1
|
McFarland MR, Kulathu Y. Emerging tools and methods to study cell signalling mediated by branched ubiquitin chains. Biochem Soc Trans 2025:BST20253015. [PMID: 40380883 DOI: 10.1042/bst20253015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2025] [Accepted: 04/30/2025] [Indexed: 05/19/2025]
Abstract
Branched ubiquitin chains are complex molecular structures in which two or more ubiquitin moieties are attached to distinct lysine residues of a single ubiquitin molecule within a polyubiquitin chain. These bifurcated architectures significantly expand the signalling capacity of the ubiquitin system. Although branched chains constitute a substantial fraction of cellular polyubiquitin, their biological functions largely remain enigmatic due to their complex nature and the associated technical challenges of studying them. Recent technological innovations have enabled the identification of key molecular players and revealed essential roles for branched chains in diverse cellular processes. In this review, we discuss the bespoke strategies that have driven these discoveries, as well as the technologies needed to advance this rapidly evolving field.
Collapse
Affiliation(s)
- Matthew R McFarland
- MRC Protein Phosphorylation and Ubiquitylation Unit, University of Dundee, Dundee, Scotland, U.K
| | - Yogesh Kulathu
- MRC Protein Phosphorylation and Ubiquitylation Unit, University of Dundee, Dundee, Scotland, U.K
| |
Collapse
|
2
|
Cai H, Wu X, Mao J, Tong Z, Yan D, Weng Y, Zheng Q. Sequential release of interacting proteins and Ub-modifying enzymes by disulfide heterotypic ubiquitin reagents. Bioorg Chem 2024; 145:107186. [PMID: 38387394 DOI: 10.1016/j.bioorg.2024.107186] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2023] [Revised: 01/31/2024] [Accepted: 02/06/2024] [Indexed: 02/24/2024]
Abstract
Heterotypic ubiquitin (Ub) chains have emerged as fundamental components in a wide range of cellular processes. The integrative identification of Ub-interacting proteins (readers) and Ub-modifying enzymes (writers and erasers) that selectively recognize and regulate heterotypic ubiquitination may provide crucial insights into these processes. In this study, we employed the bifunctional molecule-assisted (CAET) strategy to develop a type of disulfide bond-activated heterotypic Ub reagents, which allowed to enrich heterotypic Ub-interacting proteins and modifying enzymes simultaneously. The sequential release of readers which are non-covalently bound and writers or erasers which are covalently conjugated by using urea and reductant, respectively, combined with label-free quantitative (LFQ) MS indicated that these heterotypic Ub reagents would facilitate future investigations into functional roles played by heterotypic Ub chains.
Collapse
Affiliation(s)
- Hongyi Cai
- Institute of Translational Medicine, National Center for Translational Medicine (Shanghai), Shanghai Jiao Tong University, Shanghai 200240, China; Tsinghua-Peking Joint Center for Life Sciences, MOE Key Laboratory of Bioorganic Phosphorus Chemistry and Chemical Biology, Department of Chemistry, Tsinghua University, Beijing 100084, China
| | - Xiangwei Wu
- Tsinghua-Peking Joint Center for Life Sciences, MOE Key Laboratory of Bioorganic Phosphorus Chemistry and Chemical Biology, Department of Chemistry, Tsinghua University, Beijing 100084, China
| | - Junxiong Mao
- Institute of Translational Medicine, National Center for Translational Medicine (Shanghai), Shanghai Jiao Tong University, Shanghai 200240, China; Tsinghua-Peking Joint Center for Life Sciences, MOE Key Laboratory of Bioorganic Phosphorus Chemistry and Chemical Biology, Department of Chemistry, Tsinghua University, Beijing 100084, China
| | - Zebin Tong
- Institute of Translational Medicine, National Center for Translational Medicine (Shanghai), Shanghai Jiao Tong University, Shanghai 200240, China
| | - Dingfei Yan
- MOE Key Laboratory of Bioinformatics, School of Life Sciences, Tsinghua University, 100084 Beijing, China
| | - Yicheng Weng
- Institute of Translational Medicine, National Center for Translational Medicine (Shanghai), Shanghai Jiao Tong University, Shanghai 200240, China.
| | - Qingyun Zheng
- Institute of Translational Medicine, National Center for Translational Medicine (Shanghai), Shanghai Jiao Tong University, Shanghai 200240, China.
| |
Collapse
|
3
|
Mikami T, Majima S, Song H, Bode JW. Biocompatible Lysine Protecting Groups for the Chemoenzymatic Synthesis of K48/K63 Heterotypic and Branched Ubiquitin Chains. ACS CENTRAL SCIENCE 2023; 9:1633-1641. [PMID: 37637747 PMCID: PMC10450881 DOI: 10.1021/acscentsci.3c00389] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Indexed: 08/29/2023]
Abstract
The elucidation of emerging biological functions of heterotypic and branched ubiquitin (Ub) chains requires new strategies for their preparation with defined lengths and connectivity. While in vitro enzymatic assembly using expressed E1-activating and E2-conjugating enzymes can deliver homotypic chains, the synthesis of branched chains typically requires extensive mutations of lysines or other sequence modifications. The combination of K48- and K63-biased E2-conjugating enzymes and two new carbamate protecting groups-pyridoxal 5'-phosphate (PLP)-cleavable aminobutanamide carbamate (Abac group) and periodate-cleavable aminobutanol carbamate (Aboc group)-provides a strategy for the synthesis of heterotypic and branched Ub trimers, tetramers, and pentamers. The Abac- and Aboc-protected lysines are readily prepared and incorporated into synthetic ubiquitin monomers. As these masking groups contain a basic amine, they preserve the overall charge and properties of the Ub structure, facilitating folding and enzymatic conjugations. These protecting groups can be chemoselectively removed from folded Ub chains and monomers by buffered solutions of PLP or NaIO4. Through the incorporation of a cleavable C-terminal His-tag on the Ub acceptor, the entire process of chain building, iterative Abac deprotections, and global Aboc cleavage can be conducted on a resin support, obviating the need for handling and purification of the intermediate oligomers. Simple modulation of the Ub monomers affords various K48/K63 branched chains, including tetramers and pentamers not previously accessible by synthetic or biochemical methods.
Collapse
Affiliation(s)
- Toshiki Mikami
- Laboratory
for Organic Chemistry, Department of Chemistry and Applied Biosciences, ETH Zürich, Vladimir-Prelog-Weg 3, CH-8093 Zürich, Switzerland
| | - Sohei Majima
- Laboratory
for Organic Chemistry, Department of Chemistry and Applied Biosciences, ETH Zürich, Vladimir-Prelog-Weg 3, CH-8093 Zürich, Switzerland
| | - Haewon Song
- Laboratory
for Organic Chemistry, Department of Chemistry and Applied Biosciences, ETH Zürich, Vladimir-Prelog-Weg 3, CH-8093 Zürich, Switzerland
| | - Jeffrey W. Bode
- Laboratory
for Organic Chemistry, Department of Chemistry and Applied Biosciences, ETH Zürich, Vladimir-Prelog-Weg 3, CH-8093 Zürich, Switzerland
| |
Collapse
|
4
|
Paudel P, Banos CM, Liu Y, Zhuang Z. Triubiquitin Probes for Identification of Reader and Eraser Proteins of Branched Polyubiquitin Chains. ACS Chem Biol 2023; 18:837-847. [PMID: 36972492 PMCID: PMC10894068 DOI: 10.1021/acschembio.2c00898] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/29/2023]
Abstract
The important roles played by branched polyubiquitin chains were recently uncovered in proteasomal protein degradation, mitotic regulation, and NF-κB signaling. With the new realization of a wide presence of branched ubiquitin chains in mammalian cells, there is an urgent need of identifying the reader and eraser proteins of the various branched ubiquitin chains. In this work, we report the generation of noncleavable branched triubiquitin probes with combinations of K11-, K48-, and K63-linkages. Through a pulldown approach using the branched triUb probes, we identified human proteins that recognize branched triubiquitin structures including ubiquitin-binding proteins and deubiquitinases (DUBs). Proteomics analysis of the identified proteins enriched by the branched triubiquitin probes points to possible roles of branched ubiquitin chains in cellular processes including DNA damage response, autophagy, and receptor endocytosis. In vitro characterization of several identified UIM-containing proteins demonstrated their binding to branch triubiquitin chains with moderate to high affinities. Availability of this new class of branched triubiquitin probes will enable future investigation into the roles of branched polyubiquitin chains through identification of specific reader and eraser proteins, and the modes of branched ubiquitin chain recognition and processing using biochemical and biophysical methods.
Collapse
Affiliation(s)
| | | | - Yujue Liu
- Department of Chemistry and Biochemistry, University of Delaware, 214A Drake Hall, Newark, Delaware, USA, 19716
| | - Zhihao Zhuang
- Department of Chemistry and Biochemistry, University of Delaware, 214A Drake Hall, Newark, Delaware, USA, 19716
| |
Collapse
|
5
|
van Tol BDM, van Doodewaerd BR, Lageveen-Kammeijer GSM, Jansen BC, Talavera Ormeño CMP, Hekking PJM, Sapmaz A, Kim RQ, Moutsiopoulou A, Komander D, Wuhrer M, van der Heden van Noort GJ, Ovaa H, Geurink PP. Neutron-encoded diubiquitins to profile linkage selectivity of deubiquitinating enzymes. Nat Commun 2023; 14:1661. [PMID: 36966155 PMCID: PMC10039891 DOI: 10.1038/s41467-023-37363-6] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2022] [Accepted: 03/13/2023] [Indexed: 03/27/2023] Open
Abstract
Deubiquitinating enzymes are key regulators in the ubiquitin system and an emerging class of drug targets. These proteases disassemble polyubiquitin chains and many deubiquitinases show selectivity for specific polyubiquitin linkages. However, most biochemical insights originate from studies of single diubiquitin linkages in isolation, whereas in cells all linkages coexist. To better mimick this diubiquitin substrate competition, we develop a multiplexed mass spectrometry-based deubiquitinase assay that can probe all ubiquitin linkage types simultaneously to quantify deubiquitinase activity in the presence of all potential diubiquitin substrates. For this, all eight native diubiquitins are generated and each linkage type is designed with a distinct molecular weight by incorporating neutron-encoded amino acids. Overall, 22 deubiquitinases are profiled, providing a three-dimensional overview of deubiquitinase linkage selectivity over time and enzyme concentration.
Collapse
Affiliation(s)
- Bianca D M van Tol
- Department of Cell and Chemical Biology, Chemical Biology and Drug Discovery, Leiden University Medical Center, 2333 ZC, Leiden, The Netherlands
| | - Bjorn R van Doodewaerd
- Department of Cell and Chemical Biology, Chemical Biology and Drug Discovery, Leiden University Medical Center, 2333 ZC, Leiden, The Netherlands
| | | | - Bas C Jansen
- Center for Proteomics and Metabolomics, Leiden University Medical Center, 2333 ZA, Leiden, The Netherlands
| | - Cami M P Talavera Ormeño
- Department of Cell and Chemical Biology, Chemical Biology and Drug Discovery, Leiden University Medical Center, 2333 ZC, Leiden, The Netherlands
| | - Paul J M Hekking
- Department of Cell and Chemical Biology, Chemical Biology and Drug Discovery, Leiden University Medical Center, 2333 ZC, Leiden, The Netherlands
| | - Aysegul Sapmaz
- Department of Cell and Chemical Biology, Chemical Biology and Drug Discovery, Leiden University Medical Center, 2333 ZC, Leiden, The Netherlands
| | - Robbert Q Kim
- Department of Cell and Chemical Biology, Chemical Biology and Drug Discovery, Leiden University Medical Center, 2333 ZC, Leiden, The Netherlands
| | - Angeliki Moutsiopoulou
- Department of Cell and Chemical Biology, Chemical Biology and Drug Discovery, Leiden University Medical Center, 2333 ZC, Leiden, The Netherlands
| | - David Komander
- Ubiquitin Signalling Division, Walter and Eliza Hall Institute of Medical Research, 1G Royal Parade, Parkville, 3052, Melbourne, Victoria, Australia
| | - Manfred Wuhrer
- Center for Proteomics and Metabolomics, Leiden University Medical Center, 2333 ZA, Leiden, The Netherlands
| | - Gerbrand J van der Heden van Noort
- Department of Cell and Chemical Biology, Chemical Biology and Drug Discovery, Leiden University Medical Center, 2333 ZC, Leiden, The Netherlands
| | - Huib Ovaa
- Department of Cell and Chemical Biology, Chemical Biology and Drug Discovery, Leiden University Medical Center, 2333 ZC, Leiden, The Netherlands
| | - Paul P Geurink
- Department of Cell and Chemical Biology, Chemical Biology and Drug Discovery, Leiden University Medical Center, 2333 ZC, Leiden, The Netherlands.
| |
Collapse
|
6
|
Hua X, Guo Y, Wang Y, Chu GC, Li P, Shi J. Acyl azide modification of the ubiquitin C-terminus enables DUB capture. Chem Commun (Camb) 2023; 59:1333-1336. [PMID: 36645155 DOI: 10.1039/d2cc06496k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Deubiquitinating enzyme (DUB) abnormalities are associated with many diseases. Previous attempts have been made to introduce various chemical groups such as alkynes, unsaturated olefins and alkyl halides to the C-terminus of ubiquitin (Ub) to capture the active-site cysteine residue in DUBs for structural and biochemical studies. Here, we find that a Ub C-terminal acyl azide can capture DUBs, thereby forming thioester bonds in buffers and cell lysates. This finding not only makes ubiquitin acyl azide a chemical probe for capturing DUBs, but also extends the utility of azide groups in biological applications.
Collapse
Affiliation(s)
- Xiao Hua
- Department of Chemistry, Center for BioAnalytical Chemistry, Hefei National Laboratory of Physical Science at Microscale, University of Science and Technology of China, Hefei 230026, China.
| | - Yanyan Guo
- Department of Chemistry, Center for BioAnalytical Chemistry, Hefei National Laboratory of Physical Science at Microscale, University of Science and Technology of China, Hefei 230026, China.
| | - Yu Wang
- Department of Chemistry, Center for BioAnalytical Chemistry, Hefei National Laboratory of Physical Science at Microscale, University of Science and Technology of China, Hefei 230026, China.
| | - Guo-Chao Chu
- Department of Chemistry, Tsinghua University, Beijing, 100084, China
| | - Pincheng Li
- School of Food and Biological Engineering, Engineering Research Center of Bio-process, Ministry of Education, Hefei University of Technology, Hefei, 230009, China
| | - Jing Shi
- Department of Chemistry, Center for BioAnalytical Chemistry, Hefei National Laboratory of Physical Science at Microscale, University of Science and Technology of China, Hefei 230026, China.
| |
Collapse
|
7
|
Waltho A, Sommer T. Getting to the Root of Branched Ubiquitin Chains: A Review of Current Methods and Functions. Methods Mol Biol 2023; 2602:19-38. [PMID: 36446964 DOI: 10.1007/978-1-0716-2859-1_2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Nearly 20 years since the first branched ubiquitin (Ub) chains were identified by mass spectrometry, our understanding of these chains and their function is still evolving. This is due to the limitations of classical Ub research techniques in identifying these chains and the vast complexity of potential branched chains. Considering only lysine or N-terminal methionine attachment sites, there are already 28 different possible branch points. Taking into account recently discovered ester-linked ubiquitination, branch points of more than two linkage types, and the higher-order chain structures within which branch points exist, the diversity of branched chains is nearly infinite. This review breaks down the complexity of these chains into their general functions, what we know so far about the different linkage combinations, branched chain-optimized methodologies, and the future perspectives of branched chain research.
Collapse
Affiliation(s)
- Anita Waltho
- Max-Delbrück-Center for Molecular Medicine in the Helmholtz Association, Berlin-Buch, Germany.
- Institute for Biology, Humboldt-Universität zu Berlin, Berlin, Germany.
| | - Thomas Sommer
- Max-Delbrück-Center for Molecular Medicine in the Helmholtz Association, Berlin-Buch, Germany.
- Institute for Biology, Humboldt-Universität zu Berlin, Berlin, Germany.
| |
Collapse
|
8
|
Wang Y, Chen J, Hua X, Meng X, Cai H, Wang R, Shi J, Deng H, Liu L, Li Y. Photocaging of Activity‐Based Ubiquitin Probes via a C‐Terminal Backbone Modification Strategy. Angew Chem Int Ed Engl 2022; 61:e202203792. [DOI: 10.1002/anie.202203792] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2022] [Indexed: 11/11/2022]
Affiliation(s)
- Yu Wang
- School of Food and Biological Engineering Engineering Research Center of Bio-process Ministry of Education Hefei University of Technology Hefei 230009 China
- Tsinghua-Peking Center for Life Sciences Ministry of Education Key Laboratory of Bioorganic Phosphorus Chemistry and Chemical Biology Department of Chemistry Tsinghua University Beijing 100084 China
- Department of Chemistry University of Science and Technology of China Hefei 230026 China
| | - Jingnan Chen
- School of Food and Biological Engineering Engineering Research Center of Bio-process Ministry of Education Hefei University of Technology Hefei 230009 China
| | - Xiao Hua
- Department of Chemistry University of Science and Technology of China Hefei 230026 China
| | - Xianbin Meng
- MOE Key Laboratory of Bioinformatics School of Life Sciences Tsinghua University Beijing 100084 China
| | - Hongyi Cai
- Tsinghua-Peking Center for Life Sciences Ministry of Education Key Laboratory of Bioorganic Phosphorus Chemistry and Chemical Biology Department of Chemistry Tsinghua University Beijing 100084 China
| | - Rongtian Wang
- School of Food and Biological Engineering Engineering Research Center of Bio-process Ministry of Education Hefei University of Technology Hefei 230009 China
| | - Jing Shi
- Department of Chemistry University of Science and Technology of China Hefei 230026 China
| | - Haiteng Deng
- MOE Key Laboratory of Bioinformatics School of Life Sciences Tsinghua University Beijing 100084 China
| | - Lei Liu
- Tsinghua-Peking Center for Life Sciences Ministry of Education Key Laboratory of Bioorganic Phosphorus Chemistry and Chemical Biology Department of Chemistry Tsinghua University Beijing 100084 China
| | - Yi‐Ming Li
- School of Food and Biological Engineering Engineering Research Center of Bio-process Ministry of Education Hefei University of Technology Hefei 230009 China
| |
Collapse
|
9
|
Wang Y, Chen J, Hua X, Meng X, Cai H, Wang R, Shi J, Deng H, Liu L, Li Y. Photocaging of Activity‐Based Ubiquitin Probes via a C‐Terminal Backbone Modification Strategy. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202203792] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Yu Wang
- School of Food and Biological Engineering Engineering Research Center of Bio-process Ministry of Education Hefei University of Technology Hefei 230009 China
- Tsinghua-Peking Center for Life Sciences Ministry of Education Key Laboratory of Bioorganic Phosphorus Chemistry and Chemical Biology Department of Chemistry Tsinghua University Beijing 100084 China
- Department of Chemistry University of Science and Technology of China Hefei 230026 China
| | - Jingnan Chen
- School of Food and Biological Engineering Engineering Research Center of Bio-process Ministry of Education Hefei University of Technology Hefei 230009 China
| | - Xiao Hua
- Department of Chemistry University of Science and Technology of China Hefei 230026 China
| | - Xianbin Meng
- MOE Key Laboratory of Bioinformatics School of Life Sciences Tsinghua University Beijing 100084 China
| | - Hongyi Cai
- Tsinghua-Peking Center for Life Sciences Ministry of Education Key Laboratory of Bioorganic Phosphorus Chemistry and Chemical Biology Department of Chemistry Tsinghua University Beijing 100084 China
| | - Rongtian Wang
- School of Food and Biological Engineering Engineering Research Center of Bio-process Ministry of Education Hefei University of Technology Hefei 230009 China
| | - Jing Shi
- Department of Chemistry University of Science and Technology of China Hefei 230026 China
| | - Haiteng Deng
- MOE Key Laboratory of Bioinformatics School of Life Sciences Tsinghua University Beijing 100084 China
| | - Lei Liu
- Tsinghua-Peking Center for Life Sciences Ministry of Education Key Laboratory of Bioorganic Phosphorus Chemistry and Chemical Biology Department of Chemistry Tsinghua University Beijing 100084 China
| | - Yi‐Ming Li
- School of Food and Biological Engineering Engineering Research Center of Bio-process Ministry of Education Hefei University of Technology Hefei 230009 China
| |
Collapse
|
10
|
Zhou H, Carpenter T, Fu X, Jin B, Ody B, Hassan MS, Jacobs SE, Cheung J, Nicholson EM, Turlington M, Zhao B, Lorenz S, Cropp TA, Yin J. Linkage-Specific Synthesis of Di-ubiquitin Probes Enabled by the Incorporation of Unnatural Amino Acid ThzK. Chembiochem 2022; 23:e202200133. [PMID: 35263494 PMCID: PMC9129888 DOI: 10.1002/cbic.202200133] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2022] [Indexed: 11/08/2022]
Abstract
Di-ubiquitin (diUB) conjugates of defined linkages are useful tools for probing the functions of UB ligases, UB-binding proteins and deubiquitinating enzymes (DUBs) in coding, decoding and editing the signals carried by the UB chains. Here we developed an efficient method for linkage-specific synthesis of diUB probes based on the incorporation of the unnatural amino acid (UAA) Nϵ -L-thiaprolyl-L-Lys (L-ThzK) into UB for ligation with another UB at a defined Lys position. The diUB formed by the UAA-mediated ligation reaction has a G76C mutation on the side of donor UB for conjugation with E2 and E3 enzymes or undergoing dethiolation to generate a covalent trap for DUBs. The development of UAA mutagenesis for diUB synthesis provides an easy route for preparing linkage-specific UB-based probes to decipher the biological signals mediated by protein ubiquitination.
Collapse
Affiliation(s)
- Han Zhou
- Department of Chemistry, Center for Diagnostics and Therapeutics, Georgia State University, Atlanta, GA 30303, USA
| | - Tomaya Carpenter
- Department of Chemistry, Center for Diagnostics and Therapeutics, Georgia State University, Atlanta, GA 30303, USA
| | - Xuan Fu
- Department of Chemistry, Center for Diagnostics and Therapeutics, Georgia State University, Atlanta, GA 30303, USA
| | - Bo Jin
- Department of Chemistry, Center for Diagnostics and Therapeutics, Georgia State University, Atlanta, GA 30303, USA
- Engineering Research Center of Cell and Therapeutic Antibody, Ministry of Education, and School of Pharmacy, Shanghai Jiao Tong University, Shanghai, China
| | - Britton Ody
- Department of Chemistry, Center for Diagnostics and Therapeutics, Georgia State University, Atlanta, GA 30303, USA
| | - Mohammad Sazid Hassan
- Department of Chemistry, Center for Diagnostics and Therapeutics, Georgia State University, Atlanta, GA 30303, USA
| | - Savannah E Jacobs
- Department of Chemistry, Center for Diagnostics and Therapeutics, Georgia State University, Atlanta, GA 30303, USA
| | - Jenny Cheung
- Department of Chemistry, Virginia Commonwealth University, Richmond, VA 23284, USA
| | - Eve M Nicholson
- Department of Chemistry, Virginia Commonwealth University, Richmond, VA 23284, USA
| | - Mark Turlington
- Department of Chemistry and Biochemistry, Berry College, Mount Berry, GA 30149, USA
| | - Bo Zhao
- Engineering Research Center of Cell and Therapeutic Antibody, Ministry of Education, and School of Pharmacy, Shanghai Jiao Tong University, Shanghai, China
| | - Sonja Lorenz
- Max Planck Institute for Multidisciplinary Sciences, 37077, Göttingen, Germany
| | - T Ashton Cropp
- Department of Chemistry, Virginia Commonwealth University, Richmond, VA 23284, USA
- Institute for Structural Biology, Drug Discovery and Development, Virginia Commonwealth University, Richmond, VA 23219, USA
| | - Jun Yin
- Department of Chemistry, Center for Diagnostics and Therapeutics, Georgia State University, Atlanta, GA 30303, USA
| |
Collapse
|
11
|
Burslem GM. The chemical biology of ubiquitin. Biochim Biophys Acta Gen Subj 2022; 1866:130079. [PMID: 34971772 PMCID: PMC10038182 DOI: 10.1016/j.bbagen.2021.130079] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2021] [Revised: 12/13/2021] [Accepted: 12/15/2021] [Indexed: 10/19/2022]
Abstract
This mini-review will cover the various chemical biology approaches employed to prepare and modulate ubiquitin chains and the ubiquitin-proteasome system. Emphasis will be given to the biochemistry and chemical biology of poly-ubiquitin chain preparation as a tool to elucidate its roles in biological systems as well as the hijacking of the ubiquitin proteasome system using heterobifunctional compounds to induce intracellular ubiquitination.
Collapse
Affiliation(s)
- George M Burslem
- Department of Biochemistry and Biophysics, Department of Cancer Biology and Epigenetics Institute, Perelman School of Medicine, University of Pennsylvania, PA 19104, USA.
| |
Collapse
|
12
|
McKenna SM, Fay EM, McGouran JF. Flipping the Switch: Innovations in Inducible Probes for Protein Profiling. ACS Chem Biol 2021; 16:2719-2730. [PMID: 34779621 PMCID: PMC8689647 DOI: 10.1021/acschembio.1c00572] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
![]()
Over the past two
decades, activity-based probes have enabled a
range of discoveries, including the characterization of new enzymes
and drug targets. However, their suitability in some labeling experiments
can be limited by nonspecific reactivity, poor membrane permeability,
or high toxicity. One method for overcoming these issues is through
the development of “inducible” activity-based probes.
These probes are added to samples in an unreactive state and require in situ transformation to their active form before labeling
can occur. In this Review, we discuss a variety of approaches to inducible
activity-based probe design, different means of probe activation,
and the advancements that have resulted from these applications. Additionally,
we highlight recent developments which may provide opportunities for
future inducible activity-based probe innovations.
Collapse
Affiliation(s)
- Sean M. McKenna
- School of Chemistry and Trinity Biomedical Sciences Institute, Trinity College Dublin, 152-160 Pearse St, Dublin 2, Ireland
- Synthesis and Solid State Pharmaceutical Centre (SSPC), Bernal Institute, Limerick V94 T9PX, Ireland
| | - Ellen M. Fay
- School of Chemistry and Trinity Biomedical Sciences Institute, Trinity College Dublin, 152-160 Pearse St, Dublin 2, Ireland
| | - Joanna F. McGouran
- School of Chemistry and Trinity Biomedical Sciences Institute, Trinity College Dublin, 152-160 Pearse St, Dublin 2, Ireland
- Synthesis and Solid State Pharmaceutical Centre (SSPC), Bernal Institute, Limerick V94 T9PX, Ireland
| |
Collapse
|
13
|
Hua X, Chu GC, Li YM. The Ubiquitin Enigma: Progress in the Detection and Chemical Synthesis of Branched Ubiquitin Chains. Chembiochem 2020; 21:3313-3318. [PMID: 32621561 DOI: 10.1002/cbic.202000295] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2020] [Revised: 07/01/2020] [Indexed: 12/11/2022]
Abstract
Ubiquitin chains with distinct topologies play essential roles in eukaryotic cells. Recently, it was discovered that multiple ubiquitin units can be ligated to more than one lysine residue in the same ubiquitin to form diverse branched ubiquitin chains. Although there is increasing evidence implicating these branched chains in a plethora of biological functions, few mechanistic details have been elucidated. This concept article introduces the function, detection and chemical synthesis of branched ubiquitin chains; and offers some future perspective for this exciting new field.
Collapse
Affiliation(s)
- Xiao Hua
- School of Food and Biological Engineering, Key Laboratory of Metabolism and Regulation for Major Diseases, Anhui Higher Education Institutes, Hefei University of Technology, Hefei, Anhui, 230009, China.,Department of Chemistry, University of Science and Technology of China, Hefei, 230026, China
| | - Guo-Chao Chu
- Department of Chemistry, University of Science and Technology of China, Hefei, 230026, China
| | - Yi-Ming Li
- School of Food and Biological Engineering, Key Laboratory of Metabolism and Regulation for Major Diseases, Anhui Higher Education Institutes, Hefei University of Technology, Hefei, Anhui, 230009, China.,Ministry of Education Key Laboratory of Bioorganic Phosphorus Chemistry and Chemical Biology, Tsinghua University, Beijing, 100084, China
| |
Collapse
|