1
|
Qin XT, Leng Y, Ning LF, Liu QQ, Su GF, Mo DL. Nickel(II)-Catalyzed Unexpected [3 + 2] Cycloaddition/[3,3]-Rearrangement of N-Vinyl α,β-Unsaturated Nitrones with 2-Alkynyl Quinazolinones. Org Lett 2025. [PMID: 40372004 DOI: 10.1021/acs.orglett.5c01182] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/16/2025]
Abstract
A nickel(II)-catalyzed unexpected [3 + 2] cycloaddition/[3,3]-rearrangement cascade reaction was developed for the preparation of various polysubstituted 1-pyrroline-tethered quinazolinones containing three contiguous stereocenters in moderate to good yields with high diastereoselectivity from N-vinyl cinnamaldehyde nitrones and 2-alkynyl quinazolinones. Polysubstituted pyrrolizine-tethered quinazolinones were obtained in good yields when N-vinyl cinnamaldehyde nitrones were replaced by N-vinyl chalcone nitrones. The present method features a broad substrate scope, high [3,3]-rearrangement selectivity and diastereoselectivity, and two substituent bifurcated types of N-heterocycles.
Collapse
Affiliation(s)
- Xiao-Ting Qin
- Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources (Ministry of Education of China), Guangxi Key Laboratory of Chemistry and Molecular Engineering of Medicinal Resources, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, 15 Yu Cai Road, Guilin 541004, China
| | - Yue Leng
- Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources (Ministry of Education of China), Guangxi Key Laboratory of Chemistry and Molecular Engineering of Medicinal Resources, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, 15 Yu Cai Road, Guilin 541004, China
| | - Li-Fen Ning
- Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources (Ministry of Education of China), Guangxi Key Laboratory of Chemistry and Molecular Engineering of Medicinal Resources, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, 15 Yu Cai Road, Guilin 541004, China
| | - Qing-Qing Liu
- School of Fundamental Sciences, Bengbu Medical University, 2600 Donghai Avenue, Bengbu 233030, China
| | - Gui-Fa Su
- Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources (Ministry of Education of China), Guangxi Key Laboratory of Chemistry and Molecular Engineering of Medicinal Resources, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, 15 Yu Cai Road, Guilin 541004, China
| | - Dong-Liang Mo
- Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources (Ministry of Education of China), Guangxi Key Laboratory of Chemistry and Molecular Engineering of Medicinal Resources, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, 15 Yu Cai Road, Guilin 541004, China
| |
Collapse
|
2
|
Lv Y, Deng Z, Zhu Z, Wang J, Wang KH, Huang D, Hu Y. Visible-Light-Induced Cascade Radical Trifluoromethylation/Cyclization/Dearomatization of Isocyanide-Containing Indoles: Synthesis of Trifluoromethylated 3-Spiroindolines. J Org Chem 2024; 89:18452-18463. [PMID: 39630605 DOI: 10.1021/acs.joc.4c02349] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/07/2024]
Abstract
A visible-light-induced cascade radical trifluoromethylation/cyclization/dearomatization reaction between isocyanide-containing indoles and CF3Br has been developed to afford trifluoromethylated spiro[indole-3,3-quinoline] and spiro [indole-3,3-pyrrole] derivatives in good yields. The utility of the process is demonstrated by a scale-up experiment. The mechanism was proposed based on the control experiments. The protocol constitutes a novel and efficient route for the synthesis of trifluoromethylated 3-spiroindolenines with advantages of good generality and practical applicability, broad substrate scope, and green energy source.
Collapse
Affiliation(s)
- Yuyu Lv
- College of Chemistry and Chemical Engineering, Northwest Normal University, 967 Anning East Road, Lanzhou 730070, P. R. China
| | - Zhoubin Deng
- College of Chemistry and Chemical Engineering, Northwest Normal University, 967 Anning East Road, Lanzhou 730070, P. R. China
| | - Zhijun Zhu
- College of Chemistry and Chemical Engineering, Northwest Normal University, 967 Anning East Road, Lanzhou 730070, P. R. China
| | - Junjiao Wang
- College of Chemistry and Chemical Engineering, Northwest Normal University, 967 Anning East Road, Lanzhou 730070, P. R. China
| | - Ke-Hu Wang
- College of Chemistry and Chemical Engineering, Northwest Normal University, 967 Anning East Road, Lanzhou 730070, P. R. China
| | - Danfeng Huang
- College of Chemistry and Chemical Engineering, Northwest Normal University, 967 Anning East Road, Lanzhou 730070, P. R. China
| | - Yulai Hu
- College of Chemistry and Chemical Engineering, Northwest Normal University, 967 Anning East Road, Lanzhou 730070, P. R. China
- State Key Laboratory of Applied Organic Chemistry, Lanzhou University, Lanzhou 730000, P. R. China
| |
Collapse
|
3
|
Yuan LR, Zi Y, Ji SJ, Xu XP. Radical-Initiated Dearomative Annulation of Tryptamine-Derived Isocyanides: Selective Synthesis of CF 3-Substituted β-Aza-spiroindolines and β-Carbolines. J Org Chem 2024; 89:15979-15989. [PMID: 39436351 DOI: 10.1021/acs.joc.4c02302] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2024]
Abstract
A mild approach for synthesizing CF3-substituted β-aza-spiroindolines and β-carbolines from tryptamine-derived isocyanides via site-selective radical annulations has been reported. The crucial role of C2 substituents in the selective annulation process has been clarified. The approach shows good generality and practical applicability, highlighting its effectiveness and versatility.
Collapse
Affiliation(s)
- Luo-Rong Yuan
- Key Laboratory of Organic Synthesis of Jiangsu Province, College of Chemistry, Chemical Engineering and Materials Science & Collaborative Innovation Center of Suzhou Nano Science and Technology, Soochow University, Suzhou 215123, P. R. China
| | - You Zi
- School of Chemistry and Chemical Engineering, Nantong University, Nantong 226019, P. R. China
| | - Shun-Jun Ji
- Key Laboratory of Organic Synthesis of Jiangsu Province, College of Chemistry, Chemical Engineering and Materials Science & Collaborative Innovation Center of Suzhou Nano Science and Technology, Soochow University, Suzhou 215123, P. R. China
| | - Xiao-Ping Xu
- Key Laboratory of Organic Synthesis of Jiangsu Province, College of Chemistry, Chemical Engineering and Materials Science & Collaborative Innovation Center of Suzhou Nano Science and Technology, Soochow University, Suzhou 215123, P. R. China
- Innovation Center for Chemical Science, Soochow University, Suzhou 215123, P. R. China
| |
Collapse
|
4
|
Wang BL, Zhao H, Wang XW, Xu S. Merging Ring-Opening 1,2-Metallate Shift with Asymmetric C( sp3)-H Borylation of Aziridines. J Am Chem Soc 2024; 146:18879-18885. [PMID: 38968417 DOI: 10.1021/jacs.4c06569] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/07/2024]
Abstract
Chiral secondary alkyl amines with a vicinal quaternary stereocenter are undoubtedly important and ubiquitous subunits in natural products and pharmaceuticals. However, their asymmetric synthesis remains a formidable challenge. Herein, we merge the ring-opening 1,2-metallate shift with iridium-catalyzed enantioselective C(sp3)-H borylation of aziridines to deliver these frameworks with high enantioselectivities. We also demonstrated the synthetic application by downstream transformations, including the total synthesis of two Amaryllidaceae alkaloids, (-)-crinane and (+)-mesmebrane.
Collapse
Affiliation(s)
- Bai-Lin Wang
- State Key Laboratory for Oxo Synthesis and Selective Oxidation, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou 730000, China
- Key Laboratory of Organic Synthesis of Jiangsu Province, College of Chemistry, Chemical Engineering and Material Sciences, Soochow University, Suzhou 215123, China
| | - Hongliang Zhao
- State Key Laboratory for Oxo Synthesis and Selective Oxidation, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou 730000, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xing-Wang Wang
- Key Laboratory of Organic Synthesis of Jiangsu Province, College of Chemistry, Chemical Engineering and Material Sciences, Soochow University, Suzhou 215123, China
| | - Senmiao Xu
- State Key Laboratory for Oxo Synthesis and Selective Oxidation, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou 730000, China
- University of Chinese Academy of Sciences, Beijing 100049, China
- College of Material Chemistry and Chemical Engineering, Key Laboratory of Organosilicon Chemistry and Material Technology, Ministry of Education, Hangzhou Normal University, Hangzhou 311121, China
| |
Collapse
|
5
|
Wang L, Lv J, Zhang Y, Yang D. Asymmetric magnesium catalysis for important chiral scaffold synthesis. Org Biomol Chem 2024; 22:4778-4800. [PMID: 38809153 DOI: 10.1039/d4ob00521j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/30/2024]
Abstract
Magnesium catalysts are widely used in catalytic asymmetric reactions, and a series of catalytic strategies have been developed in recent years. Herein, in this review, we have tried to summarize asymmetric magnesium catalysis for the synthesis of important chiral scaffolds. Several important optically active motifs that are present in classic chiral ligands or natural products synthesized by Mg(II) catalytic methods are briefly discussed. Moreover, the representative mechanisms for different magnesium catalytic strategies, including in situ generated magnesium catalysts, are also shown in relation to synthetic routes for obtaining these important chiral scaffolds.
Collapse
Affiliation(s)
- Linqing Wang
- Key Laboratory of Preclinical Study for New Drugs of Gansu Province, School of Basic Medical Sciences, Research Unit of Peptide Science, Chinese Academy of Medical Sciences, 2019RU066, Lanzhou University, Lanzhou, 730000, China.
| | - Jiaming Lv
- Key Laboratory of Preclinical Study for New Drugs of Gansu Province, School of Basic Medical Sciences, Research Unit of Peptide Science, Chinese Academy of Medical Sciences, 2019RU066, Lanzhou University, Lanzhou, 730000, China.
| | - Yongshuo Zhang
- Scientific Research and Innovation Expert Studio of China Inspection and Certification Group Liaoning Co., Ltd, Dalian, 116039, China
| | - Dongxu Yang
- Key Laboratory of Preclinical Study for New Drugs of Gansu Province, School of Basic Medical Sciences, Research Unit of Peptide Science, Chinese Academy of Medical Sciences, 2019RU066, Lanzhou University, Lanzhou, 730000, China.
| |
Collapse
|
6
|
Roose T, McSorley F, Groenhuijzen B, Saya JM, Maes BUW, Orrù RVA, Ruijter E. Dearomative Spirocyclization of Tryptamine-Derived Isocyanides via Iron-Catalyzed Carbene Transfer. J Org Chem 2023; 88:17345-17355. [PMID: 38048350 PMCID: PMC10729054 DOI: 10.1021/acs.joc.3c02160] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2023] [Revised: 11/06/2023] [Accepted: 11/09/2023] [Indexed: 12/06/2023]
Abstract
Tryptamine-derived isocyanides are valuable building blocks in the construction of spirocyclic indolenines and indolines via dearomatization of the indole moiety. We report the Bu4N[Fe(CO)3NO]-catalyzed carbene transfer of α-diazo esters to 3-(2-isocyanoethyl)indoles, leading to ketenimine intermediates that undergo spontaneous dearomative spirocyclization. The utility of this iron-catalyzed carbene transfer/spirocyclization cascade was demonstrated by its use as a key step in the formal total synthesis of monoterpenoid indole alkaloids (±)-aspidofractinine, (±)-limaspermidine, (±)-aspidospermidine, and (±)-17-demethoxy-N-acetylcylindrocarine.
Collapse
Affiliation(s)
- Thomas
R. Roose
- Department
of Chemistry & Pharmaceutical Sciences and Amsterdam Institute
for Molecular & Life Science (AIMMS), Vrije Universiteit Amsterdam, De Boelelaan 1108, 1081 HZ Amsterdam, The Netherlands
| | - Finn McSorley
- Department
of Chemistry & Pharmaceutical Sciences and Amsterdam Institute
for Molecular & Life Science (AIMMS), Vrije Universiteit Amsterdam, De Boelelaan 1108, 1081 HZ Amsterdam, The Netherlands
| | - Bryan Groenhuijzen
- Department
of Chemistry & Pharmaceutical Sciences and Amsterdam Institute
for Molecular & Life Science (AIMMS), Vrije Universiteit Amsterdam, De Boelelaan 1108, 1081 HZ Amsterdam, The Netherlands
| | - Jordy M. Saya
- Organic
Chemistry, Aachen-Maastricht Institute for Biobased Materials (AMIBM), Maastricht University, Urmonderbaan 22, 6167 KD Geleen, Netherlands
| | - Bert U. W. Maes
- Organic
Synthesis Division, Department of Chemistry, University of Antwerp, Groenenborgerlaan 171, B-2020 Antwerp, Belgium.s
| | - Romano V. A. Orrù
- Organic
Chemistry, Aachen-Maastricht Institute for Biobased Materials (AMIBM), Maastricht University, Urmonderbaan 22, 6167 KD Geleen, Netherlands
| | - Eelco Ruijter
- Department
of Chemistry & Pharmaceutical Sciences and Amsterdam Institute
for Molecular & Life Science (AIMMS), Vrije Universiteit Amsterdam, De Boelelaan 1108, 1081 HZ Amsterdam, The Netherlands
| |
Collapse
|
7
|
Chen C, Chen J, Wang H, Xu ZF, Duan S, Li CY. Catalyst-Free Synthesis of Polycyclic Spiroindolines by Cascade Reaction of 3-(2-Isocyanoethyl)indoles with 1-Sulfonyl-1,2,3-triazoles. J Org Chem 2023. [PMID: 37307412 DOI: 10.1021/acs.joc.3c00800] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
A catalyst-free cascade reaction of 3-(2-isocyanoethyl)indoles and 1-sulfonyl-1,2,3-triazoles was realized. This dearomative spirocyclization provided an efficient protocol to synthesize a series of polycyclic indolines bearing spiro-α-carboline in moderate to high yields in one step under thermal reaction conditions.
Collapse
Affiliation(s)
- Cong Chen
- School of Chemistry and Chemical Engineering, Key Laboratory of Surface & Interface Science of Polymer Materials of Zhejiang Province, Zhejiang Sci-Tech University, Hangzhou 310018, China
| | - Jing Chen
- School of Chemistry and Chemical Engineering, Key Laboratory of Surface & Interface Science of Polymer Materials of Zhejiang Province, Zhejiang Sci-Tech University, Hangzhou 310018, China
| | - Han Wang
- School of Chemistry and Chemical Engineering, Key Laboratory of Surface & Interface Science of Polymer Materials of Zhejiang Province, Zhejiang Sci-Tech University, Hangzhou 310018, China
| | - Ze-Feng Xu
- School of Chemistry and Chemical Engineering, Key Laboratory of Surface & Interface Science of Polymer Materials of Zhejiang Province, Zhejiang Sci-Tech University, Hangzhou 310018, China
| | - Shengguo Duan
- School of Chemistry and Chemical Engineering, Key Laboratory of Surface & Interface Science of Polymer Materials of Zhejiang Province, Zhejiang Sci-Tech University, Hangzhou 310018, China
| | - Chuan-Ying Li
- School of Chemistry and Chemical Engineering, Key Laboratory of Surface & Interface Science of Polymer Materials of Zhejiang Province, Zhejiang Sci-Tech University, Hangzhou 310018, China
| |
Collapse
|
8
|
Yang PJ, Chai Z. Catalytic enantioselective desymmetrization of meso-aziridines. Org Biomol Chem 2023; 21:465-478. [PMID: 36508282 DOI: 10.1039/d2ob01935c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
As a type of readily available small strained-ring heterocycle, meso-aziridines may undergo catalytic desymmetrizing transformations to empower the rapid construction of diverse nitrogen-containing structures bearing contiguous stereocenters, which have great relevance in natural product synthesis, drug development and the design and synthesis of chiral catalysts/ligands for asymmetric catalysis. This review outlines the advances achieved in the catalytic asymmetric desymmetrization of meso aziridines and highlights some promising avenues for further work in this realm.
Collapse
Affiliation(s)
- Pei-Jun Yang
- Anhui Province Key Laboratory of Functional Coordinated Complexes for Materials Chemistry and Application, School of Chemical and Environmental Engineering, Anhui Polytechnic University, Middle Beijing Road, Wuhu, Anhui 241000, China.,MOE Key Laboratory of Functional Molecular Solids, Anhui Laboratory of Molecule-Based Materials, Institute of Organic Chemistry, College of Chemistry and Materials Science, Anhui Normal University, 189 South Jiuhua Road, Wuhu, Anhui 241002, China.
| | - Zhuo Chai
- MOE Key Laboratory of Functional Molecular Solids, Anhui Laboratory of Molecule-Based Materials, Institute of Organic Chemistry, College of Chemistry and Materials Science, Anhui Normal University, 189 South Jiuhua Road, Wuhu, Anhui 241002, China.
| |
Collapse
|
9
|
Wang X, Dong J, Wu T, Xu X, Tang B. Divergent Synthesis of Chromenoindoles and Spiroindolines via Domino Reaction of Indolyl-Substituted Isocyanides with Quinone Esters. Org Lett 2022; 24:6700-6704. [PMID: 36094394 DOI: 10.1021/acs.orglett.2c02192] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
A dearomative spirocyclization of tryptamine-derived isocyanides with quinone esters is developed for the divergent synthesis of structurally complex chromeno[2,3-b]indole and polycyclic spiroindoline scaffolds. This domino reaction features the formation and conversion of the six-membered dihydropyran ring with an amendable N,O-aminal moiety.
Collapse
Affiliation(s)
- Xin Wang
- College of Chemistry, Chemical Engineering and Materials Science, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Shandong Provincial Key Laboratory of Clean Production of Fine Chemicals, Shandong Normal University, Jinan 250014, P. R. China
| | - Jinhuan Dong
- College of Chemistry, Chemical Engineering and Materials Science, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Shandong Provincial Key Laboratory of Clean Production of Fine Chemicals, Shandong Normal University, Jinan 250014, P. R. China
| | - Tengteng Wu
- College of Chemistry, Chemical Engineering and Materials Science, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Shandong Provincial Key Laboratory of Clean Production of Fine Chemicals, Shandong Normal University, Jinan 250014, P. R. China
| | - Xianxiu Xu
- College of Chemistry, Chemical Engineering and Materials Science, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Shandong Provincial Key Laboratory of Clean Production of Fine Chemicals, Shandong Normal University, Jinan 250014, P. R. China
| | - Bo Tang
- College of Chemistry, Chemical Engineering and Materials Science, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Shandong Provincial Key Laboratory of Clean Production of Fine Chemicals, Shandong Normal University, Jinan 250014, P. R. China
| |
Collapse
|
10
|
Lei J, Li SQ, Luo YF, Tang DY, Zhou CH, Li HY, Xu ZG, Chen ZZ. Zn(OTf) 2-Promoted Isocyanide-Based Three-Component Reaction: Direct Access to 2-Oxazolines and β-Amino Amides. J Org Chem 2022; 87:11888-11898. [PMID: 35976796 DOI: 10.1021/acs.joc.2c01437] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
An efficient one-pot reaction of propargylamides, isocyanides, and water catalyzed by zinc was developed for the rapid construction of 2-oxazolines with a wide functional group tolerance. The methylene-3-oxazoline was proven to play a vitally important role to start the tandem cascade transformation through unfunctionalized alkynes with sequential nucleophilic addition approaches of isocyanide and water. Notably, with a slight alteration of the reaction temperature and the addition of one molecule of water, various β-amino amide derivatives were synthesized in good to excellent yields.
Collapse
Affiliation(s)
- Jie Lei
- College of Pharmacy, National & Local Joint Engineering Research Center of Targeted and Innovative Therapeutics, IATTI, Chongqing University of Arts and Sciences, 319 Honghe Avenue, Yongchuan, Chongqing 402160, China
| | - Shi-Qiang Li
- College of Pharmacy, National & Local Joint Engineering Research Center of Targeted and Innovative Therapeutics, IATTI, Chongqing University of Arts and Sciences, 319 Honghe Avenue, Yongchuan, Chongqing 402160, China
| | - Ya-Fei Luo
- College of Pharmacy, National & Local Joint Engineering Research Center of Targeted and Innovative Therapeutics, IATTI, Chongqing University of Arts and Sciences, 319 Honghe Avenue, Yongchuan, Chongqing 402160, China
| | - Dian-Yong Tang
- College of Pharmacy, National & Local Joint Engineering Research Center of Targeted and Innovative Therapeutics, IATTI, Chongqing University of Arts and Sciences, 319 Honghe Avenue, Yongchuan, Chongqing 402160, China
| | - Cheng-He Zhou
- Institute of Bioorganic & Medicinal Chemistry, Key Laboratory of Applied Chemistry of Chongqing Municipality, School of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, China
| | - Hong-Yu Li
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Arkansas for Medical Sciences, Little Rock, Arkansas 72205, United States
| | - Zhi-Gang Xu
- College of Pharmacy, National & Local Joint Engineering Research Center of Targeted and Innovative Therapeutics, IATTI, Chongqing University of Arts and Sciences, 319 Honghe Avenue, Yongchuan, Chongqing 402160, China
| | - Zhong-Zhu Chen
- College of Pharmacy, National & Local Joint Engineering Research Center of Targeted and Innovative Therapeutics, IATTI, Chongqing University of Arts and Sciences, 319 Honghe Avenue, Yongchuan, Chongqing 402160, China
| |
Collapse
|
11
|
Wang J, Ren P, Gu G, Jiang Z, Xiang B, Tang S, Jia AQ. Synthesis of Azepinoindoles via Pd-Catalyzed C(sp 2)-H Imidoylative Cyclization Reactions. J Org Chem 2022; 87:9663-9674. [PMID: 35696658 DOI: 10.1021/acs.joc.2c00717] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
An efficient and convenient method for the construction of diverse free (N-H)-benzazepinoindoles by Pd-catalyzed C(sp2)-H imidoylative cyclization of 3-(2-isocyanobenzyl)-1H-indoles was developed. The reaction shows a wide substrate scope and can be scaled up, providing a practical route to valuable bioactive azepinoindoles.
Collapse
Affiliation(s)
- Jiang Wang
- Key Laboratory of Tropical Biological Resources of Ministry of Education, School of Pharmaceutical Sciences, One Health Institute, Hainan University, Haikou 570228, China
| | - Pinzhuo Ren
- Key Laboratory of Tropical Biological Resources of Ministry of Education, School of Pharmaceutical Sciences, One Health Institute, Hainan University, Haikou 570228, China
| | - Gongping Gu
- Key Laboratory of Tropical Biological Resources of Ministry of Education, School of Pharmaceutical Sciences, One Health Institute, Hainan University, Haikou 570228, China
| | - Zongyou Jiang
- Key Laboratory of Tropical Biological Resources of Ministry of Education, School of Pharmaceutical Sciences, One Health Institute, Hainan University, Haikou 570228, China
| | - Bolin Xiang
- Key Laboratory of Tropical Biological Resources of Ministry of Education, School of Pharmaceutical Sciences, One Health Institute, Hainan University, Haikou 570228, China
| | - Shi Tang
- Key Laboratory of Tropical Biological Resources of Ministry of Education, School of Pharmaceutical Sciences, One Health Institute, Hainan University, Haikou 570228, China.,Anhui Laboratory of Molecule-Based Materials, College of Chemistry and Materials Science, Anhui Normal University, Wuhu 241002, China
| | - Ai-Qun Jia
- Key Laboratory of Tropical Biological Resources of Ministry of Education, School of Pharmaceutical Sciences, One Health Institute, Hainan University, Haikou 570228, China
| |
Collapse
|
12
|
|
13
|
Li Y, Li WY, Tang X, Liu X, Feng X. Synthesis of chiral pyridine-oxazolines via catalytic asymmetric Heine reaction of meso-N-(2-picolinoyl)-aziridines. Org Chem Front 2022. [DOI: 10.1039/d1qo01900g] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
An asymmetric Heine reaction of (meso)-N-(2-picolinoyl)-aziridines catalyzed by a chiral ytterbium(III)–N,N’-dioxide complex was established. A novel library of pyridine-oxazolines was obtained in decent yields and enantioselectivities, which show potential as...
Collapse
|
14
|
Dong P, Li Z, Liu X, Dong S, Feng X. Asymmetric synthesis of polycyclic spiroindolines via the Dy-catalyzed cascade reaction of 3-(2-isocyanoethyl)indoles with aziridines. Org Chem Front 2022. [DOI: 10.1039/d2qo00874b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
An asymmetric cascade reaction catalyzed by a chiral N,N′-dioxide–Dy(iii) complex was realized to construct the valuable [6,5,5,6] tetracyclic spiroindolines with good yields and enantioselectivities by a concise and one-step protocol.
Collapse
Affiliation(s)
- Pei Dong
- Key Laboratory of Green Chemistry & Technology, Ministry of Education, College of Chemistry, Sichuan University, Chengdu 610064, China
| | - Zhaojing Li
- Key Laboratory of Green Chemistry & Technology, Ministry of Education, College of Chemistry, Sichuan University, Chengdu 610064, China
| | - Xiaohua Liu
- Key Laboratory of Green Chemistry & Technology, Ministry of Education, College of Chemistry, Sichuan University, Chengdu 610064, China
| | - Shunxi Dong
- Key Laboratory of Green Chemistry & Technology, Ministry of Education, College of Chemistry, Sichuan University, Chengdu 610064, China
| | - Xiaoming Feng
- Key Laboratory of Green Chemistry & Technology, Ministry of Education, College of Chemistry, Sichuan University, Chengdu 610064, China
| |
Collapse
|
15
|
Qi L, Yang PJ, Ji WT, Tao GD, Yang G, Chai Z. Synthesis of chiral β-substituted γ-amino-butyric acid derivatives via enantioconvergent ring opening of racemic 2-(hetero)aryl aziridines with ketene silyl acetals. Org Chem Front 2022. [DOI: 10.1039/d2qo00450j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Lewis acid-catalyzed enantioconvergent ring opening of racemic 2-(hetero)aryl-N-sulfonyl aziridines with ketene silyl acetals is developed.
Collapse
Affiliation(s)
- Ling Qi
- MOE Key Laboratory of Functional Molecular Solids, Anhui Laboratory of Molecule-Based Materials, Institute of Organic Chemistry, College of Chemistry and Materials Science, Anhui Normal University, 189 South Jiuhua Road, Wuhu, Anhui 241002, China
| | - Pei-Jun Yang
- MOE Key Laboratory of Functional Molecular Solids, Anhui Laboratory of Molecule-Based Materials, Institute of Organic Chemistry, College of Chemistry and Materials Science, Anhui Normal University, 189 South Jiuhua Road, Wuhu, Anhui 241002, China
- Anhui Province Key Laboratory of Functional Coordinated Complexes for Materials Chemistry and Application, School of Chemical and Environmental Engineering, Anhui Polytechnic University, Middle Beijing Road, Wuhu, Anhui 241000, China
| | - Wen-Tao Ji
- MOE Key Laboratory of Functional Molecular Solids, Anhui Laboratory of Molecule-Based Materials, Institute of Organic Chemistry, College of Chemistry and Materials Science, Anhui Normal University, 189 South Jiuhua Road, Wuhu, Anhui 241002, China
| | - Gui-De Tao
- MOE Key Laboratory of Functional Molecular Solids, Anhui Laboratory of Molecule-Based Materials, Institute of Organic Chemistry, College of Chemistry and Materials Science, Anhui Normal University, 189 South Jiuhua Road, Wuhu, Anhui 241002, China
| | - Gaosheng Yang
- MOE Key Laboratory of Functional Molecular Solids, Anhui Laboratory of Molecule-Based Materials, Institute of Organic Chemistry, College of Chemistry and Materials Science, Anhui Normal University, 189 South Jiuhua Road, Wuhu, Anhui 241002, China
| | - Zhuo Chai
- MOE Key Laboratory of Functional Molecular Solids, Anhui Laboratory of Molecule-Based Materials, Institute of Organic Chemistry, College of Chemistry and Materials Science, Anhui Normal University, 189 South Jiuhua Road, Wuhu, Anhui 241002, China
| |
Collapse
|
16
|
Nájera C, Foubelo F, Sansano JM, Yus M. Enantioselective desymmetrization reactions in asymmetric catalysis. Tetrahedron 2022. [DOI: 10.1016/j.tet.2022.132629] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
|
17
|
Li SQ, Yan W, He LJ, Zhang M, Tang DY, Li HY, Chen ZZ, Xu ZG. One-pot synthesis of natural-product inspired spiroindolines with anti-cancer activities. Org Chem Front 2022. [DOI: 10.1039/d1qo01694f] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A post-Ugi/diastereoselective cascade reaction was developed to construct the spiroindoline scaffold through a 5-exo-dig indole cyclization and the intramolecular trapping of the spiro intermediate forming a quaternary carbon center.
Collapse
Affiliation(s)
- Shi-Qiang Li
- College of Pharmacy, National & Local Joint Engineering Research Center of Targeted and Innovative Therapeutics, IATTI, Chongqing University of Arts and Sciences, Chongqing 402160, China
| | - Wei Yan
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Arkansas for Medical Sciences, Little Rock, AR 72205, USA
- Department of Internal Medicine, College of Medicine, University of Arkansas for Medical Sciences, Little Rock, AR 72205, USA
| | - Liu-Jun He
- College of Pharmacy, National & Local Joint Engineering Research Center of Targeted and Innovative Therapeutics, IATTI, Chongqing University of Arts and Sciences, Chongqing 402160, China
| | - Ming Zhang
- Cancer Center, Academy of Medical Sciences and Sichuan Provincial People's Hospital, Affiliated Hospital of University of Electronic Science and technology of China, Chengdu, Sichuan 610000, China
| | - Dian-Yong Tang
- College of Pharmacy, National & Local Joint Engineering Research Center of Targeted and Innovative Therapeutics, IATTI, Chongqing University of Arts and Sciences, Chongqing 402160, China
| | - Hong-yu Li
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Arkansas for Medical Sciences, Little Rock, AR 72205, USA
| | - Zhong-Zhu Chen
- College of Pharmacy, National & Local Joint Engineering Research Center of Targeted and Innovative Therapeutics, IATTI, Chongqing University of Arts and Sciences, Chongqing 402160, China
| | - Zhi-Gang Xu
- College of Pharmacy, National & Local Joint Engineering Research Center of Targeted and Innovative Therapeutics, IATTI, Chongqing University of Arts and Sciences, Chongqing 402160, China
| |
Collapse
|
18
|
Ghazvini HJ, Khosravi H, Mirzaei S, Balalaie S, Breit B. Rhodium-Catalyzed Regio- and Diastereoselective Hydroarylation of Allenes: An Unprecedented Ene Reaction. ACS Catal 2021. [DOI: 10.1021/acscatal.1c04743] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Affiliation(s)
- Helya J. Ghazvini
- Institut für Organische Chemie, Albert-Ludwigs-Universität Freiburg, Albertstrasse 21, 79104 Freiburg im Breisgau, Germany
- Peptide Chemistry Research Center, K. N. Toosi University of Technology, P.O. Box 15875-4416, Tehran 1541849611, Iran
| | - Hormoz Khosravi
- Institut für Organische Chemie, Albert-Ludwigs-Universität Freiburg, Albertstrasse 21, 79104 Freiburg im Breisgau, Germany
- Peptide Chemistry Research Center, K. N. Toosi University of Technology, P.O. Box 15875-4416, Tehran 1541849611, Iran
| | - Saber Mirzaei
- Department of Chemistry, University of Pittsburgh, Pittsburgh, Pennsylvania 15260, United States
| | - Saeed Balalaie
- Peptide Chemistry Research Center, K. N. Toosi University of Technology, P.O. Box 15875-4416, Tehran 1541849611, Iran
- Medical Biology Research Center, Kermanshah University of Medical Sciences, Kermanshah 67149-67346, Iran
| | - Bernhard Breit
- Institut für Organische Chemie, Albert-Ludwigs-Universität Freiburg, Albertstrasse 21, 79104 Freiburg im Breisgau, Germany
| |
Collapse
|
19
|
Van Hecke K, Benton TR, Casper M, Mauldin D, Drake B, Morgan JB. Palladium-Catalyzed, Enantioselective Desymmetrization of N-Acylaziridines with Indoles. Org Lett 2021; 23:7916-7920. [PMID: 34609884 PMCID: PMC9022218 DOI: 10.1021/acs.orglett.1c02914] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Ring opening reactions of meso-aziridines generate chiral amine derivatives where the control of stereochemistry is possible through enantioselective catalysis. We report the use of a diphosphine-palladium(II) catalyst for the highly enantioselective desymmetrization of N-acylaziridines with indoles. The β-tryptamine products are isolated in moderate to high yield across a range of indole and aziridine substitution patterns. The synthetic utility of β-tryptamine products is demonstrated by conversion to the brominated pyrroloindoline derivative.
Collapse
Affiliation(s)
- Kinney Van Hecke
- Department of Chemistry and Biochemistry, University of North Carolina Wilmington, Dobo Hall, Wilmington, North Carolina 28403, United States
| | - Tyler R Benton
- Department of Chemistry and Biochemistry, University of North Carolina Wilmington, Dobo Hall, Wilmington, North Carolina 28403, United States
| | - Michael Casper
- Department of Chemistry and Biochemistry, University of North Carolina Wilmington, Dobo Hall, Wilmington, North Carolina 28403, United States
| | - Dustin Mauldin
- Department of Chemistry and Biochemistry, University of North Carolina Wilmington, Dobo Hall, Wilmington, North Carolina 28403, United States
| | - Brandon Drake
- Department of Chemistry and Biochemistry, University of North Carolina Wilmington, Dobo Hall, Wilmington, North Carolina 28403, United States
| | - Jeremy B Morgan
- Department of Chemistry and Biochemistry, University of North Carolina Wilmington, Dobo Hall, Wilmington, North Carolina 28403, United States
| |
Collapse
|
20
|
Tang S, Ding S, Li D, Li L, Zhao H, Chai M, Wang J. Palladium-catalysed imidoylative spirocyclization of 3-(2-isocyanoethyl)indoles. Chem Commun (Camb) 2021; 57:10576-10579. [PMID: 34558575 DOI: 10.1039/d1cc03240b] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A palladium-catalysed construction of spiroindolines through dearomative spirocyclization of 3-(2-isocyanoethyl)indoles has been developed. 2'-Aryl-, vinyl-, and alkyl-substituted spiroindolines could be accessed under mild conditions with excellent functional group tolerance. C1-tethered oxindole- and indole-spiroindoline bisheterocycles were generated in high yields via alkene/allene insertion and an imidoylative spirocyclization cascade. Additionally, a tandem dearomatization of two different indoles was realized with N-(2-bromobenzoyl)indoles as the electrophilic coupling partner of 3-(2-isocyanoethyl)indoles, affording polyindoline - spiroindoline bisheterocyclic scaffolds conveniently. Under the catalysis of Pd(OAc)2 and a spinol-derived phosphoramidite ligand, chiral spiroindolines were successfully accessed with up to 95% yield and 85% ee.
Collapse
Affiliation(s)
- Shi Tang
- China Key Laboratory of Tropical Biological Resources of Ministry of Education, School of Pharmaceutical Sciences, Hainan University, Haikou 570228, P. R. China
| | - Shumin Ding
- Key Laboratory of Functional Molecular Solids, Ministry of Education, Anhui Laboratory of Molecule-Based Materials, College of Chemistry and Materials Science, Anhui Normal University, Wuhu 241002, P. R. China.
| | - Dan Li
- Key Laboratory of Functional Molecular Solids, Ministry of Education, Anhui Laboratory of Molecule-Based Materials, College of Chemistry and Materials Science, Anhui Normal University, Wuhu 241002, P. R. China.
| | - Lianjie Li
- Key Laboratory of Functional Molecular Solids, Ministry of Education, Anhui Laboratory of Molecule-Based Materials, College of Chemistry and Materials Science, Anhui Normal University, Wuhu 241002, P. R. China.
| | - Haixia Zhao
- Key Laboratory of Functional Molecular Solids, Ministry of Education, Anhui Laboratory of Molecule-Based Materials, College of Chemistry and Materials Science, Anhui Normal University, Wuhu 241002, P. R. China.
| | - Minxue Chai
- Key Laboratory of Functional Molecular Solids, Ministry of Education, Anhui Laboratory of Molecule-Based Materials, College of Chemistry and Materials Science, Anhui Normal University, Wuhu 241002, P. R. China.
| | - Jian Wang
- Key Laboratory of Functional Molecular Solids, Ministry of Education, Anhui Laboratory of Molecule-Based Materials, College of Chemistry and Materials Science, Anhui Normal University, Wuhu 241002, P. R. China.
| |
Collapse
|
21
|
Hu L, Gao T, Deng Q, Xiong Y. Organoiodine-induced hydroxylation as well as enantioselective alkoxylation/hydroxylation of allylic alcohols via 1,2- aryl migration. Tetrahedron 2021. [DOI: 10.1016/j.tet.2021.132334] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
22
|
Xiong Q, Luo Q, Zhang T, Dong S, Liu X, Feng X. Catalytic asymmetric multicomponent reactions of isocyanide, isothiocyanate and alkylidene malonates. Chem Commun (Camb) 2021; 57:7288-7291. [PMID: 34212960 DOI: 10.1039/d1cc02939h] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Several unique chiral 3,4-dihydro-2H-pyrrole-2-thiones were made readily available by carrying out, in each case, a chiral-Mg(OTf)2/N,N'-dioxide-complex-promoted formal [2+1+2] cycloaddition in the presence of tetraethylenediamine. Control experiments revealed that in situ-generated ammonium thiocyanate was crucial for maintaining high enantioselectivity through its inhibition of the HNCS-induced racemization of the products.
Collapse
Affiliation(s)
- Qian Xiong
- Key Laboratory of Green Chemistry & Technology, Ministry of Education, College of Chemistry. Sichuan University, Chengdu 610064, China.
| | | | | | | | | | | |
Collapse
|
23
|
Jiang M, Hu K, Zhou Y, Xiong Q, Cao W, Feng X. Enantioselective Isocyanide-based Multicomponent Reaction with Alkylidene Malonates and Phenols. Org Lett 2021; 23:5261-5265. [PMID: 34156867 DOI: 10.1021/acs.orglett.1c01792] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
A highly enantioselective isocyanide-based multicomponent reaction catalyzed by a chiral N,N'-dioxide/MgII complex was reported. A wide range of substrates were tolerated in this reaction, including alkyl- and aryl-substituted isocyanides with alkylidene malonates and various phenols, affording the corresponding phenoxyimidate products in good to excellent yields (up to 94% yield) with good to excellent enantioselectivities (up to 95.5:4.5 er). A catalytic cycle and transition state were proposed to rationalize the reaction process and enantiocontrol.
Collapse
Affiliation(s)
- Mingyi Jiang
- Key Laboratory of Green Chemistry & Technology, Ministry of Education, College of Chemistry, Sichuan University, Chengdu 610064, China
| | - Kaiqi Hu
- Key Laboratory of Green Chemistry & Technology, Ministry of Education, College of Chemistry, Sichuan University, Chengdu 610064, China
| | - Yuqiao Zhou
- Key Laboratory of Green Chemistry & Technology, Ministry of Education, College of Chemistry, Sichuan University, Chengdu 610064, China
| | - Qian Xiong
- Key Laboratory of Green Chemistry & Technology, Ministry of Education, College of Chemistry, Sichuan University, Chengdu 610064, China
| | - Weidi Cao
- Key Laboratory of Green Chemistry & Technology, Ministry of Education, College of Chemistry, Sichuan University, Chengdu 610064, China
| | - Xiaoming Feng
- Key Laboratory of Green Chemistry & Technology, Ministry of Education, College of Chemistry, Sichuan University, Chengdu 610064, China
| |
Collapse
|
24
|
Luo J, Chen GS, Chen SJ, Li ZD, Liu YL. Catalytic Enantioselective Isocyanide-Based Reactions: Beyond Passerini and Ugi Multicomponent Reactions. Chemistry 2021; 27:6598-6619. [PMID: 32964538 DOI: 10.1002/chem.202003224] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2020] [Indexed: 12/19/2022]
Abstract
The development of catalytic enantioselective isocyanide-based reactions is currently of great interest because the resulting products are valuable in organic synthesis, pharmacological chemistry, and materials science. This review assembles and comprehensively summarizes the recent achievements in this rapidly growing area according to the reaction types. Special attention is paid to the advantages, limitations, possible mechanisms, and synthetic applications of each reaction. In addition, a personal outlook on the opportunities for further exploration is given at the end.
Collapse
Affiliation(s)
- Jian Luo
- School of Chemistry and Chemical Engineering, Guangzhou University, 230 Wai Huan Xi Road, Guangzhou, 510006, P. R. China
| | - Guo-Shu Chen
- School of Chemistry and Chemical Engineering, Guangzhou University, 230 Wai Huan Xi Road, Guangzhou, 510006, P. R. China
| | - Shu-Jie Chen
- School of Chemistry and Chemical Engineering, Guangzhou University, 230 Wai Huan Xi Road, Guangzhou, 510006, P. R. China
| | - Zhao-Dong Li
- Department of Applied Chemistry, College of Materials and Energy, South China Agricultural University, Wushan Street five road No. 483, Guangzhou, 510642, P. R. China
| | - Yun-Lin Liu
- School of Chemistry and Chemical Engineering, Guangzhou University, 230 Wai Huan Xi Road, Guangzhou, 510006, P. R. China
| |
Collapse
|
25
|
Zhu WQ, Zhang ZW, Han WY, Fang YC, Yang P, Li LQ, Chen YZ. Aziridine used as a vinylidene unit in palladium-catalyzed [2 + 2 + 1] domino annulation. Org Chem Front 2021. [DOI: 10.1039/d1qo00458a] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
A series of chromone fused methylenecyclopentanes are efficiently constructed in moderate to good yields by Pd-catalyzed [2 + 2 + 1] annulation, in which aziridine is used as a vinylidene unit by cleavage of two C–N bonds for the first time.
Collapse
Affiliation(s)
- Wen-Qing Zhu
- Xi'an Key Laboratory of Textile Chemical Engineering Auxiliaries
- School of Environmental and Chemical Engineering
- Xi'an Polytechnic University
- Xi'an
- P. R. China
| | - Zi-Wei Zhang
- Xi'an Key Laboratory of Textile Chemical Engineering Auxiliaries
- School of Environmental and Chemical Engineering
- Xi'an Polytechnic University
- Xi'an
- P. R. China
| | - Wen-Yong Han
- Key Laboratory of Biocatalysis & Chiral Drug Synthesis of Guizhou Province
- Generic Drug Research Center of Guizhou Province
- Green Pharmaceuticals Engineering Research Center of Guizhou Province
- School of Pharmacy
- Zunyi Medical University
| | - Yu-Chen Fang
- Xi'an Key Laboratory of Textile Chemical Engineering Auxiliaries
- School of Environmental and Chemical Engineering
- Xi'an Polytechnic University
- Xi'an
- P. R. China
| | - Ping Yang
- Key Laboratory of Biocatalysis & Chiral Drug Synthesis of Guizhou Province
- Generic Drug Research Center of Guizhou Province
- Green Pharmaceuticals Engineering Research Center of Guizhou Province
- School of Pharmacy
- Zunyi Medical University
| | - Lin-Qiang Li
- Key Laboratory of Biocatalysis & Chiral Drug Synthesis of Guizhou Province
- Generic Drug Research Center of Guizhou Province
- Green Pharmaceuticals Engineering Research Center of Guizhou Province
- School of Pharmacy
- Zunyi Medical University
| | - Yong-Zheng Chen
- Key Laboratory of Biocatalysis & Chiral Drug Synthesis of Guizhou Province
- Generic Drug Research Center of Guizhou Province
- Green Pharmaceuticals Engineering Research Center of Guizhou Province
- School of Pharmacy
- Zunyi Medical University
| |
Collapse
|
26
|
Abstract
This short review highlights the recent developments reported in the last four years on the asymmetric construction of chiral rings based on enantioselective domino reactions promoted by chiral metal catalysts.1 Introduction2 Formation of One Ring Containing One Nitrogen Atom3 Formation of One Ring Containing One Oxygen/Sulfur Atom4 Formation of One Ring Containing Several Heterocyclic Atoms5 Formation of One Carbon Ring6 Formation of Two Rings7 Conclusion
Collapse
|
27
|
Kim HJ, Cheon C. Synthesis of 2‐Substituted Tryptamines via Cyanide‐Catalyzed Imino‐Stetter Reaction. ASIAN J ORG CHEM 2020. [DOI: 10.1002/ajoc.202000554] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Affiliation(s)
- Hyung Joo Kim
- Department of Chemistry Korea University 145 Anam-ro, Seongbuk-gu Seoul 02841 Republic of Korea
| | - Cheol‐Hong Cheon
- Department of Chemistry Korea University 145 Anam-ro, Seongbuk-gu Seoul 02841 Republic of Korea
| |
Collapse
|
28
|
Gernet A, Ratovelomanana‐Vidal V, Pirat J, Virieux D, Ayad T. Efficient Synthesis of 2‐Amino‐1‐Arylethanols Through a Lewis Base‐Catalyzed SiCl
4
‐Mediated Asymmetric Passerini‐Type Reaction. European J Org Chem 2020. [DOI: 10.1002/ejoc.202001172] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Aurélie Gernet
- CNRS, AM2N, ENSCM Institut Charles Gerhardt UMR 5253 8 rue de l'Ecole Normale 34296 Montpellier France
| | - Virginie Ratovelomanana‐Vidal
- Institute of Chemistry for Life & Health Sciences PSL University, Chimie ParisTech‐CNRS 11 rue Pierre et Marie Curie 75005 Paris France
| | - Jean‐Luc Pirat
- CNRS, AM2N, ENSCM Institut Charles Gerhardt UMR 5253 8 rue de l'Ecole Normale 34296 Montpellier France
| | - David Virieux
- CNRS, AM2N, ENSCM Institut Charles Gerhardt UMR 5253 8 rue de l'Ecole Normale 34296 Montpellier France
| | - Tahar Ayad
- CNRS, AM2N, ENSCM Institut Charles Gerhardt UMR 5253 8 rue de l'Ecole Normale 34296 Montpellier France
- Institute of Chemistry for Life & Health Sciences PSL University, Chimie ParisTech‐CNRS 11 rue Pierre et Marie Curie 75005 Paris France
| |
Collapse
|
29
|
Samzadeh‐Kermani A, Poorhabibi‐Zarandi M. A catalytic synthesis of dihydrofuran‐3(2
H
)‐imine skeletons from isocyanides, terminal alkynes, and oxiranes. J Heterocycl Chem 2020. [DOI: 10.1002/jhet.3918] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
30
|
Chen G, Chen S, Luo J, Mao X, Chan AS, Sun RW, Liu Y. Tandem Cross‐Coupling/Spirocyclization/Mannich‐Type Reactions of 3‐(2‐Isocyanoethyl)indoles with Diazo Compounds toward Polycyclic Spiroindolines. Angew Chem Int Ed Engl 2020; 59:614-621. [DOI: 10.1002/anie.201911614] [Citation(s) in RCA: 54] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2019] [Revised: 11/05/2019] [Indexed: 01/11/2023]
Affiliation(s)
- Guo‐Shu Chen
- School of Chemistry and Chemical EngineeringGuangzhou University 230 Wai Huan Xi Road Guangzhou 510006 China
| | - Shu‐Jie Chen
- School of Chemistry and Chemical EngineeringGuangzhou University 230 Wai Huan Xi Road Guangzhou 510006 China
| | - Jian Luo
- School of Chemistry and Chemical EngineeringGuangzhou University 230 Wai Huan Xi Road Guangzhou 510006 China
| | - Xiang‐Yu Mao
- School of Chemistry and Chemical EngineeringGuangzhou University 230 Wai Huan Xi Road Guangzhou 510006 China
| | - Albert Sun‐Chi Chan
- Guangzhou Lee & Man Technology Company LimitedRoom 401, Block A 8 Huanshi Avenue South, Nansha Guangzhou China
| | - Raymond Wai‐Yin Sun
- Guangzhou Lee & Man Technology Company LimitedRoom 401, Block A 8 Huanshi Avenue South, Nansha Guangzhou China
| | - Yun‐Lin Liu
- School of Chemistry and Chemical EngineeringGuangzhou University 230 Wai Huan Xi Road Guangzhou 510006 China
| |
Collapse
|
31
|
Li D, Shen X, Lei J. Metal-Free Iodine/TEMPO-Mediated Aerobic Oxidative Ugi-Type Multicomponent Reactions with Tertiary Amines. J Org Chem 2019; 85:2466-2475. [DOI: 10.1021/acs.joc.9b03168] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Affiliation(s)
- Dengke Li
- College of Chemistry and Environmental Science; Center for Yunnan-Guizhou Plateau Chemical Functional Materials and Pollution Control, Qujing Normal University, Qujing 655011, Yunnan, China
| | - Xianfu Shen
- College of Chemistry and Environmental Science; Center for Yunnan-Guizhou Plateau Chemical Functional Materials and Pollution Control, Qujing Normal University, Qujing 655011, Yunnan, China
| | - Jian Lei
- College of Chemical Engineering and Material, Quanzhou Normal University, Quanzhou 362000, Fujian, China
| |
Collapse
|
32
|
Chen G, Chen S, Luo J, Mao X, Chan AS, Sun RW, Liu Y. Tandem Cross‐Coupling/Spirocyclization/Mannich‐Type Reactions of 3‐(2‐Isocyanoethyl)indoles with Diazo Compounds toward Polycyclic Spiroindolines. Angew Chem Int Ed Engl 2019. [DOI: 10.1002/ange.201911614] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Affiliation(s)
- Guo‐Shu Chen
- School of Chemistry and Chemical EngineeringGuangzhou University 230 Wai Huan Xi Road Guangzhou 510006 China
| | - Shu‐Jie Chen
- School of Chemistry and Chemical EngineeringGuangzhou University 230 Wai Huan Xi Road Guangzhou 510006 China
| | - Jian Luo
- School of Chemistry and Chemical EngineeringGuangzhou University 230 Wai Huan Xi Road Guangzhou 510006 China
| | - Xiang‐Yu Mao
- School of Chemistry and Chemical EngineeringGuangzhou University 230 Wai Huan Xi Road Guangzhou 510006 China
| | - Albert Sun‐Chi Chan
- Guangzhou Lee & Man Technology Company LimitedRoom 401, Block A 8 Huanshi Avenue South, Nansha Guangzhou China
| | - Raymond Wai‐Yin Sun
- Guangzhou Lee & Man Technology Company LimitedRoom 401, Block A 8 Huanshi Avenue South, Nansha Guangzhou China
| | - Yun‐Lin Liu
- School of Chemistry and Chemical EngineeringGuangzhou University 230 Wai Huan Xi Road Guangzhou 510006 China
| |
Collapse
|
33
|
Xiong Q, Li G, Dong S, Liu X, Feng X. Enantioselective Synthesis of Hydrothiazole Derivatives via an Isocyanide-Based Multicomponent Reaction. Org Lett 2019; 21:8771-8775. [DOI: 10.1021/acs.orglett.9b03389] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Affiliation(s)
- Qian Xiong
- Key Laboratory of Green Chemistry & Technology, Ministry of Education, College of Chemistry, Sichuan University, Chengdu 610064, China
| | - Gonglin Li
- Key Laboratory of Green Chemistry & Technology, Ministry of Education, College of Chemistry, Sichuan University, Chengdu 610064, China
| | - Shunxi Dong
- Key Laboratory of Green Chemistry & Technology, Ministry of Education, College of Chemistry, Sichuan University, Chengdu 610064, China
| | - Xiaohua Liu
- Key Laboratory of Green Chemistry & Technology, Ministry of Education, College of Chemistry, Sichuan University, Chengdu 610064, China
| | - Xiaoming Feng
- Key Laboratory of Green Chemistry & Technology, Ministry of Education, College of Chemistry, Sichuan University, Chengdu 610064, China
| |
Collapse
|