1
|
Cattani S, Pandit NK, Buccio M, Balestri D, Ackermann L, Cera G. Iron-Catalyzed C-H Alkylation/Ring Opening with Vinylbenzofurans Enabled by Triazoles. Angew Chem Int Ed Engl 2024; 63:e202404319. [PMID: 38785101 DOI: 10.1002/anie.202404319] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2024] [Revised: 05/20/2024] [Accepted: 05/22/2024] [Indexed: 05/25/2024]
Abstract
We report an unprecedented iron-catalyzed C-H annulation using readily available 2-vinylbenzofurans as the reaction pattern. The redox-neutral strategy, based on cheap, non-toxic, and earth-abundant iron catalysts, exploits triazole assistance to promote a cascade C-H alkylation, benzofuran ring-opening and insertion into a Fe-N bond, to form highly functionalized isoquinolones. Detailed mechanistic studies supported by DFT calculations fully disclosed the manifold of the iron catalysis.
Collapse
Affiliation(s)
- Silvia Cattani
- Dipartimento di Scienze Chimiche della Vita e della Sostenibilità Ambientale, Università di Parma, Parco Area delle Scienze17/A, 43124, Parma, Italy
| | - Neeraj Kumar Pandit
- Institut für Organische und Biomolekulare Chemie, Georg-August-Universität Göttingen, Tammannstraße 2, 37077, Göttingen, Germany
| | - Michele Buccio
- Dipartimento di Scienze Chimiche della Vita e della Sostenibilità Ambientale, Università di Parma, Parco Area delle Scienze17/A, 43124, Parma, Italy
| | - Davide Balestri
- Dipartimento di Scienze Chimiche della Vita e della Sostenibilità Ambientale, Università di Parma, Parco Area delle Scienze17/A, 43124, Parma, Italy
| | - Lutz Ackermann
- Institut für Organische und Biomolekulare Chemie, Georg-August-Universität Göttingen, Tammannstraße 2, 37077, Göttingen, Germany
| | - Gianpiero Cera
- Dipartimento di Scienze Chimiche della Vita e della Sostenibilità Ambientale, Università di Parma, Parco Area delle Scienze17/A, 43124, Parma, Italy
| |
Collapse
|
2
|
Cattani S, Cera G. Modern Organometallic C-H Functionalizations with Earth-Abundant Iron Catalysts: An Update. Chem Asian J 2024; 19:e202300897. [PMID: 38051920 DOI: 10.1002/asia.202300897] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Revised: 11/13/2023] [Indexed: 12/07/2023]
Abstract
Iron-catalyzed C-H activation has recently emerged as an increasingly powerful synthetic method for the step- and atom- economical direct C-H functionalizations of otherwise inert C-H bonds. Iron's low-cost and toxicity along with its catalytic versatility have encouraged the scientific community to elect this metal for the development of new C-H activation methodologies. Within this review, we aim to present a collection of the most recent examples of iron-catalyzed C-H functionalizations with a particular emphasis on modern synthetic strategies and mechanistic aspects.
Collapse
Affiliation(s)
- Silvia Cattani
- Dipartimento di Scienze Chimiche, della Vita e della Sostenibilità Ambientale, Università di Parma, Parco Area delle Scienze 17/A, 43124, Parma, Italy
| | - Gianpiero Cera
- Dipartimento di Scienze Chimiche, della Vita e della Sostenibilità Ambientale, Università di Parma, Parco Area delle Scienze 17/A, 43124, Parma, Italy
| |
Collapse
|
3
|
Wei YM, Ma XD, Wang MF, Duan XF. Fe-Catalyzed Difunctionalization of Aryl Titanates Enabled by Fe/Ti Synergism. Org Lett 2023; 25:2745-2749. [PMID: 37036175 DOI: 10.1021/acs.orglett.3c00975] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/11/2023]
Abstract
Fe-catalyzed difunctionalization of aryl titanates via double C-H activation has been developed, where aryl titanates were arylated via ortho C-H activation, followed by ipso electrophilic trapping of the C-Ti bond. The ortho C-H arylation should be promoted by a 1,2-Fe/Ti synergistic heterobimetallic arylene intermediate and represents an ortho C-H ferration directed by a readily transformable C-Ti group. Common benzamides, esters, and nitriles function as arylating reagents, which involves another ortho C-H activation directed by these functionalities.
Collapse
Affiliation(s)
- Yi-Ming Wei
- College of Chemistry, Beijing Normal University, Beijing 100875, P. R. China
| | - Xiao-Di Ma
- College of Chemistry, Beijing Normal University, Beijing 100875, P. R. China
| | - Meng-Fei Wang
- College of Chemistry, Beijing Normal University, Beijing 100875, P. R. China
| | - Xin-Fang Duan
- College of Chemistry, Beijing Normal University, Beijing 100875, P. R. China
| |
Collapse
|
4
|
Wei YM, Ma XD, Wang MF, Duan XF. Synergism of Fe/Ti Enabled Regioselective Arene Difunctionalization. J Am Chem Soc 2023; 145:1542-1547. [PMID: 36622693 DOI: 10.1021/jacs.2c13207] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Regioselective difunctionalization of arenes remains a long-standing challenge in organic chemistry. We report a novel and general Fe/Ti synergistic methodology for regioselective synthesis of various polysubstituted arenes through either E/E' or Nu/E ortho difunctionalizations of arenes. Preliminary results showed that an unprecedented 1,2-Fe/Ti heterobimetallic arylene intermediate bearing two distinct C-M bonds is essential to the regioselective difunctionalization.
Collapse
Affiliation(s)
- Yi-Ming Wei
- College of Chemistry, Beijing Normal University, Beijing 100875, China
| | - Xiao-Di Ma
- College of Chemistry, Beijing Normal University, Beijing 100875, China
| | - Meng-Fei Wang
- College of Chemistry, Beijing Normal University, Beijing 100875, China
| | - Xin-Fang Duan
- College of Chemistry, Beijing Normal University, Beijing 100875, China
| |
Collapse
|
5
|
Lin T, Wang YE, Cui N, Li M, Wang R, Bai J, Fan Y, Xiong D, Xue F, Walsh PJ, Mao J. Nickel-Catalyzed Cross-Electrophile Coupling of 1,2,3-Benzotriazin-4(3 H)-ones with Aryl Bromides. J Org Chem 2022; 87:16567-16577. [PMID: 36455282 DOI: 10.1021/acs.joc.2c02246] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/03/2022]
Abstract
The nickel-catalyzed cross-electrophile coupling of 1,2,3-benzotriazin-4(3H)-ones with aryl bromides to generate a diverse array of ortho-arylated benzamide derivatives has been developed. The reaction displayed good functional group tolerance with Zn as the reductant. The key to this transformation is the ring opening of benzotriazinones, which undergo a denitrogenative process to obtain various benzamide derivatives (29 examples, 42-93% yield). The scalability of this transformation was demonstrated.
Collapse
Affiliation(s)
- Tingzhi Lin
- Technical Institute of Fluorochemistry, Institute of Advanced Synthesis, School of Chemistry and Molecular Engineering, Nanjing Tech University, 30 South Puzhu Road, Nanjing 211816, P. R. China
| | - Yan-En Wang
- College of Science, Hebei Agricultural University, Baoding 071000, P. R. China
| | - Ning Cui
- Technical Institute of Fluorochemistry, Institute of Advanced Synthesis, School of Chemistry and Molecular Engineering, Nanjing Tech University, 30 South Puzhu Road, Nanjing 211816, P. R. China
| | - Miaohui Li
- Technical Institute of Fluorochemistry, Institute of Advanced Synthesis, School of Chemistry and Molecular Engineering, Nanjing Tech University, 30 South Puzhu Road, Nanjing 211816, P. R. China
| | - Rui Wang
- Technical Institute of Fluorochemistry, Institute of Advanced Synthesis, School of Chemistry and Molecular Engineering, Nanjing Tech University, 30 South Puzhu Road, Nanjing 211816, P. R. China
| | - Jiahui Bai
- Technical Institute of Fluorochemistry, Institute of Advanced Synthesis, School of Chemistry and Molecular Engineering, Nanjing Tech University, 30 South Puzhu Road, Nanjing 211816, P. R. China
| | - YiRan Fan
- Technical Institute of Fluorochemistry, Institute of Advanced Synthesis, School of Chemistry and Molecular Engineering, Nanjing Tech University, 30 South Puzhu Road, Nanjing 211816, P. R. China
| | - Dan Xiong
- Technical Institute of Fluorochemistry, Institute of Advanced Synthesis, School of Chemistry and Molecular Engineering, Nanjing Tech University, 30 South Puzhu Road, Nanjing 211816, P. R. China
| | - Fei Xue
- Institute of Material Physics & Chemistry, College of Science, Nanjing Forestry University, Nanjing 210037, P. R. China
| | - Patrick J Walsh
- Roy and Diana Vagelos Laboratories, Department of Chemistry, University of Pennsylvania, 231 South 34th Street, Philadelphia, Pennsylvania 19104-6323, United States
| | - Jianyou Mao
- Technical Institute of Fluorochemistry, Institute of Advanced Synthesis, School of Chemistry and Molecular Engineering, Nanjing Tech University, 30 South Puzhu Road, Nanjing 211816, P. R. China
| |
Collapse
|
6
|
Mandal R, Garai B, Sundararaju B. Weak-Coordination in C–H Bond Functionalizations Catalyzed by 3d Metals. ACS Catal 2022. [DOI: 10.1021/acscatal.1c05267] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Affiliation(s)
- Rajib Mandal
- Department of Chemistry, Indian Institute of Technology Kanpur, Kanpur, Uttar Pradesh208016, India
| | - Bholanath Garai
- Department of Chemistry, Indian Institute of Technology Kanpur, Kanpur, Uttar Pradesh208016, India
| | - Basker Sundararaju
- Department of Chemistry, Indian Institute of Technology Kanpur, Kanpur, Uttar Pradesh208016, India
| |
Collapse
|
7
|
Rana S, Biswas JP, Paul S, Paik A, Maiti D. Organic synthesis with the most abundant transition metal–iron: from rust to multitasking catalysts. Chem Soc Rev 2021; 50:243-472. [DOI: 10.1039/d0cs00688b] [Citation(s) in RCA: 85] [Impact Index Per Article: 21.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The promising aspects of iron in synthetic chemistry are being explored for three-four decades as a green and eco-friendly alternative to late transition metals. This present review unveils these rich iron-chemistry towards different transformations.
Collapse
Affiliation(s)
- Sujoy Rana
- Department of Chemistry
- University of North Bengal
- Darjeeling
- India
| | | | - Sabarni Paul
- Department of Chemistry
- University of North Bengal
- Darjeeling
- India
| | - Aniruddha Paik
- Department of Chemistry
- University of North Bengal
- Darjeeling
- India
| | - Debabrata Maiti
- Department of Chemistry
- IIT Bombay
- Mumbai-400076
- India
- Tokyo Tech World Research Hub Initiative (WRHI)
| |
Collapse
|
8
|
Synthesis of a triethylene glycol-capped benzo[1,2-c:4,5-c']bis[2]benzopyran-5,12-dione: A highly soluble dilactone-bridged p-terphenyl with a crankshaft architecture. Tetrahedron Lett 2020. [DOI: 10.1016/j.tetlet.2020.152429] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
9
|
Wei YM, Ma XD, Wang L, Duan XF. Iron-catalyzed stereospecific arylation of enol tosylates using Grignard reagents. Chem Commun (Camb) 2020; 56:1101-1104. [DOI: 10.1039/c9cc09522e] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Iron-catalyzed stereospecific arylation of enol tosylates with Grignard reagents.
Collapse
Affiliation(s)
- Yi-Ming Wei
- College of Chemistry
- Beijing Normal University
- China
| | - Xiao-Di Ma
- College of Chemistry
- Beijing Normal University
- China
| | - Lei Wang
- College of Chemistry
- Beijing Normal University
- China
| | | |
Collapse
|
10
|
Duan XF. Iron catalyzed stereoselective alkene synthesis: a sustainable pathway. Chem Commun (Camb) 2020; 56:14937-14961. [DOI: 10.1039/d0cc04882h] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Replacing expensive or toxic transition metals with iron has become an important trend. This article summarises the recent progresses of a wide range of Fe-catalyzed reactions for accessing various stereodefined alkenes.
Collapse
|