1
|
Liu SH, Li F, He YM, Fan QH. Manganese(I)-Catalyzed Enantioselective Formal Anti-Markovnikov Hydroalkoxylation of Racemic Allylic Alcohols: A Borrowing Hydrogen Access. Org Lett 2025; 27:2139-2145. [PMID: 39977372 DOI: 10.1021/acs.orglett.5c00161] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/22/2025]
Abstract
An enantioselective manganese(I)-catalyzed formal anti-Markovnikov hydroalkoxylation of racemic allylic alcohols has been developed using a chiral N6-type macrocyclic ligand, affording a wide range of chiral γ-alkoxypropyl alcohols in high isolated yields with excellent enantioselectivities. The synthetic utility of this protocol was further proven by gram-scale synthesis of chiral γ-alkoxypropanol 3n and derivatization of chiral γ-alkoxypropanol 3a to a drug molecule, (S)-dapoxetine, for the treatment of premature ejaculation and erectile dysfunction. Mechanistic studies support that the reaction proceeds via a hydrogen-borrowing cascade reaction pathway.
Collapse
Affiliation(s)
- Shuai-Hu Liu
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Molecular Recognition and Function, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, People's Republic of China
- University of Chinese Academy of Sciences, Beijing 100049, People's Republic of China
| | - Faju Li
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Molecular Recognition and Function, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, People's Republic of China
- Key Laboratory of Forensic Toxicology, Ministry of Public Security, Beijing 100192, People's Republic of China
| | - Yan-Mei He
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Molecular Recognition and Function, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, People's Republic of China
| | - Qing-Hua Fan
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Molecular Recognition and Function, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, People's Republic of China
- University of Chinese Academy of Sciences, Beijing 100049, People's Republic of China
| |
Collapse
|
2
|
Chen Q, Sun H, Li L, Tian J, Xu Q, Ma N, Li L, Zhang L, Li C. The Ir-Catalyzed Asymmetric Hydrogenation of α-Halogenated Ketones Utilizing Cinchona-Alkaloid-Derived NNP Ligand to Produce ( R)- and ( S)-Halohydrins. J Org Chem 2022; 87:15986-15997. [PMID: 36397210 DOI: 10.1021/acs.joc.2c02109] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
The asymmetric hydrogenation of α-halogenated ketones with iridium catalyst was developed, utilizing easily accessed cinchona-alkaloid-based NNP ligands. Various α-chloroacetophenones, heterocyclic thienyl and furanyl substrates, and even bromoketones were completely converted to the desired chiral halohydrins by this protocol. Both (R)- and (S)-chiral halohydrins can be prepared by changing the configurations of the chiral ligand NNP with up to 99.6% ee (enantiomeric excess) and 98.8% ee, respectively. Also, a gram-scale experiment was carried out efficiently.
Collapse
Affiliation(s)
- Qian Chen
- State Key Laboratory of Functions and Applications of Medicinal Plants & School of Pharmaceutical Sciences, Guizhou Medical University, Guiyang, Guizhou 550004, People's Republic of China
| | - Hao Sun
- State Key Laboratory of Functions and Applications of Medicinal Plants & School of Pharmaceutical Sciences, Guizhou Medical University, Guiyang, Guizhou 550004, People's Republic of China
| | - Linlin Li
- State Key Laboratory of Functions and Applications of Medicinal Plants & School of Pharmaceutical Sciences, Guizhou Medical University, Guiyang, Guizhou 550004, People's Republic of China
| | - Jie Tian
- State Key Laboratory of Functions and Applications of Medicinal Plants & School of Pharmaceutical Sciences, Guizhou Medical University, Guiyang, Guizhou 550004, People's Republic of China
| | - Qian Xu
- State Key Laboratory of Functions and Applications of Medicinal Plants & School of Pharmaceutical Sciences, Guizhou Medical University, Guiyang, Guizhou 550004, People's Republic of China
| | - Nana Ma
- State Key Laboratory of Functions and Applications of Medicinal Plants & School of Pharmaceutical Sciences, Guizhou Medical University, Guiyang, Guizhou 550004, People's Republic of China
| | - Li Li
- State Key Laboratory of Functions and Applications of Medicinal Plants & School of Pharmaceutical Sciences, Guizhou Medical University, Guiyang, Guizhou 550004, People's Republic of China
| | - Lin Zhang
- State Key Laboratory of Functions and Applications of Medicinal Plants & School of Pharmaceutical Sciences, Guizhou Medical University, Guiyang, Guizhou 550004, People's Republic of China
| | - Chun Li
- State Key Laboratory of Functions and Applications of Medicinal Plants & School of Pharmaceutical Sciences, Guizhou Medical University, Guiyang, Guizhou 550004, People's Republic of China
| |
Collapse
|
3
|
Ramachandran PV, Alawaed AA, Hamann HJ. TiCl 4-Catalyzed Hydroboration of Ketones with Ammonia Borane. J Org Chem 2022; 87:13259-13269. [PMID: 36094411 DOI: 10.1021/acs.joc.2c01744] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Investigation of a variety of Lewis acids for the hydroboration-hydrolysis (reduction) of ketones with amine-boranes has revealed that catalytic (10 mol %) titanium tetrachloride (TiCl4) in diethyl ether at room temperature immensely accelerates the reaction of ammonia borane. The product alcohols are produced in good to excellent yields within 30 min, even with ketones which typically requires 24 h or longer to reduce under uncatalyzed conditions. Several potentially reactive functionalities are tolerated, and substituted cycloalkanones are reduced diastereoselectively to the thermodynamic product. A deuterium labeling study and 11B NMR analysis of the reaction have been performed to verify the proposed hydroboration mechanism.
Collapse
Affiliation(s)
| | - Abdulkhaliq A Alawaed
- Department of Chemistry, Purdue University, 560 Oval Drive, West Lafayette, Indiana 47907, United States
| | - Henry J Hamann
- Department of Chemistry, Purdue University, 560 Oval Drive, West Lafayette, Indiana 47907, United States
| |
Collapse
|
4
|
Khamis N, Clarkson GJ, Wills M. Heterocycle-containing Noyori-Ikariya catalysts for asymmetric transfer hydrogenation of ketones. Dalton Trans 2022; 51:13462-13469. [PMID: 35994090 DOI: 10.1039/d2dt02411j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The synthesis of a range of N-(heterocyclesulfonyl)-functionalised Noyori-Ikariya catalysts is described. The complexes were prepared through a short sequence from C2-symmetric 1,2-diphenylethylene-1,2-diamine (DPEN) and were characterised by a range of methods including X-ray crystallography. The complexes were active catalysts for the asymmetric transfer hydrogenation (ATH) of a range of acetophenone derivatives, giving products of high ee in most cases, with notably good results for ortho-substituted acetophenones.
Collapse
Affiliation(s)
- Noha Khamis
- Department of Chemistry, The University of Warwick, Coventry, CV4 7AL, UK. .,Department of Chemistry, Faculty of science, University of Alexandria, Alexandria, Egypt
| | - Guy J Clarkson
- Department of Chemistry, The University of Warwick, Coventry, CV4 7AL, UK.
| | - Martin Wills
- Department of Chemistry, The University of Warwick, Coventry, CV4 7AL, UK.
| |
Collapse
|
5
|
Asymmetric transfer hydrogenation of heterocycle-containing acetophenone derivatives using N-functionalised [(benzene)Ru(II)(TsDPEN)] complexes. Tetrahedron 2022. [DOI: 10.1016/j.tet.2021.132562] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
6
|
Bolitho EM, Worby NG, Coverdale JPC, Wolny JA, Schünemann V, Sadler PJ. Quinone Reduction by Organo-Osmium Half-Sandwich Transfer Hydrogenation Catalysts. Organometallics 2021. [DOI: 10.1021/acs.organomet.1c00358] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
| | - Nathan G. Worby
- Department of Chemistry, University of Warwick, Coventry CV4 7AL, U.K
| | | | - Juliusz A. Wolny
- Fachbereich Physik, Technische Universität Kaiserslautern, Erwin-Schrödinger-Str. 46, D-67663 Kaiserslautern, Germany
| | - Volker Schünemann
- Fachbereich Physik, Technische Universität Kaiserslautern, Erwin-Schrödinger-Str. 46, D-67663 Kaiserslautern, Germany
| | - Peter J. Sadler
- Department of Chemistry, University of Warwick, Coventry CV4 7AL, U.K
| |
Collapse
|
7
|
Barrios-Rivera J, Xu Y, Wills M. Asymmetric Transfer Hydrogenation of Unhindered and Non-Electron-Rich 1-Aryl Dihydroisoquinolines with High Enantioselectivity. Org Lett 2020; 22:6283-6287. [DOI: 10.1021/acs.orglett.0c02034] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Affiliation(s)
| | - Yingjian Xu
- GoldenKeys High-tech Materials Co., Ltd., Building B, Innovation & Entrepreneurship Park, Guian New Area, Guian 550025, Guizhou Province, China
| | - Martin Wills
- Department of Chemistry, The University of Warwick, Coventry CV4 7AL, United Kingdom
| |
Collapse
|
8
|
Wang F, Zheng LS, Lang QW, Yin C, Wu T, Phansavath P, Chen GQ, Ratovelomanana-Vidal V, Zhang X. Rh(iii)-Catalyzed diastereoselective transfer hydrogenation: an efficient entry to key intermediates of HIV protease inhibitors. Chem Commun (Camb) 2020; 56:3119-3122. [DOI: 10.1039/c9cc09793g] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
A highly efficient diastereoselective transfer hydrogenation of α-aminoalkyl α′-chloromethyl ketones catalyzed by a tethered rhodium complex was developed and successfully utilized in the synthesis of the key intermediates of HIV protease inhibitors.
Collapse
Affiliation(s)
- Fangyuan Wang
- School of Chemistry and Chemical Engineering
- Harbin Institute of Technology
- Harbin 150001
- People's Republic of China
- Shenzhen Grubbs Institute and Department of Chemistry
| | - Long-Sheng Zheng
- Shenzhen Grubbs Institute and Department of Chemistry
- Southern University of Science and Technology
- Shenzhen 518000
- People's Republic of China
| | - Qi-Wei Lang
- Shenzhen Grubbs Institute and Department of Chemistry
- Southern University of Science and Technology
- Shenzhen 518000
- People's Republic of China
| | - Congcong Yin
- Shenzhen Grubbs Institute and Department of Chemistry
- Southern University of Science and Technology
- Shenzhen 518000
- People's Republic of China
| | - Ting Wu
- Shenzhen Grubbs Institute and Department of Chemistry
- Southern University of Science and Technology
- Shenzhen 518000
- People's Republic of China
| | - Phannarath Phansavath
- PSL University
- Chimie ParisTech
- CNRS
- Institute of Chemistry for Life and Health Sciences
- CSB2D team
| | - Gen-Qiang Chen
- Shenzhen Grubbs Institute and Department of Chemistry
- Southern University of Science and Technology
- Shenzhen 518000
- People's Republic of China
| | | | - Xumu Zhang
- Shenzhen Grubbs Institute and Department of Chemistry
- Southern University of Science and Technology
- Shenzhen 518000
- People's Republic of China
| |
Collapse
|