1
|
Kondratyev NS, Malkov AV. Asymmetric organocatalytic synthesis of chiral homoallylic amines. Beilstein J Org Chem 2024; 20:2349-2377. [PMID: 39319032 PMCID: PMC11420548 DOI: 10.3762/bjoc.20.201] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2024] [Accepted: 08/30/2024] [Indexed: 09/26/2024] Open
Abstract
In recent decades, the chiral allylation of imines emerged as a key methodology in the synthesis of alkaloids and natural products with 4-, 5- and 6-membered cyclic amine motifs. Initially reliant on stoichiometric reagents, synthetic chemists predominantly used N-substituted chiral imines, organometallic chiral reagents and achiral reagents with an equimolar chiral controller. However, recent years have witnessed the rise of asymmetric transition-metal catalysts and, importantly, organocatalytic allylation, reshaping the landscape of modern synthetic chemistry. This review explores the latest developments in the asymmetric allylation of imines, encompassing cutting-edge advances in hydrogen-bond catalysis and non-classical approaches. Furthermore, practical examples showcasing the application of these innovative methodologies in total synthesis are presented.
Collapse
Affiliation(s)
- Nikolay S Kondratyev
- Department of Chemistry, Loughborough University, Loughborough, LE11 3TU, UK
- Faculty of Science and Engineering, University of Wolverhampton, Wolverhampton, WV1 1LY, UK
| | - Andrei V Malkov
- Department of Chemistry, Loughborough University, Loughborough, LE11 3TU, UK
| |
Collapse
|
2
|
Zhao Y, Luo Y, Liu J, Zheng C, Zhao G. Multiple Hydrogen-Bonding Catalysts Enhance the Asymmetric Cyanation of Ketimines and Aldimines. Chemistry 2023; 29:e202302061. [PMID: 37463871 DOI: 10.1002/chem.202302061] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Revised: 07/18/2023] [Accepted: 07/18/2023] [Indexed: 07/20/2023]
Abstract
A highly enantioselective cyanation of imines (up to >99 % ee) has been developed using well-designed C2 -symmetric hydrogen bonding catalysts. The catalytic strategy was characterized with low catalyst loading (0.1-1 mol %), easily accessible catalysts with diverse functional groups, and catalytic base additives. A wide range of imines, including the challenging N-Boc and N-Cbz protected ketimines and aldimines, as well as fluoroalkylated ketimines, were investigated under mild conditions to afford the products with good to excellent yields (up to 99 % yield) and high enantioselectivity (up to >99 % ee). Control experiments revealed that the multiple hydrogen bonding catalysts enhanced the reactivity and enantioselectivity of the Strecker reaction initiated by the base.
Collapse
Affiliation(s)
- Yunhui Zhao
- Hunan Provincial Key Laboratory of Controllable Preparation and Functional Application of Fine Polymers School of Chemistry and Chemical Engineering, Hunan University of Science and Technology, Xiangtan, Hunan, 411201, P. R. China
- Key Laboratory of Theoretical Organic Chemistry and Functional Molecular, Ministry of Education, Hunan University of Science and Technology, Xiangtan, Hunan, 411201, P. R. China
| | - Yueyang Luo
- Hunan Provincial Key Laboratory of Controllable Preparation and Functional Application of Fine Polymers School of Chemistry and Chemical Engineering, Hunan University of Science and Technology, Xiangtan, Hunan, 411201, P. R. China
| | - Jun Liu
- Key Laboratory of Synthetic Chemistry of Natural Substances Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, 345 Lingling Road, Shanghai, 200032, P. R. China
| | - Changwu Zheng
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, P. R. China
| | - Gang Zhao
- Key Laboratory of Synthetic Chemistry of Natural Substances Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, 345 Lingling Road, Shanghai, 200032, P. R. China
| |
Collapse
|
3
|
Shi Y, Shi Y, Yang S, Chen X, Qiao Y. Chiral Oxazaborolidinium Ion (COBI)-Catalyzed Reaction of Aldimine with Tributyltin Cyanide: Mechanism and Origin of Stereoselectivity. J Org Chem 2023; 88:9803-9810. [PMID: 37399451 DOI: 10.1021/acs.joc.3c00416] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/05/2023]
Abstract
By conducting density functional theory (DFT) calculations, the detailed reaction mechanisms of aldimines with tributyltin cyanide under the catalytic influence of chiral oxazaborolidinium ion (COBI) have been uncovered. Three potential reaction pathways were examined, and two stereoselective routes were determined for the most energetically favorable mechanism. In the primary route, a proton is transferred from the COBI catalyst to the aldimine substrate, which is then followed by the C-C bond formation to produce the final product. Subsequently, NBO analyses of the stereoselectivity-determining transition states were conducted to identify the crucial role of hydrogen bond interactions in controlling stereoselectivity. These computed findings should prove invaluable in comprehending the detailed mechanisms and underlying origins of stereoselectivity for COBI-mediated reactions of this type.
Collapse
Affiliation(s)
- Yanli Shi
- Department of Pathophysiology, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, Henan 450001, China
- Department of pathology, Zhoukou Central Hospital, Zhoukou, Henan 466099, China
| | - Yaqian Shi
- Department of Pathophysiology, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, Henan 450001, China
| | - Shanxiao Yang
- Department of Pathophysiology, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, Henan 450001, China
| | - Xinhuan Chen
- Department of Pathophysiology, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, Henan 450001, China
| | - Yan Qiao
- Department of Pathophysiology, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, Henan 450001, China
| |
Collapse
|
4
|
Mandal S, Thirupathi B. Total synthesis of proposed elgonene C and its (4 R,5 R)-diastereomer. Org Biomol Chem 2022; 20:3922-3929. [PMID: 35258060 DOI: 10.1039/d2ob00094f] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The total synthesis of the proposed elgonene C (1) and its (4R,5R)-diastereomer (1a) has been achieved using a second-generation oxazaborolidinium ion-catalysed Diels-Alder reaction, Sharpless asymmetric dihydroxylation, and a Ni-catalysed cross-carboxyl coupling reaction via redox-active ester (RAE) formation as key reactions. The spectral and analytical data for our synthetic compounds 1 and 1a do not match the isolation data provided by Stadler et al. which indicates that structural revision is required for the proposed elgonene C.
Collapse
Affiliation(s)
- Sudip Mandal
- Department of Chemical Sciences, Indian Institute of Science Education and Research Berhampur, Transit Campus, Govt. ITI Building, NH 59, Engineering School Road, Ganjam-District, Berhampur 760 010, Odisha, India.
| | - Barla Thirupathi
- Department of Chemical Sciences, Indian Institute of Science Education and Research Berhampur, Transit Campus, Govt. ITI Building, NH 59, Engineering School Road, Ganjam-District, Berhampur 760 010, Odisha, India.
| |
Collapse
|
5
|
Enantioselective organocatalytic synthesis of α-allylated dihydroquinolines. Tetrahedron 2022. [DOI: 10.1016/j.tet.2022.132767] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
6
|
Shih DN, Boobalan R, Liu YH, Chein RJ, Chiu CW. [B-Cl-B] + Cations: Chloroborane Masked Chiral Borenium Ions. Inorg Chem 2021; 60:16266-16272. [PMID: 34672549 DOI: 10.1021/acs.inorgchem.1c02073] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
A tricoordinate borenium ion has received considerable attention in recent years for its applications in Lewis acid catalysis. Over the years, asymmetric catalysis mediated by a chiral borenium ion has also been developed. To stabilize the electron-deficient boron atom, a series of chloroborane masked borenium ions featuring the symmetrical [B-Cl-B]+ linkage are prepared and utilized as the catalyst for the enantioselective Diels-Alder cycloaddition of cyclopentadiene and 2,2,2-trifluoroethyl acrylate. The presence of a Cp* ligand is critical in realizing the cyclic diboron compounds, and the stability of the resulting [B-Cl-B]+ cation is dependent on the steric bulkiness of the oxazolidinone moiety. The stereoselectivity of the Diels-Alder cycloaddition is controlled by the substituents of the chiral oxazolidinone ligand and could be further improved via the coordination of SnCl4 at the bridging chloride of the [B-Cl-B]+ cation.
Collapse
Affiliation(s)
- Ding-Nan Shih
- Department of Chemistry, National Taiwan University, Taipei 10617, Taiwan
| | | | - Yi-Hung Liu
- Department of Chemistry, National Taiwan University, Taipei 10617, Taiwan
| | - Rong-Jie Chein
- Institute of Chemistry, Academia Sinica, Taipei 11529, Taiwan
| | - Ching-Wen Chiu
- Department of Chemistry, National Taiwan University, Taipei 10617, Taiwan
| |
Collapse
|
7
|
Nam DG, Shim SY, Jeong H, Ryu DH. Catalytic Asymmetric Darzens‐Type Epoxidation of Diazoesters: Highly Enantioselective Synthesis of Trisubstituted Epoxides. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202108454] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Affiliation(s)
- Dong Guk Nam
- Department of Chemistry Sungkyunkwan University 300 Cheoncheon-dong, Jangan-gu Suwon 16419 Korea
| | - Su Yong Shim
- Department of Chemistry Sungkyunkwan University 300 Cheoncheon-dong, Jangan-gu Suwon 16419 Korea
- Present address: Department of Chemistry The Scripps Research Institute 10550 North Torrey Pines Road La Jolla CA 92037 USA
| | - Hye‐Min Jeong
- Department of Chemistry Sungkyunkwan University 300 Cheoncheon-dong, Jangan-gu Suwon 16419 Korea
| | - Do Hyun Ryu
- Department of Chemistry Sungkyunkwan University 300 Cheoncheon-dong, Jangan-gu Suwon 16419 Korea
| |
Collapse
|
8
|
Nam DG, Shim SY, Jeong HM, Ryu DH. Catalytic Asymmetric Darzens-Type Epoxidation of Diazoesters: Highly Enantioselective Synthesis of Trisubstituted Epoxides. Angew Chem Int Ed Engl 2021; 60:22236-22240. [PMID: 34350688 DOI: 10.1002/anie.202108454] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2021] [Revised: 07/19/2021] [Indexed: 12/24/2022]
Abstract
Highly enantioselective Darzens-type epoxidation of diazoesters with glyoxal derivatives was accomplished using a chiral boron-Lewis acid catalyst, which facilitated asymmetric synthesis of trisubstituted α,β-epoxy esters. In the presence of a chiral oxazaborolidinium ion catalyst, the reaction proceeded in high yield (up to 99 %) with excellent enantio- and diastereoselectivity (up to >99 % ee and >20:1 dr, respectively). The synthetic potential of this method was illustrated by conversion of the products to various compounds such as epoxy γ-butyrolactone, tertiary β-hydroxy ketone and epoxy diester.
Collapse
Affiliation(s)
- Dong Guk Nam
- Department of Chemistry, Sungkyunkwan University, 300 Cheoncheon-dong, Jangan-gu, Suwon, 16419, Korea
| | - Su Yong Shim
- Department of Chemistry, Sungkyunkwan University, 300 Cheoncheon-dong, Jangan-gu, Suwon, 16419, Korea.,Present address: Department of Chemistry, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, CA, 92037, USA
| | - Hye-Min Jeong
- Department of Chemistry, Sungkyunkwan University, 300 Cheoncheon-dong, Jangan-gu, Suwon, 16419, Korea
| | - Do Hyun Ryu
- Department of Chemistry, Sungkyunkwan University, 300 Cheoncheon-dong, Jangan-gu, Suwon, 16419, Korea
| |
Collapse
|
9
|
Cho SM, Lee SY, Ryu DH. Enantioselective Acyloin Rearrangement of Acyclic Aldehydes Catalyzed by Chiral Oxazaborolidinium Ion. Org Lett 2021; 23:1516-1520. [PMID: 33555190 DOI: 10.1021/acs.orglett.1c00314] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
A catalytic enantioselective acyloin rearrangement of acyclic aldehydes to synthesize highly optically active acyloin derivatives is described. In the presence of a chiral oxazaborolidinium ion catalyst, the reaction provided chiral α-hydroxy aryl ketones in high yield (up to 95%) and enantioselectivity (up to 98% ee). In addition, the enantioselective acyloin rearrangement of α,α-dialkyl-α-siloxy aldehydes produced chiral α-siloxy alkyl ketones in high yield (up to 92%) with good enantioselectivity (up to 89% ee).
Collapse
Affiliation(s)
- Soo Min Cho
- Department of Chemistry, Sungkyunkwan University, 300 Cheoncheon, Jangan, Suwon 16419, Korea
| | - Si Yeon Lee
- Department of Chemistry, Sungkyunkwan University, 300 Cheoncheon, Jangan, Suwon 16419, Korea
| | - Do Hyun Ryu
- Department of Chemistry, Sungkyunkwan University, 300 Cheoncheon, Jangan, Suwon 16419, Korea
| |
Collapse
|
10
|
Xu H, Nazli A, Zou C, Wang ZP, He Y. Bench-stable imine surrogates for the one-pot and catalytic asymmetric synthesis of α-amino esters/ketones. Chem Commun (Camb) 2020; 56:14243-14246. [PMID: 33118565 DOI: 10.1039/d0cc06055k] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
N,O-Bis(tert-butoxycarbonyl)hydroxylamines are readily accessible as imine surrogates, which are bench stable and could quantitatively generate the corresponding imines for in situ applications. An unpresented catalytic asymmetric method for the synthesis of α-amino esters and ketones from novel imine surrogates, N,O-bis(tert-butoxycarbonyl)hydroxylamines, as well as its preliminary mechanistic studies are reported. A variety of optically enriched products were obtained in excellent yields and enantioselectivities (up to 99% yield and >99% ee).
Collapse
Affiliation(s)
- Huacheng Xu
- Chongqing Key Laboratory of Natural Product Synthesis and Drug Research, School of Pharmaceutical Sciences, Chongqing University, Chongqing, 401331, P. R. China.
| | - Adila Nazli
- Chongqing Key Laboratory of Natural Product Synthesis and Drug Research, School of Pharmaceutical Sciences, Chongqing University, Chongqing, 401331, P. R. China.
| | - Cheng Zou
- Chongqing Key Laboratory of Natural Product Synthesis and Drug Research, School of Pharmaceutical Sciences, Chongqing University, Chongqing, 401331, P. R. China.
| | - Zhi-Peng Wang
- Chongqing Institute of Green and Intelligent Technology, Chinese Academy of Sciences, Chongqing, 400714, P. R. China.
| | - Yun He
- Chongqing Key Laboratory of Natural Product Synthesis and Drug Research, School of Pharmaceutical Sciences, Chongqing University, Chongqing, 401331, P. R. China.
| |
Collapse
|
11
|
Kim T, Jeong HM, Venkateswarlu A, Ryu DH. Highly Enantioselective Allylation Reactions of Aldehydes with Allyltrimethylsilane Catalyzed by a Chiral Oxazaborolidinium Ion. Org Lett 2020; 22:5198-5201. [DOI: 10.1021/acs.orglett.0c01820] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Taehyeong Kim
- Department of Chemistry, Sungkyunkwan University, Suwon 16419, Republic of Korea
| | - Hye-Min Jeong
- Department of Chemistry, Sungkyunkwan University, Suwon 16419, Republic of Korea
| | | | - Do Hyun Ryu
- Department of Chemistry, Sungkyunkwan University, Suwon 16419, Republic of Korea
| |
Collapse
|