Chemistry, Tsinghua University, Beijing 100084, People's Republic of China
| |
Collapse
|
15
|
Zhang Z, He Q, Zhang X, Yang C. Photoredox-Catalysed Regioselective Synthesis of C-4-Alkylated Pyridines with N -(Acyloxy)phthalimides. Org Biomol Chem 2022; 20:1969-1973. [DOI: 10.1039/d2ob00123c] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A method of direct C-4 selective alkylation of pyridine under visible light irradiation at room temperature was reported, using simple maleate-derived pyridinium salts as pyridine precursors, and the readily available...
Collapse
|
16
|
Photocatalyst-free visible light induced decarboxylative alkylation of quinoxalin-2(1H)-ones with carboxylic acids. Tetrahedron Lett 2022. [DOI: 10.1016/j.tetlet.2021.153595] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
17
|
Zhang G, Xiong Y, Li S, Xiao H. Recent Advances in Visible-Light-Promoted Copper Catalysis in Organic Reactions. SYNTHESIS-STUTTGART 2021. [DOI: 10.1055/a-1533-3597] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
AbstractIn recent years, visible-light-mediated copper photocatalysis has emerged as an attractive strategy for the diverse construction of basic bonds in an ecologically benign and cost-effective fashion. The intense activity in these areas has been stimulated by the distinctive properties of copper photocatalysts and has led to the rapid development and expansion of their applications. In this review, we focus on a series of significant achievements in the use of copper complexes as standalone photocatalysts in organic reactions to exhibit their high flexibility and potential in synthetic chemistry.1 Introduction2 Redox Coupling Reactions2.1 Carbon–Nitrogen Redox Coupling Reactions2.2 Carbon–Carbon Redox Coupling Reactions3 Oxidative Coupling Reactions4 Difunctionalization of Olefins5 C–H Bond Functionalization6 Radical Alkylation of Imines7 Conclusions and Outlook
Collapse
Affiliation(s)
- Guozhu Zhang
- College of Chemistry, Central China Normal University (CCNU)
- State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, Center for Excellence in Molecular Synthesis, University of Chinese Academy of Sciences, Chinese Academy of Sciences
| | - Yang Xiong
- State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, Center for Excellence in Molecular Synthesis, University of Chinese Academy of Sciences, Chinese Academy of Sciences
| | - Sijia Li
- College of Chemistry, Central China Normal University (CCNU)
| | - Haijing Xiao
- College of Chemistry, Central China Normal University (CCNU)
| |
Collapse
|
18
|
Wang C, Shi H, Deng GJ, Huang H. Visible-light- and bromide-mediated photoredox Minisci alkylation of N-heteroarenes with ester acetates. Org Biomol Chem 2021; 19:9177-9181. [PMID: 34647121 DOI: 10.1039/d1ob01799c] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A visible-light-induced photoredox Minisci alkylation reaction of N-heteroarenes with ethyl acetate has been reported. The low-toxic ethyl acetate was used for the first time as an alkylation reagent. Hence, 4-quinazolinones, quinolines and pyridines reacted smoothly in the current reaction system. Mechanistic studies indicate that LiBr plays a key role to dramatically improve the efficiency of the reaction by the mediation of hydrogen atom transfer.
Collapse
Affiliation(s)
- Chunlian Wang
- Key Laboratory for Green Organic Synthesis and Application of Hunan Province, Key Laboratory of Environmentally Friendly Chemistry and Application of Ministry of Education, College of Chemistry, Xiangtan University, Xiangtan 411105, China.
| | - Hang Shi
- Key Laboratory for Green Organic Synthesis and Application of Hunan Province, Key Laboratory of Environmentally Friendly Chemistry and Application of Ministry of Education, College of Chemistry, Xiangtan University, Xiangtan 411105, China.
| | - Guo-Jun Deng
- Key Laboratory for Green Organic Synthesis and Application of Hunan Province, Key Laboratory of Environmentally Friendly Chemistry and Application of Ministry of Education, College of Chemistry, Xiangtan University, Xiangtan 411105, China.
| | - Huawen Huang
- Key Laboratory for Green Organic Synthesis and Application of Hunan Province, Key Laboratory of Environmentally Friendly Chemistry and Application of Ministry of Education, College of Chemistry, Xiangtan University, Xiangtan 411105, China.
| |
Collapse
|
19
|
Zhang Y, Wang Q, Yan Z, Ma D, Zheng Y. Visible-light-mediated copper photocatalysis for organic syntheses. Beilstein J Org Chem 2021; 17:2520-2542. [PMID: 34760022 PMCID: PMC8551910 DOI: 10.3762/bjoc.17.169] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2021] [Accepted: 09/30/2021] [Indexed: 11/23/2022] Open
Abstract
Photoredox catalysis has been applied to renewable energy and green chemistry for many years. Ruthenium and iridium, which can be used as photoredox catalysts, are expensive and scarce in nature. Thus, the further development of catalysts based on these transition metals is discouraged. Alternative photocatalysts based on copper complexes are widely investigated, because they are abundant and less expensive. This review discusses the scope and application of photoinduced copper-based catalysis along with recent progress in this field. The special features and mechanisms of copper photocatalysis and highlights of the applications of the copper complexes to photocatalysis are reported. Copper-photocatalyzed reactions, including alkene and alkyne functionalization, organic halide functionalization, and alkyl C-H functionalization that have been reported over the past 5 years, are included.
Collapse
Affiliation(s)
- Yajing Zhang
- Traditional Chinese Medicine Processing Technology Innovation Center of Hebei Province, Hebei University of Chinese Medicine, Shijiazhuang, 050200, P. R. China
| | - Qian Wang
- Traditional Chinese Medicine Processing Technology Innovation Center of Hebei Province, Hebei University of Chinese Medicine, Shijiazhuang, 050200, P. R. China
| | - Zongsheng Yan
- Traditional Chinese Medicine Processing Technology Innovation Center of Hebei Province, Hebei University of Chinese Medicine, Shijiazhuang, 050200, P. R. China
| | - Donglai Ma
- Traditional Chinese Medicine Processing Technology Innovation Center of Hebei Province, Hebei University of Chinese Medicine, Shijiazhuang, 050200, P. R. China
| | - Yuguang Zheng
- Traditional Chinese Medicine Processing Technology Innovation Center of Hebei Province, Hebei University of Chinese Medicine, Shijiazhuang, 050200, P. R. China
| |
Collapse
|
20
|
Kallitsakis MG, Gioftsidou DK, Tzani MA, Angaridis PA, Terzidis MA, Lykakis IN. Selective C-H Allylic Oxygenation of Cycloalkenes and Terpenoids Photosensitized by [Cu(Xantphos)(neoc)]BF 4. J Org Chem 2021; 86:13503-13513. [PMID: 34435497 DOI: 10.1021/acs.joc.1c01591] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
We present herein for the first time the use of the [Cu(Xantphos)(neoc)]BF4 as a photocatalyst for the selective C-H allylic oxygenation of cycloalkenes into the corresponding allylic hydroperoxides or alcohols in the presence of molecular oxygen. The proposed methodology affords the products at good yields and has also been applied successfully to several bioactive terpenoids, such as geraniol, linalool, β-citronellol, and phytol. A mechanistic study involving also kinetic isotope effects (KIEs) supports the proposed singlet oxygen-mediated reaction. On the basis of the high chemoselectivity and yields and the fast and clean reaction processes observed, the present catalytic system, [Cu(Xantphos)(neoc)]BF4, has also been applied to the synthesis, at a laboratory scale, of the cis-Rose oxide, a well-known perfumery ingredient used in rose and geranium perfumes.
Collapse
Affiliation(s)
- Michael G Kallitsakis
- Department of Chemistry, Aristotle University of Thessaloniki, University Campus, 54124 Thessaloniki, Greece
| | - Dimitra K Gioftsidou
- Department of Chemistry, Aristotle University of Thessaloniki, University Campus, 54124 Thessaloniki, Greece
| | - Marina A Tzani
- Department of Chemistry, Aristotle University of Thessaloniki, University Campus, 54124 Thessaloniki, Greece
| | - Panagiotis A Angaridis
- Department of Chemistry, Aristotle University of Thessaloniki, University Campus, 54124 Thessaloniki, Greece
| | - Michael A Terzidis
- Department of Nutritional Sciences and Dietetics, International Hellenic University, Sindos, 57400 Thessaloniki, Greece
| | - Ioannis N Lykakis
- Department of Chemistry, Aristotle University of Thessaloniki, University Campus, 54124 Thessaloniki, Greece
| |
Collapse
|
21
|
Zhao B, Hammond GB, Xu B. Aromatic Ketone-Catalyzed Photochemical Synthesis of Imidazo-isoquinolinone Derivatives. J Org Chem 2021; 86:12851-12861. [PMID: 34436893 DOI: 10.1021/acs.joc.1c01486] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
We have developed an efficient photocatalytic decarboxylative radical addition/cyclization strategy to synthesize imidazo-isoquinolinone derivatives using inexpensive aromatic ketone photocatalysts. This method not only tolerates a wide range of functional groups but also works well for both alkyl and aryl radicals.
Collapse
Affiliation(s)
- Bin Zhao
- Key Lab of Science and Technology of Eco-Textile, Ministry of Education, College of Chemistry, Chemical Engineering and Biotechnology, Donghua University, Shanghai 201620, China
| | - Gerald B Hammond
- Department of Chemistry, University of Louisville, Louisville, Kentucky 40292, United States
| | - Bo Xu
- Key Lab of Science and Technology of Eco-Textile, Ministry of Education, College of Chemistry, Chemical Engineering and Biotechnology, Donghua University, Shanghai 201620, China
| |
Collapse
|
22
|
Photoinduced copper-catalyzed dual decarboxylative coupling of α,β-unsaturated carboxylic acids with redox-active esters. Tetrahedron 2021. [DOI: 10.1016/j.tet.2021.132259] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
|
23
|
Li HC, Sun K, Li X, Wang SY, Chen XL, He SQ, Qu LB, Yu B. Metal-Free Photosynthesis of Alkylated Benzimidazo[2,1- a]isoquinoline-6(5 H)-ones and Indolo[2,1- a]isoquinolin-6(5 H)-ones in PEG-200. J Org Chem 2021; 86:9055-9066. [PMID: 34157844 DOI: 10.1021/acs.joc.1c01022] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
A visible-light-induced decarboxylation reaction was developed for the synthesis of alkylated benzimidazo[2,1-a]isoquinoline-6(5H)-ones and indolo[2,1-a]isoquinolin-6(5H)-ones under metal-free conditions. Impressively, metal catalysts and traditionally volatile organic solvents could be effectively avoided.
Collapse
Affiliation(s)
- Hao-Cong Li
- Green Catalysis Center, College of Chemistry, Zhengzhou University, Zhengzhou 450001, China
| | - Kai Sun
- Green Catalysis Center, College of Chemistry, Zhengzhou University, Zhengzhou 450001, China
| | - Xiang Li
- Green Catalysis Center, College of Chemistry, Zhengzhou University, Zhengzhou 450001, China
| | - Si-Yang Wang
- Green Catalysis Center, College of Chemistry, Zhengzhou University, Zhengzhou 450001, China
| | - Xiao-Lan Chen
- Green Catalysis Center, College of Chemistry, Zhengzhou University, Zhengzhou 450001, China
| | - Shuai-Qi He
- Green Catalysis Center, College of Chemistry, Zhengzhou University, Zhengzhou 450001, China
| | - Ling-Bo Qu
- Green Catalysis Center, College of Chemistry, Zhengzhou University, Zhengzhou 450001, China
| | - Bing Yu
- Green Catalysis Center, College of Chemistry, Zhengzhou University, Zhengzhou 450001, China
| |
Collapse
|
24
|
Dong J, Liu J, Song H, Liu Y, Wang Q. Metal-, Photocatalyst-, and Light-Free Minisci C-H Acetylation of N-Heteroarenes with Vinyl Ethers. Org Lett 2021; 23:4374-4378. [PMID: 34024106 DOI: 10.1021/acs.orglett.1c01310] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Herein, we report a mild, operationally simple method for Minisci C-H acetylation of N-heteroarenes using vinyl ethers as robust, inexpensive acetyl sources. The reactions do not require a conventional photocatalysis, electrocatalysis, metal catalysis, light activation, or high temperature. This method is thus significantly more sustainable than previously reported methods in terms of cost, reagent toxicity, and waste generation. This protocol can be expected to obtain medically relevant molecules from abundant feedstock materials.
Collapse
Affiliation(s)
- Jianyang Dong
- State Key Laboratory of Elemento-Organic Chemistry, Research Institute of Elemento-Organic Chemistry, College of Chemistry, Nankai University, Tianjin 300071, People's Republic of China
| | - Jianhua Liu
- State Key Laboratory of Elemento-Organic Chemistry, Research Institute of Elemento-Organic Chemistry, College of Chemistry, Nankai University, Tianjin 300071, People's Republic of China
| | - Hongjian Song
- State Key Laboratory of Elemento-Organic Chemistry, Research Institute of Elemento-Organic Chemistry, College of Chemistry, Nankai University, Tianjin 300071, People's Republic of China
| | - Yuxiu Liu
- State Key Laboratory of Elemento-Organic Chemistry, Research Institute of Elemento-Organic Chemistry, College of Chemistry, Nankai University, Tianjin 300071, People's Republic of China
| | - Qingmin Wang
- State Key Laboratory of Elemento-Organic Chemistry, Research Institute of Elemento-Organic Chemistry, College of Chemistry, Nankai University, Tianjin 300071, People's Republic of China.,Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin 300071, People's Republic of China
| |
Collapse
|
25
|
Zheng L, Xue H, Zhou B, Luo SP, Jin H, Liu Y. Single Cu(I)-Photosensitizer Enabling Combination of Energy-Transfer and Photoredox Catalysis for the Synthesis of Benzo[ b]fluorenols from 1,6-Enynes. Org Lett 2021; 23:4478-4482. [PMID: 33988383 DOI: 10.1021/acs.orglett.1c01427] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
An efficient, mild, and atom-economical synthesis of benzo[b]fluorenols from 1,6-enynes has been developed under photocatalytic conditions. A single P/N heteroleptic Cu(I)-photosensitizer might exhibit both energy-transfer and photoredox catalytic activities in the formation of benzo[b]fluorenols.
Collapse
Affiliation(s)
- Limeng Zheng
- State Key Laboratory Breeding Base of Green Chemistry-Synthesis Technology, College of Chemical Engineering, Zhejiang University of Technology, Hangzhou 310014, P. R. China
| | - Han Xue
- State Key Laboratory Breeding Base of Green Chemistry-Synthesis Technology, College of Chemical Engineering, Zhejiang University of Technology, Hangzhou 310014, P. R. China
| | - Bingwei Zhou
- State Key Laboratory Breeding Base of Green Chemistry-Synthesis Technology, College of Chemical Engineering, Zhejiang University of Technology, Hangzhou 310014, P. R. China
| | - Shu-Ping Luo
- State Key Laboratory Breeding Base of Green Chemistry-Synthesis Technology, College of Chemical Engineering, Zhejiang University of Technology, Hangzhou 310014, P. R. China
| | - Hongwei Jin
- State Key Laboratory Breeding Base of Green Chemistry-Synthesis Technology, College of Chemical Engineering, Zhejiang University of Technology, Hangzhou 310014, P. R. China
| | - Yunkui Liu
- State Key Laboratory Breeding Base of Green Chemistry-Synthesis Technology, College of Chemical Engineering, Zhejiang University of Technology, Hangzhou 310014, P. R. China
| |
Collapse
|
26
|
Chand S, Pandey AK, Singh R, Singh KN. Visible-Light-Induced Photocatalytic Oxidative Decarboxylation of Cinnamic Acids to 1,2-Diketones. J Org Chem 2021; 86:6486-6493. [PMID: 33851837 DOI: 10.1021/acs.joc.1c00322] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
A concerted metallophotoredox catalysis has been realized for the efficient decarboxylative functionalization of α,β-unsaturated carboxylic acids with aryl iodides in the presence of perylene bisimide dye to afford 1,2-diketones.
Collapse
Affiliation(s)
- Shiv Chand
- Department of Chemistry, Institute of Science, Banaras Hindu University, Varanasi 221005, India
| | - Anand Kumar Pandey
- Department of Chemistry, Institute of Science, Banaras Hindu University, Varanasi 221005, India
| | - Rahul Singh
- Department of Chemistry, Institute of Science, Banaras Hindu University, Varanasi 221005, India
| | - Krishna Nand Singh
- Department of Chemistry, Institute of Science, Banaras Hindu University, Varanasi 221005, India
| |
Collapse
|
27
|
Abstract
Minisci-type reactions have been widely known as reactions that involve the addition
of carbon-centered radicals to basic heteroarenes followed by formal hydrogen atom loss.
While the originally developed protocols for radical generation remain in active use today, in
recent years, the new array of radical generation strategies have allowed the use of a wider
variety of radical precursors that often operate under milder and more benign conditions. New
transformations based on free radical reactivity are now available to a synthetic chemist, to
utilize a Minisci-type reaction. Radical-generation methods based on photoredox catalysis
and electrochemistry, which utilize thermal cleavage or the in situ generation of reactive radical
precursors, have become popular approaches. Our review will cover the remarkable literature
that has been reported on this topic in recent 5 years, from 2015-01 to 2020-01, in an
attempt to provide guidance to the synthetic chemist on both the challenges that need to be overcome and the applications
in organic synthesis.
Collapse
Affiliation(s)
- Wengui Wang
- Shandong Provincial Key Laboratory of Fluorine Chemistry and Chemical Materials, School of Chemistry and Chemical Engineering, University of Jinan, Jinan, China
| | - Shoufeng Wang
- Shandong Provincial Key Laboratory of Fluorine Chemistry and Chemical Materials, School of Chemistry and Chemical Engineering, University of Jinan, Jinan, China
| |
Collapse
|
28
|
Yan Q, Cui W, Song X, Xu G, Jiang M, Sun K, Lv J, Yang D. Sulfonylation of Aryl Halides by Visible Light/Copper Catalysis. Org Lett 2021; 23:3663-3668. [DOI: 10.1021/acs.orglett.1c01050] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- Qiuli Yan
- Key Laboratory of Optic-electric Sensing and Analytical Chemistry for Life Science, MOE, College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao, 266042, P. R. China
| | - Wenwen Cui
- Key Laboratory of Optic-electric Sensing and Analytical Chemistry for Life Science, MOE, College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao, 266042, P. R. China
| | - Xiuyan Song
- Key Laboratory of Optic-electric Sensing and Analytical Chemistry for Life Science, MOE, College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao, 266042, P. R. China
| | - Guiyun Xu
- Key Laboratory of Optic-electric Sensing and Analytical Chemistry for Life Science, MOE, College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao, 266042, P. R. China
| | - Min Jiang
- College of Materials, Chemistry and Chemical Engineering, Hangzhou Normal University, Hangzhou, 310036, P. R. China
| | - Kai Sun
- College of Chemistry and Chemical Engineering, YanTai University, Yantai, 264005, P. R. China
| | - Jian Lv
- Key Laboratory of Optic-electric Sensing and Analytical Chemistry for Life Science, MOE, College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao, 266042, P. R. China
| | - Daoshan Yang
- Key Laboratory of Optic-electric Sensing and Analytical Chemistry for Life Science, MOE, College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao, 266042, P. R. China
| |
Collapse
|
29
|
Parida SK, Hota SK, Kumar R, Murarka S. Late‐Stage Alkylation of Heterocycles Using
N
‐(Acyloxy)phthalimides. Chem Asian J 2021; 16:879-889. [DOI: 10.1002/asia.202100151] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2021] [Revised: 03/03/2021] [Indexed: 11/06/2022]
Affiliation(s)
- Sushanta Kumar Parida
- Department of Chemistry Indian Institute of Technology Jodhpur Karwar 342037 Rajasthan India
| | - Sudhir Kumar Hota
- Department of Chemistry Indian Institute of Technology Jodhpur Karwar 342037 Rajasthan India
| | - Raushan Kumar
- Department of Chemistry Indian Institute of Technology Jodhpur Karwar 342037 Rajasthan India
| | - Sandip Murarka
- Department of Chemistry Indian Institute of Technology Jodhpur Karwar 342037 Rajasthan India
| |
Collapse
|
30
|
Hu X, Chen X, Li B, He G, Chen G. Construction of Peptide Macrocycles via Radical-Mediated Intramolecular C-H Alkylations. Org Lett 2021; 23:716-721. [PMID: 33416330 DOI: 10.1021/acs.orglett.0c03940] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Enzyme-catalyzed radical-mediated C-H functionalization reactions allow nature to create natural products of unusual three-dimensional structures from simple linear peptide precursors. In comparison, chemist's ability to harness radical C-H functionalization reactions for synthesis of complex peptides remains limited. In this work, new methods have been developed to construct peptide macrocycles via radical-mediated intramolecular C-H alkylation reactions under photoredox catalysis. Linear peptide precursors equipped with a C-terminal N-(acyloxy)phthalimide ester can cyclize with the α C-H bond of N-terminal glycine or aryl C-H bond of N-heteroarene capping units in high yield and selectivity under mild conditions. The strategy uses the C-H cyclization step to incorporate lysine, homolysine, and various heteroarene-derived amino acid linchpins into peptide macrocycles, enabling convergent and flexible synthesis of complex peptide macrocycles from simple building blocks.
Collapse
Affiliation(s)
- Xiafei Hu
- State Key Laboratory and Institute of Elemento-Organic Chemistry, Nankai University, Tianjin 300071, China
| | - Xiangxiang Chen
- State Key Laboratory and Institute of Elemento-Organic Chemistry, Nankai University, Tianjin 300071, China
| | - Bo Li
- State Key Laboratory and Institute of Elemento-Organic Chemistry, Nankai University, Tianjin 300071, China
| | - Gang He
- State Key Laboratory and Institute of Elemento-Organic Chemistry, Nankai University, Tianjin 300071, China
| | - Gong Chen
- State Key Laboratory and Institute of Elemento-Organic Chemistry, Nankai University, Tianjin 300071, China
| |
Collapse
|
31
|
Phosphoric Acid Mediated Light‐Induced Minisci C−H Alkylation of
N
‐Heteroarenes. European J Org Chem 2021. [DOI: 10.1002/ejoc.202001538] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
32
|
Parida SK, Mandal T, Das S, Hota SK, De Sarkar S, Murarka S. Single Electron Transfer-Induced Redox Processes Involving N-(Acyloxy)phthalimides. ACS Catal 2021. [DOI: 10.1021/acscatal.0c04756] [Citation(s) in RCA: 90] [Impact Index Per Article: 22.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Affiliation(s)
- Sushanta Kumar Parida
- Department of Chemistry, Indian Institute of Technology Jodhpur, Karwar-342037, Rajasthan, India
| | - Tanumoy Mandal
- Department of Chemical Sciences, Indian Institute of Science Education and Research Kolkata, Mohanpur-741246, West Bengal, India
| | - Sanju Das
- Department of Chemical Sciences, Indian Institute of Science Education and Research Kolkata, Mohanpur-741246, West Bengal, India
| | - Sudhir Kumar Hota
- Department of Chemistry, Indian Institute of Technology Jodhpur, Karwar-342037, Rajasthan, India
| | - Suman De Sarkar
- Department of Chemical Sciences, Indian Institute of Science Education and Research Kolkata, Mohanpur-741246, West Bengal, India
| | - Sandip Murarka
- Department of Chemistry, Indian Institute of Technology Jodhpur, Karwar-342037, Rajasthan, India
| |
Collapse
|
33
|
He S, Li H, Chen X, Krylov IB, Terent'ev AO, Qu L, Yu B. Advances of N-Hydroxyphthalimide Esters in Photocatalytic Alkylation Reactions. CHINESE J ORG CHEM 2021. [DOI: 10.6023/cjoc202105041] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
34
|
Zhu X, Li X, Li X, Lv J, Sun K, Song X, Yang D. Decarboxylative C–H alkylation of heteroarenes by copper catalysis. Org Chem Front 2021. [DOI: 10.1039/d1qo00210d] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
A copper-catalyzed decarboxylative C–H alkylation of heteroarenes with alkyl carboxylic acids has been realized.
Collapse
Affiliation(s)
- Xiaolong Zhu
- Key Laboratory of Optic-electric Sensing and Analytical Chemistry for Life Science
- MOE
- College of Chemistry and Molecular Engineering
- Qingdao University of Science and Technology
- Qingdao
| | - Xuan Li
- Key Laboratory of Optic-electric Sensing and Analytical Chemistry for Life Science
- MOE
- College of Chemistry and Molecular Engineering
- Qingdao University of Science and Technology
- Qingdao
| | - Xuehao Li
- Key Laboratory of Optic-electric Sensing and Analytical Chemistry for Life Science
- MOE
- College of Chemistry and Molecular Engineering
- Qingdao University of Science and Technology
- Qingdao
| | - Jian Lv
- Key Laboratory of Optic-electric Sensing and Analytical Chemistry for Life Science
- MOE
- College of Chemistry and Molecular Engineering
- Qingdao University of Science and Technology
- Qingdao
| | - Kai Sun
- College of Chemistry and Chemical Engineering
- YanTai University
- Yantai
- P. R. China
| | - Xiuyan Song
- Key Laboratory of Optic-electric Sensing and Analytical Chemistry for Life Science
- MOE
- College of Chemistry and Molecular Engineering
- Qingdao University of Science and Technology
- Qingdao
| | - Daoshan Yang
- Key Laboratory of Optic-electric Sensing and Analytical Chemistry for Life Science
- MOE
- College of Chemistry and Molecular Engineering
- Qingdao University of Science and Technology
- Qingdao
| |
Collapse
|
35
|
Dong J, Liu Y, Wang Q. Recent Advances in Visible-Light-Mediated Minisci Reactions. CHINESE J ORG CHEM 2021. [DOI: 10.6023/cjoc202104024] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
36
|
Tian M, Wang Y, Bu X, Wang Y, Yang X. An ultrastable olefin-linked covalent organic framework for photocatalytic decarboxylative alkylations under highly acidic conditions. Catal Sci Technol 2021. [DOI: 10.1039/d1cy00293g] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
An ultrastable olefin-linked covalent organic framework 2D-COF-2 offers an alternative heterogeneous photocatalyst for photocatalytic decarboxylative alkylations, exhibiting impressive effciency, sustainabilty and promising industrial potential.
Collapse
Affiliation(s)
- Miao Tian
- Institute of Catalysis for Energy and Environment
- College of Chemistry and Chemical Engineering
- Shenyang Normal University
- Shenyang 110034
- P. R. China
| | - Yichun Wang
- Institute of Catalysis for Energy and Environment
- College of Chemistry and Chemical Engineering
- Shenyang Normal University
- Shenyang 110034
- P. R. China
| | - Xiubin Bu
- Institute of Catalysis for Energy and Environment
- College of Chemistry and Chemical Engineering
- Shenyang Normal University
- Shenyang 110034
- P. R. China
| | - Yichen Wang
- Institute of Catalysis for Energy and Environment
- College of Chemistry and Chemical Engineering
- Shenyang Normal University
- Shenyang 110034
- P. R. China
| | - Xiaobo Yang
- Institute of Catalysis for Energy and Environment
- College of Chemistry and Chemical Engineering
- Shenyang Normal University
- Shenyang 110034
- P. R. China
| |
Collapse
|
37
|
Zheng L, Jiang Q, Bao H, Zhou B, Luo SP, Jin H, Wu H, Liu Y. Tertiary Amines Acting as Alkyl Radical Equivalents Enabled by a P/N Heteroleptic Cu(I) Photosensitizer. Org Lett 2020; 22:8888-8893. [PMID: 33166146 DOI: 10.1021/acs.orglett.0c03236] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
An unprecedented exploration of tertiary amines as alkyl radical equivalents for cross-coupling with aromatic alkynes to access allylarenes has been achieved by a P/N heteroleptic Cu(I)-based photosensitizer under photoredox catalysis conditions. Mechanistic studies reveal that the reaction might undergo radical addition of in situ-generated α-amino radical intermediates to alkynes followed by 1,5-hydrogen transfer, C-N bond cleavage, and concomitant isomerization of the resulting allyl radical species.
Collapse
Affiliation(s)
- Limeng Zheng
- State Key Laboratory Breeding Base of Green Chemistry-Synthesis Technology, College of Chemical Engineering, Zhejiang University of Technology, Hangzhou 310014, P. R. China
| | - Qinfang Jiang
- State Key Laboratory Breeding Base of Green Chemistry-Synthesis Technology, College of Chemical Engineering, Zhejiang University of Technology, Hangzhou 310014, P. R. China
| | - Hanyang Bao
- State Key Laboratory Breeding Base of Green Chemistry-Synthesis Technology, College of Chemical Engineering, Zhejiang University of Technology, Hangzhou 310014, P. R. China
| | - Bingwei Zhou
- State Key Laboratory Breeding Base of Green Chemistry-Synthesis Technology, College of Chemical Engineering, Zhejiang University of Technology, Hangzhou 310014, P. R. China
| | - Shu-Ping Luo
- State Key Laboratory Breeding Base of Green Chemistry-Synthesis Technology, College of Chemical Engineering, Zhejiang University of Technology, Hangzhou 310014, P. R. China
| | - Hongwei Jin
- State Key Laboratory Breeding Base of Green Chemistry-Synthesis Technology, College of Chemical Engineering, Zhejiang University of Technology, Hangzhou 310014, P. R. China
| | - Huayue Wu
- College of Chemistry and Materials Engineering, Wenzhou University, Wenzhou 325027, P. R. China
| | - Yunkui Liu
- State Key Laboratory Breeding Base of Green Chemistry-Synthesis Technology, College of Chemical Engineering, Zhejiang University of Technology, Hangzhou 310014, P. R. China
| |
Collapse
|
38
|
Liu DY, Liu X, Gao Y, Wang CQ, Tian JS, Loh TP. Decarboxylative C-H Alkylation of Heteroarene N-Oxides by Visible Light/Copper Catalysis. Org Lett 2020; 22:8978-8983. [PMID: 33174421 DOI: 10.1021/acs.orglett.0c03382] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
This paper reports a highly site-selective alkylation of heteroarene N-oxides using hypervalent iodine(III) carboxylates to serve as an alkylating agent in the presence of a cheap copper catalyst under visible light conditions. This mild method proceeds at room temperature in an air atmosphere and can withstand various heteroarene N-oxides as well as various primary, secondary, and tertiary alkyl carboxylic acids. It also provides a practical method for enabling the rapid conversion of commercially available raw materials into medically relevant "drug-like" molecules.
Collapse
Affiliation(s)
- Duan-Yang Liu
- Institute of Advanced Synthesis (IAS), Nanjing Tech University (NanjingTech), Nanjing 211816, P. R. China
| | - Xu Liu
- Institute of Advanced Synthesis (IAS), Nanjing Tech University (NanjingTech), Nanjing 211816, P. R. China
| | - Yan Gao
- Institute of Advanced Synthesis (IAS), Northwestern Polytechnical University (NPU), Xi'an 710072, China.,Yangtze River Delta Research Institute of Northwestern Polytechnical University, Taicang, Jiangsu 215400, China
| | - Chao-Qun Wang
- Institute of Advanced Synthesis (IAS), Nanjing Tech University (NanjingTech), Nanjing 211816, P. R. China
| | - Jie-Sheng Tian
- Institute of Advanced Synthesis (IAS), Northwestern Polytechnical University (NPU), Xi'an 710072, China.,Yangtze River Delta Research Institute of Northwestern Polytechnical University, Taicang, Jiangsu 215400, China.,Institute of Advanced Synthesis (IAS), Nanjing Tech University (NanjingTech), Nanjing 211816, P. R. China
| | - Teck-Peng Loh
- Institute of Advanced Synthesis (IAS), Northwestern Polytechnical University (NPU), Xi'an 710072, China.,Yangtze River Delta Research Institute of Northwestern Polytechnical University, Taicang, Jiangsu 215400, China.,Institute of Advanced Synthesis (IAS), Nanjing Tech University (NanjingTech), Nanjing 211816, P. R. China.,Division of Chemistry and Biological Chemistry, School of Physical and Mathematical Sciences, Nanyang Technological University, Singapore 637371
| |
Collapse
|
39
|
Liu YA, Liao X, Chen H. Recent Progress in Radical Decarboxylative Functionalizations Enabled by Transition-Metal (Ni, Cu, Fe, Co or Cr) Catalysis. SYNTHESIS-STUTTGART 2020. [DOI: 10.1055/s-0040-1707273] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
AbstractAliphatic carboxylic acids are abundant in natural and synthetic sources and are widely used as connection points in many chemical transformations. Radical decarboxylative functionalization promoted by transition-metal catalysis has achieved great success, enabling carboxylic acids to be easily transformed into a wide variety of products. Herein, we highlight the recent advances made on transition-metal (Ni, Cu, Fe, Co or Cr) catalyzed C–X (X = C, N, H, O, B, or Si) bond formation as well as syntheses of ketones, amino acids, alcohols, ethers and difluoromethyl derivatives via radical decarboxylation of carboxylic acids or their derivatives, including, among others, redox-active esters (RAEs), anhydrides, and diacyl peroxides.1 Introduction2 Ni-Catalyzed Decarboxylative Functionalizations3 Cu-Catalyzed Decarboxylative Functionalizations4 Fe-Catalyzed Decarboxylative Functionalizations5 Co- and Cr-Catalyzed Decarboxylative Functionalizations6 Conclusions
Collapse
Affiliation(s)
- Yahu A Liu
- Discovery Chemistry, Genomics Institute of the Novartis Research Foundation
| | - Xuebin Liao
- School of Pharmaceutical Sciences, Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology (Ministry of Education), Beijing Advanced Innovation Center for Structural Biology, Tsinghua University
| | - Hui Chen
- School of Pharmaceutical Sciences, Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology (Ministry of Education), Beijing Advanced Innovation Center for Structural Biology, Tsinghua University
| |
Collapse
|
40
|
Niu P, Li J, Zhang Y, Huo C. One‐Electron Reduction of Redox‐Active Esters to Generate Carbon‐Centered Radicals. European J Org Chem 2020. [DOI: 10.1002/ejoc.202000525] [Citation(s) in RCA: 51] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Affiliation(s)
- Pengfei Niu
- College of Chemistry and Chemical Engineering Northwest Normal University 730070 Lanzhou Gansu China
| | - Jun Li
- College of Chemistry and Chemical Engineering Northwest Normal University 730070 Lanzhou Gansu China
| | - Yongxin Zhang
- College of Chemistry and Chemical Engineering Northwest Normal University 730070 Lanzhou Gansu China
| | - Congde Huo
- College of Chemistry and Chemical Engineering Northwest Normal University 730070 Lanzhou Gansu China
| |
Collapse
|
41
|
Dong J, Wang X, Song H, Liu Y, Wang Q. Photoredox‐Catalyzed Redox‐Neutral Minisci C−H Formylation of
N
‐Heteroarenes. Adv Synth Catal 2020. [DOI: 10.1002/adsc.201901481] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Affiliation(s)
- Jianyang Dong
- State Key Laboratory of Elemento-Organic Chemistry, Research Institute of Elemento-Organic Chemistry, College of ChemistryNankai University Tianjin 300071 People's Republic of China
| | - Xiaochen Wang
- State Key Laboratory of Elemento-Organic Chemistry, Research Institute of Elemento-Organic Chemistry, College of ChemistryNankai University Tianjin 300071 People's Republic of China
| | - Hongjian Song
- State Key Laboratory of Elemento-Organic Chemistry, Research Institute of Elemento-Organic Chemistry, College of ChemistryNankai University Tianjin 300071 People's Republic of China
| | - Yuxiu Liu
- State Key Laboratory of Elemento-Organic Chemistry, Research Institute of Elemento-Organic Chemistry, College of ChemistryNankai University Tianjin 300071 People's Republic of China
| | - Qingmin Wang
- State Key Laboratory of Elemento-Organic Chemistry, Research Institute of Elemento-Organic Chemistry, College of ChemistryNankai University Tianjin 300071 People's Republic of China
- Collaborative Innovation Center of Chemical Science and Engineering (Tianjin) Tianjin 300071 People's Republic of China
| |
Collapse
|
42
|
Jiang WT, Yang S, Xu MY, Xie XY, Xiao B. Zn-mediated decarboxylative carbagermatranation of aliphatic N-hydroxyphthalimide esters: evidence for an alkylzinc intermediate. Chem Sci 2020; 11:488-493. [PMID: 32874490 PMCID: PMC7439774 DOI: 10.1039/c9sc04288a] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2019] [Accepted: 11/13/2019] [Indexed: 01/10/2023] Open
Abstract
Alkyl nucleophiles synthesized by decarboxylation of the corresponding N-hydroxyphthalimide esters (NHP esters) would inherit the complex structure of natural carboxylic acids and result in useful cross-coupling fragments. Herein, we report the synthesis of alkyl carbagermatranes via Zn-mediated decarboxylation of NHP esters without Ni catalysis or photocatalysis. Mechanistic studies indicate that an alkyl zinc intermediate was involved; however, the generation of alkyl zinc will be inhibited in the presence of Ni. Hence, this study provides valuable resolution to the perplexing problem about whether organozinc was involved in recently emerging catalytic systems of NHP ester-Zn. Meanwhile, alkyl zinc reagents from NHP esters are compatible with aryl/alkyl bromides and iodides; therefore the scope of carbagermatranation in this work precedes that of in situ-generated organozinc from alkyl halides.
Collapse
Affiliation(s)
- Wei-Tao Jiang
- Department of Chemistry , University of Science and Technology of China , Hefei 230026 , China .
| | - Shuo Yang
- Department of Chemistry , University of Science and Technology of China , Hefei 230026 , China .
| | - Meng-Yu Xu
- Department of Chemistry , University of Science and Technology of China , Hefei 230026 , China .
| | - Xiu-Ying Xie
- Department of Chemistry , University of Science and Technology of China , Hefei 230026 , China .
| | - Bin Xiao
- Department of Chemistry , University of Science and Technology of China , Hefei 230026 , China .
| |
Collapse
|
43
|
Dong J, Yue F, Song H, Liu Y, Wang Q. Visible-light-mediated photoredox minisci C–H alkylation with alkyl boronic acids using molecular oxygen as an oxidant. Chem Commun (Camb) 2020; 56:12652-12655. [DOI: 10.1039/d0cc05946c] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Direct visible-light-mediated Minisci C–H alkylation reactions of N-heteroarenes with alkyl boronic acids at room temperature with molecular oxygen as an oxidant and boronic acid activation reagent were reported.
Collapse
Affiliation(s)
- Jianyang Dong
- State Key Laboratory of Elemento-Organic Chemistry
- Research Institute of Elemento-Organic Chemistry
- College of Chemistry
- Nankai University
- Tianjin 300071
| | - Fuyang Yue
- State Key Laboratory of Elemento-Organic Chemistry
- Research Institute of Elemento-Organic Chemistry
- College of Chemistry
- Nankai University
- Tianjin 300071
| | - Hongjian Song
- State Key Laboratory of Elemento-Organic Chemistry
- Research Institute of Elemento-Organic Chemistry
- College of Chemistry
- Nankai University
- Tianjin 300071
| | - Yuxiu Liu
- State Key Laboratory of Elemento-Organic Chemistry
- Research Institute of Elemento-Organic Chemistry
- College of Chemistry
- Nankai University
- Tianjin 300071
| | - Qingmin Wang
- State Key Laboratory of Elemento-Organic Chemistry
- Research Institute of Elemento-Organic Chemistry
- College of Chemistry
- Nankai University
- Tianjin 300071
| |
Collapse
|
44
|
Cheng LJ, Mankad NP. C–C and C–X coupling reactions of unactivated alkyl electrophiles using copper catalysis. Chem Soc Rev 2020; 49:8036-8064. [DOI: 10.1039/d0cs00316f] [Citation(s) in RCA: 76] [Impact Index Per Article: 15.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Copper catalysts enable cross-coupling reactions of unactivated alkyl electrophiles to generate C–C and C–X bonds.
Collapse
Affiliation(s)
- Li-Jie Cheng
- Department of Chemistry
- University of Illinois at Chicago
- Chicago
- USA
| | - Neal P. Mankad
- Department of Chemistry
- University of Illinois at Chicago
- Chicago
- USA
| |
Collapse
|
45
|
Wang Z, Dong J, Hao Y, Li Y, Liu Y, Song H, Wang Q. Photoredox-Mediated Minisci C–H Alkylation Reactions between N-Heteroarenes and Alkyl Iodides with Peroxyacetate as a Radical Relay Initiator. J Org Chem 2019; 84:16245-16253. [DOI: 10.1021/acs.joc.9b02848] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Zhen Wang
- State Key Laboratory of Elemento-Organic Chemistry, Research Institute of Elemento-Organic Chemistry, College of Chemistry, Nankai University, Tianjin 300071, People’s Republic of China
| | - Jianyang Dong
- State Key Laboratory of Elemento-Organic Chemistry, Research Institute of Elemento-Organic Chemistry, College of Chemistry, Nankai University, Tianjin 300071, People’s Republic of China
| | - Yanan Hao
- State Key Laboratory of Elemento-Organic Chemistry, Research Institute of Elemento-Organic Chemistry, College of Chemistry, Nankai University, Tianjin 300071, People’s Republic of China
| | - Yongqiang Li
- State Key Laboratory of Elemento-Organic Chemistry, Research Institute of Elemento-Organic Chemistry, College of Chemistry, Nankai University, Tianjin 300071, People’s Republic of China
| | - Yuxiu Liu
- State Key Laboratory of Elemento-Organic Chemistry, Research Institute of Elemento-Organic Chemistry, College of Chemistry, Nankai University, Tianjin 300071, People’s Republic of China
| | - Hongjian Song
- State Key Laboratory of Elemento-Organic Chemistry, Research Institute of Elemento-Organic Chemistry, College of Chemistry, Nankai University, Tianjin 300071, People’s Republic of China
| | - Qingmin Wang
- State Key Laboratory of Elemento-Organic Chemistry, Research Institute of Elemento-Organic Chemistry, College of Chemistry, Nankai University, Tianjin 300071, People’s Republic of China
- Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin 300071, People’s Republic of China
| |
Collapse
|
46
|
Wang Z, Ji X, Han T, Deng G, Huang H. LiBr‐Promoted Photoredox Minisci‐Type Alkylations of Quinolines with Ethers. Adv Synth Catal 2019. [DOI: 10.1002/adsc.201901168] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Zhongzhen Wang
- Key Laboratory for Green Organic Synthesis and Application of Hunan Province, Key Laboratory of Environmentally Friendly Chemistry and Application of Ministry of Education, College of ChemistryXiangtan University Xiangtan 411105 People's Republic of China
| | - Xiaochen Ji
- Key Laboratory for Green Organic Synthesis and Application of Hunan Province, Key Laboratory of Environmentally Friendly Chemistry and Application of Ministry of Education, College of ChemistryXiangtan University Xiangtan 411105 People's Republic of China
| | - Tonghao Han
- Key Laboratory for Green Organic Synthesis and Application of Hunan Province, Key Laboratory of Environmentally Friendly Chemistry and Application of Ministry of Education, College of ChemistryXiangtan University Xiangtan 411105 People's Republic of China
| | - Guo‐Jun Deng
- Key Laboratory for Green Organic Synthesis and Application of Hunan Province, Key Laboratory of Environmentally Friendly Chemistry and Application of Ministry of Education, College of ChemistryXiangtan University Xiangtan 411105 People's Republic of China
| | - Huawen Huang
- Key Laboratory for Green Organic Synthesis and Application of Hunan Province, Key Laboratory of Environmentally Friendly Chemistry and Application of Ministry of Education, College of ChemistryXiangtan University Xiangtan 411105 People's Republic of China
| |
Collapse
|
47
|
Jiao MJ, Liu D, Hu XQ, Xu PF. Photocatalytic decarboxylative [2 + 2 + 1] annulation of 1,6-enynes with N-hydroxyphthalimide esters for the synthesis of indene-containing polycyclic compounds. Org Chem Front 2019. [DOI: 10.1039/c9qo01166h] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
An efficient photoredox-mediated [2 + 2 + 1] annulation of 1,6-enynes with N-hydroxyphthalimide esters was reported for the synthesis of spiro and non-spiro indene-containing polycyclic frameworks.
Collapse
Affiliation(s)
- Meng-Jie Jiao
- State Key Laboratory of Applied Organic Chemistry
- College of Chemistry and Chemical Engineering
- Lanzhou University
- Lanzhou 730000
- China
| | - Dan Liu
- State Key Laboratory of Applied Organic Chemistry
- College of Chemistry and Chemical Engineering
- Lanzhou University
- Lanzhou 730000
- China
| | - Xiu-Qin Hu
- State Key Laboratory of Applied Organic Chemistry
- College of Chemistry and Chemical Engineering
- Lanzhou University
- Lanzhou 730000
- China
| | - Peng-Fei Xu
- State Key Laboratory of Applied Organic Chemistry
- College of Chemistry and Chemical Engineering
- Lanzhou University
- Lanzhou 730000
- China
| |
Collapse
|
48
|
Liu Y, Xue L, Shi B, Bu F, Wang D, Lu L, Shi R, Lei A. Catalyst-free electrochemical decarboxylative cross-coupling of N-hydroxyphthalimide esters and N-heteroarenes towards C(sp3)–C(sp2) bond formation. Chem Commun (Camb) 2019; 55:14922-14925. [DOI: 10.1039/c9cc08528a] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
We formed C(sp3)–C(sp2) bonds under electrochemical conditions by using NHP esters and N-heteroarenes without any catalysts. Our approach could be a complement to the Kolbe reaction and a promising strategy for finding more new reactions.
Collapse
Affiliation(s)
- Yichang Liu
- Institute for Advanced Studies (IAS)
- College of Chemistry and Molecular Sciences
- Wuhan University
- Wuhan 430072
- P. R. China
| | - Liwei Xue
- Institute for Advanced Studies (IAS)
- College of Chemistry and Molecular Sciences
- Wuhan University
- Wuhan 430072
- P. R. China
| | - Biyin Shi
- Institute for Advanced Studies (IAS)
- College of Chemistry and Molecular Sciences
- Wuhan University
- Wuhan 430072
- P. R. China
| | - Faxiang Bu
- Institute for Advanced Studies (IAS)
- College of Chemistry and Molecular Sciences
- Wuhan University
- Wuhan 430072
- P. R. China
| | - Dan Wang
- Institute for Advanced Studies (IAS)
- College of Chemistry and Molecular Sciences
- Wuhan University
- Wuhan 430072
- P. R. China
| | - Lijun Lu
- Institute for Advanced Studies (IAS)
- College of Chemistry and Molecular Sciences
- Wuhan University
- Wuhan 430072
- P. R. China
| | - Renyi Shi
- Institute for Advanced Studies (IAS)
- College of Chemistry and Molecular Sciences
- Wuhan University
- Wuhan 430072
- P. R. China
| | - Aiwen Lei
- Institute for Advanced Studies (IAS)
- College of Chemistry and Molecular Sciences
- Wuhan University
- Wuhan 430072
- P. R. China
| |
Collapse
|