1
|
Bariwal J, Van der Eycken E. Harnessing Visible/UV Light for the Activation and/or Functionalization of C-H Bonds: Metal- and Photocatalyst-Free Approach. CHEM REC 2025; 25:e202400227. [PMID: 40072335 DOI: 10.1002/tcr.202400227] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2024] [Revised: 02/13/2025] [Indexed: 04/13/2025]
Abstract
Photosynthesis in plants has inspired photochemical reactions in organic chemistry. Synthetic organic chemists always seek cost-effective, operationally simple, averting the use of toxic and difficult-to-remove metallic catalysts, atom economical, and high product purity in organic reactions. In the last few decades, the use of light as a catalyst in organic reactions has increased exponentially as literature has exploded with examples, particularly by using toxic and expensive metal complexes, photosensitizers like organic dyes, hypervalent iodine, or by using inorganic semiconductors. In this report, we have selected a few interesting examples of photochemical reactions performed without using any metallic catalyst or photosensitizers. These examples use the inherent potential of reactants to utilize light energy to initiate chemical reactions. Our main emphasis is to highlight the structural features in the reactants that can absorb light energy or form an electron donor-acceptor (EDA) complex during the reaction to initiate the photochemical reaction. Considering the high degree of variability in the photochemical reactions, the utmost care has been taken to present the most accurate reaction conditions. A short introductory section on photochemical reactions will act as an anchor that will revolve around the examples discussed and explain the underlying principle of the photochemical reaction mechanism.
Collapse
Affiliation(s)
- Jitender Bariwal
- University of Leuven, KU Leuven), LOMAC Celestijnenlaan 200F, B-3001, Leuven, Belgium
| | - Erik Van der Eycken
- University of Leuven, KU Leuven), LOMAC Celestijnenlaan 200F, B-3001, Leuven, Belgium
- Organic Chemistry Department, Peoples' Friendship University of Russia, RUDN University), 6 Miklukho-Maklaya Street, Moscow, 117198, Russia
| |
Collapse
|
2
|
Gao J, Fu X, Yang K, Liu Z. Recent Advances in Visible Light-Induced C-H Functionalization of Imidazo[1,2-a]pyridines. Molecules 2025; 30:607. [PMID: 39942710 PMCID: PMC11820825 DOI: 10.3390/molecules30030607] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2025] [Revised: 01/27/2025] [Accepted: 01/27/2025] [Indexed: 02/16/2025] Open
Abstract
The imidazo[1,2-a]pyridine skeleton is widely present in many natural products and pharmaceutical agents. Due to its impressive and significant biological activities, such as analgesic, anti-tumor, antiosteoporosis, and anxiolytic properties, the derivatization of imidazo[1,2-a]pyridine skeleton has attracted widespread attention from chemists. In recent years, significant progress has been made in the derivatization of imidazo[1,2-a]pyridines through direct C-H functionalization, especially through visible light induction. This review highlights recent advances in visible light-induced C-H functionalization of imidazo[1,2-a]pyridines during the past ten years, and some reaction mechanisms are also discussed.
Collapse
Affiliation(s)
| | | | | | - Zhaowen Liu
- Jiangxi Province Key Laboratory of Pharmacology of Traditional Chinese Medicine, College of Pharmacy, Gannan Medical University, Ganzhou 341000, China; (J.G.); (X.F.); (K.Y.)
| |
Collapse
|
3
|
Qu CH, Li ST, Liu JB, Chen ZZ, Tang DY, Li JH, Song GT. Site-Selective Access to Functionalized Pyrroloquinoxalinones via H-Atom Transfer from N═C sp2-H Bonds of Quinoxalinones. Org Lett 2024; 26:9244-9250. [PMID: 39440848 DOI: 10.1021/acs.orglett.4c03353] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2024]
Abstract
Site-selective hydrogen atom transfer (HAT) from the N═Csp2-H bonds of quinoxaline-2(1H)-ones is a highly attractive but underdeveloped domain. Reported herein is a highly selective, practical, and economically efficient approach for facile assembly of pyrroloquinoxalinones by synergistic photocatalysis and HAT catalysis. The reaction proceeds through bromine radical-mediated HAT of quinoxalinones and imine radical addition to α-cyano-α,β-unsaturated ketones that establishes a cross-coupling/annulation cascade process, resulting in the synthesis of a series of functionalized pyrroloquinoxalinones. This protocol does not require transition metals or excess oxidants and uses easy-to-synthesize starting materials with excellent scalability and broad substrate scope. The establishment of N═Csp2 radical chemistry illustrates great potential for the synthesis of imine-containing molecules that are not possible with some traditional methods.
Collapse
Affiliation(s)
- Chuan-Hua Qu
- International Academy of Targeted Therapeutics and Innovation, Chongqing University of Arts and Sciences, 319 Honghe Avenue, Yongchuan, Chongqing 402160, China
| | - Shu-Ting Li
- International Academy of Targeted Therapeutics and Innovation, Chongqing University of Arts and Sciences, 319 Honghe Avenue, Yongchuan, Chongqing 402160, China
| | - Jian-Bo Liu
- International Academy of Targeted Therapeutics and Innovation, Chongqing University of Arts and Sciences, 319 Honghe Avenue, Yongchuan, Chongqing 402160, China
| | - Zhong-Zhu Chen
- International Academy of Targeted Therapeutics and Innovation, Chongqing University of Arts and Sciences, 319 Honghe Avenue, Yongchuan, Chongqing 402160, China
| | - Dian-Yong Tang
- International Academy of Targeted Therapeutics and Innovation, Chongqing University of Arts and Sciences, 319 Honghe Avenue, Yongchuan, Chongqing 402160, China
| | - Jia-Hong Li
- School of Life Science and Engineering, Southwest Jiaotong University, Chengdu 610041, China
| | - Gui-Ting Song
- International Academy of Targeted Therapeutics and Innovation, Chongqing University of Arts and Sciences, 319 Honghe Avenue, Yongchuan, Chongqing 402160, China
| |
Collapse
|
4
|
Yu QH, Luo QY, Ye YH, Wu YF, Wu XP, Zhang ER, Zhuo XY, Du F, Pan B, Liang W. Modular Synthesis of gem-Difluorotetrahydrocarbazolone Scaffolds via Copper-Catalyzed Cascade Reaction of Bromodifluoroacetyl Indoles and Olefins. Org Lett 2024; 26:9085-9090. [PMID: 39413409 DOI: 10.1021/acs.orglett.4c03386] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2024]
Abstract
A novel and efficient modular synthesis of gem-difluorotetrahydrocarbazolone scaffolds via copper-catalyzed radical cascade cyclization of bromodifluoroacetyl indoles and olefins has been reported. This operationally simple protocol provides straightforward and practical access to a series of privileged gem-difluorotetrahydrocarbazolone scaffolds from readily available starting materials, with the feature of broad functional group tolerance and mild reaction conditions. Moreover, the method could be used for the late-stage functionalization of bioactive molecules, which opens up the possibility for practical applications.
Collapse
Affiliation(s)
- Qian-Hui Yu
- College of Pharmacy, Chongqing Medical University, Chongqing, 400016, China
| | - Qing-Yu Luo
- College of Pharmacy, Chongqing Medical University, Chongqing, 400016, China
| | - Yu-Hang Ye
- College of Pharmacy, Chongqing Medical University, Chongqing, 400016, China
| | - Yang-Fan Wu
- College of Pharmacy, Chongqing Medical University, Chongqing, 400016, China
| | - Xie-Ping Wu
- College of Pharmacy, Chongqing Medical University, Chongqing, 400016, China
| | - En-Rui Zhang
- College of Pharmacy, Chongqing Medical University, Chongqing, 400016, China
| | - Xi-Yuan Zhuo
- College of Pharmacy, Chongqing Medical University, Chongqing, 400016, China
| | - Fei Du
- College of Pharmacy, Chongqing Medical University, Chongqing, 400016, China
| | - Bin Pan
- College of Pharmacy, Third Military Medical University, Shapingba, Chongqing, 400038, China
| | - Wu Liang
- College of Pharmacy, Chongqing Medical University, Chongqing, 400016, China
| |
Collapse
|
5
|
Wu Q, Ren M, Zhou Z, Xu Y, Chen Y. Photoinduced Metal-Free Radical Addition/Cyclization of 2-Cyanoaryl Acrylamides to Prepare gem-Difluorinated Naphthyridinone Scaffolds. J Org Chem 2024; 89:10831-10843. [PMID: 38991973 DOI: 10.1021/acs.joc.4c01112] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/13/2024]
Abstract
Direct construction of gem-difluorinated heterocycles represents a long-standing challenge in organic chemistry. Herein, we developed a transition-metal-free photocatalytic radical addition/cyclization of BrCF2COR with 2-cyanoaryl acrylamides to give gem-difluorinated naphthyridinone scaffolds in moderate to good yields. Furthermore, some natural products were found to be suitable in the reaction system. The easily available substrates, mild reaction conditions, simple operation, and wide functionality tolerance show practical and environmental advantages in this method.
Collapse
Affiliation(s)
- Qiaoyan Wu
- Guangxi Engineering Research Center for Pharmaceutical Molecular Screening and Druggability Evaluation, College of Pharmacy, Guangxi Key Laboratory of Diabetic Systems Medicine, Guilin Medical University, Guilin 541004, People's Republic of China
| | - Meilin Ren
- Guangxi Engineering Research Center for Pharmaceutical Molecular Screening and Druggability Evaluation, College of Pharmacy, Guangxi Key Laboratory of Diabetic Systems Medicine, Guilin Medical University, Guilin 541004, People's Republic of China
| | - Zhike Zhou
- Guangxi Engineering Research Center for Pharmaceutical Molecular Screening and Druggability Evaluation, College of Pharmacy, Guangxi Key Laboratory of Diabetic Systems Medicine, Guilin Medical University, Guilin 541004, People's Republic of China
| | - Yanli Xu
- Guangxi Engineering Research Center for Pharmaceutical Molecular Screening and Druggability Evaluation, College of Pharmacy, Guangxi Key Laboratory of Diabetic Systems Medicine, Guilin Medical University, Guilin 541004, People's Republic of China
| | - Yanyan Chen
- Guangxi Engineering Research Center for Pharmaceutical Molecular Screening and Druggability Evaluation, College of Pharmacy, Guangxi Key Laboratory of Diabetic Systems Medicine, Guilin Medical University, Guilin 541004, People's Republic of China
| |
Collapse
|
6
|
Wang WF, Liu T, Cheng YL, Song QH. Visible-light-promoted difluoroamidated oxindole synthesis via electron donor-acceptor complexes. Org Biomol Chem 2024; 22:805-810. [PMID: 38170477 DOI: 10.1039/d3ob01885g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2024]
Abstract
A method involving a metal-free visible-light-promoted synthesis was developed for the construction of difluoroalkylated oxindoles with N-phenylacrylamides and bromodifluoroacetamides as starting materials in the presence of N,N,N',N'-tetramethylethylenediamine (TMEDA). Twenty-four examples of the photochemical reaction were successfully performed, with good yields (44-99%) and excellent substrate adaptability. Mechanistic studies showed that the visible-light-promoted reaction involved a radical addition to N-phenylacrylamide, intramolecular cyclization, dehydrogenation, and rearomatization. The difluoroacetamide radical was produced as a result of electron transfer to bromodifluoroacetamides from the electron donor TMEDA in their electron-donor-acceptor (EDA) complexes under visible light irradiation. This protocol is a promising photochemical method due to its advantages of mild conditions, simple operation, wide substrate scope and high yields. And the obtained products may have great potential in the field of medicine.
Collapse
Affiliation(s)
- Wei-Feng Wang
- Department of Chemistry, University of Science and Technology of China, Hefei, 230026, P. R. China.
| | - Tao Liu
- Department of Chemistry, University of Science and Technology of China, Hefei, 230026, P. R. China.
| | - Yan-Liang Cheng
- Department of Chemistry, University of Science and Technology of China, Hefei, 230026, P. R. China.
| | - Qin-Hua Song
- Department of Chemistry, University of Science and Technology of China, Hefei, 230026, P. R. China.
| |
Collapse
|
7
|
Zhu XL, Wang H, Zhai CK, He W. Photo-induced C(sp 2)-H difluoroalkylation of anilines. Org Biomol Chem 2024; 22:720-724. [PMID: 38165818 DOI: 10.1039/d3ob01757e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2024]
Abstract
A photoinduced protocol for the direct difluoroalkylation of C(sp2)-H bonds in anilines under catalyst-free reaction conditions is presented. This transformation is characterized by a wide substrate scope, mild reaction conditions, and operational simplicity, and could serve as an alternative tool to established methods for the synthesis of difluoroalkylated anilines. Mechanistic studies suggest the formation of an electron-donor-acceptor (EDA) complex between anilines and difluoroalkyl bromides in this reaction.
Collapse
Affiliation(s)
- Xing-Li Zhu
- Department of Chemistry, School of Pharmacy, Air Force Medical University, Xi'an 710032, P.R.China.
| | - Hua Wang
- Department of Chemistry, School of Pharmacy, Air Force Medical University, Xi'an 710032, P.R.China.
| | - Chen-Kai Zhai
- Department of Chemistry, School of Pharmacy, Air Force Medical University, Xi'an 710032, P.R.China.
| | - Wei He
- Department of Chemistry, School of Pharmacy, Air Force Medical University, Xi'an 710032, P.R.China.
| |
Collapse
|
8
|
Tali JA, Kumar G, Sharma BK, Rasool Y, Sharma Y, Shankar R. Synthesis and site selective C-H functionalization of imidazo-[1,2- a]pyridines. Org Biomol Chem 2023; 21:7267-7289. [PMID: 37655687 DOI: 10.1039/d3ob00849e] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/02/2023]
Abstract
Imidazo[1,2-a]pyridine has attracted much interest in drug development because of its potent medicinal properties, therefore the discovery of novel methods for its synthesis and functionalization continues to be an exciting area of research. Although transition metal catalysis has fuelled the most significant developments, extremely beneficial metal-free approaches have also been identified. Even though pertinent reviews focused on imidazo[1,2-a]pyridine synthesis, properties (physicochemical and medicinal), and functionalization at the C3 position have been published, none of these reviews has focused on the outcomes obtained in the field of global ring functionalization. We wish here to describe a brief synthesis and an overview of all the functionalization reactions at each carbon atom, viz, C2, C3, C5, C6, C7 and C8 of this scaffold, divided into sections based on site-selectivity and the type of functionalization methods used.
Collapse
Affiliation(s)
- Javeed Ahmad Tali
- Natural Product and Medicinal Chemistry Division (NPMC), CSIR-Indian Institute of Integrative Medicine, Jammu-180001, India.
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad-201002, India
| | - Gulshan Kumar
- Natural Product and Medicinal Chemistry Division (NPMC), CSIR-Indian Institute of Integrative Medicine, Jammu-180001, India.
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad-201002, India
| | - Bhupesh Kumar Sharma
- Natural Product and Medicinal Chemistry Division (NPMC), CSIR-Indian Institute of Integrative Medicine, Jammu-180001, India.
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad-201002, India
| | - Younis Rasool
- Natural Product and Medicinal Chemistry Division (NPMC), CSIR-Indian Institute of Integrative Medicine, Jammu-180001, India.
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad-201002, India
| | - Yashika Sharma
- Natural Product and Medicinal Chemistry Division (NPMC), CSIR-Indian Institute of Integrative Medicine, Jammu-180001, India.
| | - Ravi Shankar
- Natural Product and Medicinal Chemistry Division (NPMC), CSIR-Indian Institute of Integrative Medicine, Jammu-180001, India.
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad-201002, India
| |
Collapse
|
9
|
Tran C, Hamze A. Recent Developments in the Photochemical Synthesis of Functionalized Imidazopyridines. Molecules 2022; 27:molecules27113461. [PMID: 35684399 PMCID: PMC9182178 DOI: 10.3390/molecules27113461] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2022] [Revised: 05/20/2022] [Accepted: 05/25/2022] [Indexed: 12/04/2022] Open
Abstract
Imidazopyridines constitute one of the most important scaffolds in medicinal chemistry, as their skeleton could be found in a myriad of biologically active molecules. Although numerous strategies were elaborated for imidazopyridine preparation in the 2010s, novel eco-compatible synthetic approaches have emerged, conscious of climate change concerns. In this framework, photochemical methods have been promoted to conceive this heterocyclic motif over the last decade. This review covers the recently published works on synthesizing highly functionalized imidazopyridines by light induction.
Collapse
|
10
|
Biallas P, Yamazaki K, Dixon DJ. Difluoroalkylation of Tertiary Amides and Lactams by an Iridium-Catalyzed Reductive Reformatsky Reaction. Org Lett 2022; 24:2002-2007. [PMID: 35258311 PMCID: PMC9082613 DOI: 10.1021/acs.orglett.2c00438] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2022] [Indexed: 12/16/2022]
Abstract
An iridium-catalyzed, reductive alkylation of abundant tertiary lactams and amides using 1-2 mol % of Vaska's complex (IrCl(CO)(PPh3)2), tetramethyldisiloxane (TMDS), and difluoro-Reformatsky reagents (BrZnCF2R) for the general synthesis of medicinally relevant α-difluoroalkylated tertiary amines is described. A broad scope (46 examples), including N-aryl- and N-heteroaryl-substituted lactams, demonstrated an excellent functional group tolerance. Furthermore, late-stage drug functionalizations, a gram-scale synthesis, and common downstream transformations proved the potential synthetic relevance of this new methodology.
Collapse
Affiliation(s)
- Phillip Biallas
- Chemistry Research Laboratory, Department
of Chemistry, University of Oxford, 12 Mansfield Road, Oxford OX1 2JD, U.K.
| | - Ken Yamazaki
- Chemistry Research Laboratory, Department
of Chemistry, University of Oxford, 12 Mansfield Road, Oxford OX1 2JD, U.K.
| | - Darren J. Dixon
- Chemistry Research Laboratory, Department
of Chemistry, University of Oxford, 12 Mansfield Road, Oxford OX1 2JD, U.K.
| |
Collapse
|
11
|
Cheng H, Luo Y, Lam TL, Liu Y, Che CM. Visible-light-induced radical cascade reaction to prepare oxindoles via alkyl radical addition to N-arylacryl amides. Org Chem Front 2022. [DOI: 10.1039/d2qo01140a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A photochemical approach towards oxindoles with C3 quaternary centers by the radical cascade reaction of α,β-unsaturated N-arylacryl amides with alkyl bromides or iodides upon visible light irradiation under mild reaction conditions was developed.
Collapse
Affiliation(s)
- Hanchao Cheng
- Department of Chemistry, Southern University of Science and Technology, Shenzhen 518055, Guangdong, P. R. China
| | - Yunfeng Luo
- Department of Chemistry, Southern University of Science and Technology, Shenzhen 518055, Guangdong, P. R. China
| | - Tsz-Lung Lam
- State Key Laboratory of Synthetic Chemistry, Department of Chemistry, The University of Hong Kong, Pokfulam Road, Hong Kong, P. R. China
| | - Yungen Liu
- Department of Chemistry, Southern University of Science and Technology, Shenzhen 518055, Guangdong, P. R. China
| | - Chi-Ming Che
- Department of Chemistry, Southern University of Science and Technology, Shenzhen 518055, Guangdong, P. R. China
- State Key Laboratory of Synthetic Chemistry, Department of Chemistry, The University of Hong Kong, Pokfulam Road, Hong Kong, P. R. China
- HKU Shenzhen Institute of Research and Innovation, Shenzhen, Guangdong 518057, P. R. China
- Laboratory for Synthetic Chemistry and Chemical Biology Limited, Units 1503-1511, 15/F., Building 17W, Hong Kong Science Park, New Territories, Hong Kong, China
| |
Collapse
|
12
|
Qu CH, Huang R, Liu Y, Liu T, Song GT. Bromine-radical-induced C sp2–H difluoroalkylation of quinoxalinones and hydrazones through visible-light-promoted C sp3–Br bond homolysis. Org Chem Front 2022. [DOI: 10.1039/d2qo00710j] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Bromine radicals derived from photo-induced Csp3–Br bond homolysis can mediate H abstraction/imine radical formation from quinoxalinones and hydrazones, which in turn quench the in situ-generated difluoroalkyl radicals to furnish the products.
Collapse
Affiliation(s)
- Chuan-Hua Qu
- College of Pharmacy, National & Local Joint Engineering Research Center of Targeted and Innovative Therapeutics, Chongqing Key Laboratory of Kinase Modulators as Innovative Medicine, Chongqing University of Arts and Sciences, Chongqing 402160, China
| | - Run Huang
- College of Pharmacy, National & Local Joint Engineering Research Center of Targeted and Innovative Therapeutics, Chongqing Key Laboratory of Kinase Modulators as Innovative Medicine, Chongqing University of Arts and Sciences, Chongqing 402160, China
| | - Yuan Liu
- College of Pharmacy, National & Local Joint Engineering Research Center of Targeted and Innovative Therapeutics, Chongqing Key Laboratory of Kinase Modulators as Innovative Medicine, Chongqing University of Arts and Sciences, Chongqing 402160, China
| | - Tong Liu
- College of Pharmacy, National & Local Joint Engineering Research Center of Targeted and Innovative Therapeutics, Chongqing Key Laboratory of Kinase Modulators as Innovative Medicine, Chongqing University of Arts and Sciences, Chongqing 402160, China
| | - Gui-Ting Song
- College of Pharmacy, National & Local Joint Engineering Research Center of Targeted and Innovative Therapeutics, Chongqing Key Laboratory of Kinase Modulators as Innovative Medicine, Chongqing University of Arts and Sciences, Chongqing 402160, China
| |
Collapse
|
13
|
Coutard N, Goldberg JM, Valle HU, Cao Y, Jia X, Jeffrey PD, Gunnoe TB, Groves JT. Aerobic Partial Oxidation of Alkanes Using Photodriven Iron Catalysis. Inorg Chem 2021; 61:759-766. [PMID: 34962799 DOI: 10.1021/acs.inorgchem.1c03086] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Photodriven oxidations of alkanes in trifluoroacetic acid using commercial and synthesized Fe(III) sources as catalyst precursors and dioxygen (O2) as the terminal oxidant are reported. The reactions produce alkyl esters and occur at ambient temperature in the presence of air, and catalytic turnover is observed for the oxidation of methane in a pure O2 atmosphere. Under optimized conditions, approximately 17% conversion of methane to methyl trifluoroacetate at more than 50% selectivity is observed. It is demonstrated that methyl trifluoroacetate is stable under catalytic conditions, and thus overoxidized products are not formed through secondary oxidation of methyl trifluoroacetate.
Collapse
Affiliation(s)
- Nathan Coutard
- Department of Chemistry, University of Virginia, Charlottesville, Virginia 22904, United States
| | - Jonathan M Goldberg
- Department of Chemistry, Princeton University, Princeton, New Jersey 08544, United States
| | - Henry U Valle
- Department of Chemistry, Princeton University, Princeton, New Jersey 08544, United States
| | - Yuan Cao
- Department of Chemistry, Princeton University, Princeton, New Jersey 08544, United States
| | - Xiaofan Jia
- Department of Chemistry, University of Virginia, Charlottesville, Virginia 22904, United States
| | - Philip D Jeffrey
- Department of Molecular Biology, Princeton University, Princeton, New Jersey 08544, United States
| | - T Brent Gunnoe
- Department of Chemistry, University of Virginia, Charlottesville, Virginia 22904, United States
| | - John T Groves
- Department of Chemistry, Princeton University, Princeton, New Jersey 08544, United States
| |
Collapse
|
14
|
Xie ZZ, Zheng Y, Tang K, Guan JP, Yuan CP, Xiao JA, Xiang HY, Chen K, Chen XQ, Yang H. Visible-Light-Promoted Hydroxydifluoroalkylation of Alkenes Enabled by Electron Donor-Acceptor Complex. Org Lett 2021; 23:9474-9479. [PMID: 34846152 DOI: 10.1021/acs.orglett.1c03655] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
A catalyst-free strategy for regioselective hydroxydifluoroalkylation of alkenes with alkyl bromides was developed, affording a series of difluoroalkylated tertiary alcohols in moderate to good yields. This photocatalyst-free protocol shows broad substrate scope under mild conditions. Moreover, mechanistic studies revealed that a newly identified electron donor-acceptor complex is crucial to this transformation.
Collapse
Affiliation(s)
- Zhen-Zhen Xie
- College of Chemistry and Chemical Engineering, Central South University, Changsha 410083, P.R. China
| | - Yu Zheng
- College of Chemistry and Chemical Engineering, Central South University, Changsha 410083, P.R. China
| | - Kai Tang
- College of Chemistry and Chemical Engineering, Central South University, Changsha 410083, P.R. China
| | - Jian-Ping Guan
- College of Chemistry and Chemical Engineering, Central South University, Changsha 410083, P.R. China
| | - Chu-Ping Yuan
- College of Chemistry and Chemical Engineering, Central South University, Changsha 410083, P.R. China
| | - Jun-An Xiao
- College of Chemistry and Materials Science, Nanning Normal University, Nanning 530001, Guangxi P.R. China
| | - Hao-Yue Xiang
- College of Chemistry and Chemical Engineering, Central South University, Changsha 410083, P.R. China.,School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang 453007, Henan P.R. China
| | - Kai Chen
- College of Chemistry and Chemical Engineering, Central South University, Changsha 410083, P.R. China
| | - Xiao-Qing Chen
- College of Chemistry and Chemical Engineering, Central South University, Changsha 410083, P.R. China
| | - Hua Yang
- College of Chemistry and Chemical Engineering, Central South University, Changsha 410083, P.R. China
| |
Collapse
|
15
|
Yang Z, Cao K, Peng X, Lin L, Fan D, Li J, Wang J, Zhang X, Jiang H, Li J. Micellar Catalysis: Visible‐Light Mediated Imidazo[1,2‐
a
]pyridine C—H Amination with
N
‐Aminopyridinium Salt Accelerated by Surfactant in Water. CHINESE J CHEM 2021. [DOI: 10.1002/cjoc.202100489] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- Zhonglie Yang
- Sichuan Engineering Research Center for Biomimetic Synthesis of Natural Drugs, School of Life Science and Engineering Southwest Jiaotong University Chengdu Sichuan 610041 China
| | - Kun Cao
- Sichuan Engineering Research Center for Biomimetic Synthesis of Natural Drugs, School of Life Science and Engineering Southwest Jiaotong University Chengdu Sichuan 610041 China
| | - Xiaoyan Peng
- Sichuan Engineering Research Center for Biomimetic Synthesis of Natural Drugs, School of Life Science and Engineering Southwest Jiaotong University Chengdu Sichuan 610041 China
| | - Li Lin
- Sichuan Engineering Research Center for Biomimetic Synthesis of Natural Drugs, School of Life Science and Engineering Southwest Jiaotong University Chengdu Sichuan 610041 China
| | - Danchen Fan
- Sichuan Engineering Research Center for Biomimetic Synthesis of Natural Drugs, School of Life Science and Engineering Southwest Jiaotong University Chengdu Sichuan 610041 China
| | - Jun‐Long Li
- Antibiotics Research and Re‐evaluation Key Laboratory of Sichuan Province, Sichuan Industrial Institute of Antibiotics, School of Pharmacy Chengdu University Chengdu Sichuan 610106 China
| | - Jingxia Wang
- Irradiation Preservation Technology Key Laboratory of Sichuan Province Sichuan Institute of Atomic Energy Chengdu Sichuan 610101 China
| | - Xiaobin Zhang
- Irradiation Preservation Technology Key Laboratory of Sichuan Province Sichuan Institute of Atomic Energy Chengdu Sichuan 610101 China
| | - Hezhong Jiang
- Sichuan Engineering Research Center for Biomimetic Synthesis of Natural Drugs, School of Life Science and Engineering Southwest Jiaotong University Chengdu Sichuan 610041 China
| | - Jiahong Li
- Sichuan Engineering Research Center for Biomimetic Synthesis of Natural Drugs, School of Life Science and Engineering Southwest Jiaotong University Chengdu Sichuan 610041 China
| |
Collapse
|
16
|
Zhu X, Huang Y, Xu X, Qing F. Iron-catalyzed cyanoalkylation of difluoroenol silyl ethers with cyclobutanone oxime esters. CHINESE CHEM LETT 2021. [DOI: 10.1016/j.cclet.2021.07.030] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
17
|
Tiwari SK, Nazeef M, Verma A, Kumar A, Yadav V, Yadav N, Ansari S, Siddiqui IR. BF 3-etherate promoted facile access to vinyloxyimidazopyridines: a metal-free sustainable approach. Mol Divers 2021; 26:1259-1266. [PMID: 33993439 DOI: 10.1007/s11030-021-10228-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2021] [Accepted: 04/27/2021] [Indexed: 01/31/2023]
Abstract
A convenient and metal-free synthesis of vinyloxyimidazopyridine derivatives has been attained via BF3.OEt2 promoted one-pot multicomponent approach. This procedure involves a facile coupling of 2-aminopyridine derivatives with arylglyoxal and alkyne derivatives. BF3.OEt2 complexation has successfully catalyzed the reaction at room temperature. Utilization of transition metal-free catalyst, mild reaction conditions, easy handling and operational simplicity are key features of developed process.
Collapse
Affiliation(s)
- Saurabh Kumar Tiwari
- Laboratory of Green Synthesis, Department of Chemistry, University of Allahabad, Prayagraj, 211002, India
| | - Mohd Nazeef
- Laboratory of Green Synthesis, Department of Chemistry, University of Allahabad, Prayagraj, 211002, India
| | - Ankit Verma
- Laboratory of Green Synthesis, Department of Chemistry, University of Allahabad, Prayagraj, 211002, India
| | - Ankit Kumar
- Department of Chemistry, University of Delhi, New Delhi, India
| | - Vikas Yadav
- Laboratory of Green Synthesis, Department of Chemistry, University of Allahabad, Prayagraj, 211002, India
| | - Neetu Yadav
- Laboratory of Green Synthesis, Department of Chemistry, University of Allahabad, Prayagraj, 211002, India
| | - Saif Ansari
- Laboratory of Green Synthesis, Department of Chemistry, University of Allahabad, Prayagraj, 211002, India
| | - I R Siddiqui
- Laboratory of Green Synthesis, Department of Chemistry, University of Allahabad, Prayagraj, 211002, India.
| |
Collapse
|
18
|
Chaubey NR, Kapdi AR, Maity B. Organophotoredox-Catalyzed C–H Alkylation of Imidazoheterocycles with Malonates: Total Synthesis of Zolpidem. SYNTHESIS-STUTTGART 2021. [DOI: 10.1055/s-0040-1706103] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Abstract
AbstractOrganophotocatalytic C–H bond functionalization has attracted a lot of attention in the past several years due to the possibility of catalyzing reactions in a metal- and peroxide-free environment. Continuing on these lines, an organophotoredox-catalyzed C–H functionalization of imidazo[1,2-a]pyridines and related heterocycles with bromomalonates under mild conditions is reported, providing excellent yields of the products at room temperature. This is the first report involving malonates as coupling partners leading to the synthesis of a range of functionalized products including total synthesis of zolpidem, a sedative-hypnotic drug molecule.
Collapse
Affiliation(s)
| | - Anant R. Kapdi
- Institute of Chemical Technology, Department of Chemistry
| | - Biswanath Maity
- Translational Cell Biology Unit, Centre of Biomedical Research
| |
Collapse
|
19
|
Roslan II, Ng K, Alhooshani KR, Jaenicke S, Chuah G. In/Cu Catalyzed Multiple C−N/C−C Bond Formation via Multiple Bond Cleavage in a Three Component Synthesis of Arylimidazopyridine Carboxylates. ASIAN J ORG CHEM 2021. [DOI: 10.1002/ajoc.202000637] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Irwan Iskandar Roslan
- Department of Chemistry National University of Singapore 3 Science Drive 3 Singapore 117543 Singapore
| | - Kian‐Hong Ng
- Department of Chemistry National University of Singapore 3 Science Drive 3 Singapore 117543 Singapore
| | - Khalid R. Alhooshani
- Chemistry Department King Fahd University of Petroleum and Minerals Dhahran 31261 Saudi Arabia
| | - Stephan Jaenicke
- Department of Chemistry National University of Singapore 3 Science Drive 3 Singapore 117543 Singapore
| | - Gaik‐Khuan Chuah
- Department of Chemistry National University of Singapore 3 Science Drive 3 Singapore 117543 Singapore
| |
Collapse
|
20
|
Photogenerated electrophilic radicals for the umpolung of enolate chemistry. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY C: PHOTOCHEMISTRY REVIEWS 2021. [DOI: 10.1016/j.jphotochemrev.2020.100387] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
21
|
Huang J, Wu D, Bai X, Cai P, Zhu WG. Catalyst-free, visible-light-induced direct radical cross-coupling perfluoroalkylation of the imidazo[1,2- a]pyridines with perfluoroalkyl iodides. NEW J CHEM 2021. [DOI: 10.1039/d1nj00651g] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
A mild and eco-friendly visible-light-induced direct radical cross-coupling perfluoroalkylation of the imidazo[1,2-a]pyridines with perfluoroalkyl iodides was established.
Collapse
Affiliation(s)
- Jinbo Huang
- Health Science Centre School of Basic Medical Sciences
- Shenzhen University
- Shenzhen 518060
- China
- Key Laboratory of Functional Molecular Solids
| | - Dandan Wu
- Health Science Centre School of Basic Medical Sciences
- Shenzhen University
- Shenzhen 518060
- China
| | - Xiaokang Bai
- Health Science Centre School of Basic Medical Sciences
- Shenzhen University
- Shenzhen 518060
- China
| | - Panyuan Cai
- Key Laboratory of Functional Molecular Solids
- Ministry of Education
- Anhui Laboratory of Molecule-Based Materials (State Key Laboratory Cultivation Base)
- College of Chemistry and Materials Science
- Anhui Normal University
| | - Wei-Guo Zhu
- Health Science Centre School of Basic Medical Sciences
- Shenzhen University
- Shenzhen 518060
- China
| |
Collapse
|
22
|
Visible-light-mediated C3-ethoxycarbonylmethylation of imidazo[1,2-a]pyridines and convenient access to Zolpidem. Tetrahedron Lett 2020. [DOI: 10.1016/j.tetlet.2020.152606] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
|
23
|
Qu CH, Song GT, Tang DY, Shao JW, Li HY, Xu ZG, Chen ZZ. Microwave-Assisted Copper Catalysis of α-Difluorinated gem-Diol toward Difluoroalkyl Radical for Hydrodifluoroalkylation of para-Quinone Methides. J Org Chem 2020; 85:12785-12796. [PMID: 32847359 DOI: 10.1021/acs.joc.0c01686] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Reported herein is a unified strategy to generate difluoroalkyl radicals from readily prepared α-difluorinated gem-diols by single electron oxidation. Under microwave irradiation, a catalytic amount of oxidant Cu(OAc)2 succeeds in the formation of transient difluoroalkyl radicals in situ, for the first time. The reaction features a simple protocol, short reaction time, scalability, and high yield. The synthetic utility of this new methodology was also explored for the synthesis of difluoroalkylated spiro-cyclohexadienones, which is an important core structure in natural products and pharmaceuticals.
Collapse
Affiliation(s)
- Chuan-Hua Qu
- College of Pharmacy, National & Local Joint Engineering Research Center of Targeted and Innovative Therapeutics, Chongqing Key Laboratory of Kinase Modulators as Innovative Medicine, Chongqing University of Arts and Sciences, Chongqing 402160, China
| | - Gui-Ting Song
- College of Pharmacy, National & Local Joint Engineering Research Center of Targeted and Innovative Therapeutics, Chongqing Key Laboratory of Kinase Modulators as Innovative Medicine, Chongqing University of Arts and Sciences, Chongqing 402160, China.,Institute of Bioorganic & Medicinal Chemistry, Key Laboratory of Applied Chemistry of Chongqing Municipality, School of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, China
| | - Dian-Yong Tang
- College of Pharmacy, National & Local Joint Engineering Research Center of Targeted and Innovative Therapeutics, Chongqing Key Laboratory of Kinase Modulators as Innovative Medicine, Chongqing University of Arts and Sciences, Chongqing 402160, China
| | - Jing-Wei Shao
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Arkansas for Medical Sciences, Little Rock, Arkansas 72205, United States
| | - Hong-Yu Li
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Arkansas for Medical Sciences, Little Rock, Arkansas 72205, United States
| | - Zhi-Gang Xu
- College of Pharmacy, National & Local Joint Engineering Research Center of Targeted and Innovative Therapeutics, Chongqing Key Laboratory of Kinase Modulators as Innovative Medicine, Chongqing University of Arts and Sciences, Chongqing 402160, China
| | - Zhong-Zhu Chen
- College of Pharmacy, National & Local Joint Engineering Research Center of Targeted and Innovative Therapeutics, Chongqing Key Laboratory of Kinase Modulators as Innovative Medicine, Chongqing University of Arts and Sciences, Chongqing 402160, China
| |
Collapse
|
24
|
Patel OPS, Nandwana NK, Legoabe LJ, Das BC, Kumar A. Recent Advances in Radical C−H Bond Functionalization of Imidazoheterocycles. Adv Synth Catal 2020. [DOI: 10.1002/adsc.202000633] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- Om P. S. Patel
- Department of Chemistry Birla Institute of Technology and Science Pilani Pilani Campus 333031 Rajasthan India
- Centre of Excellence for Pharmaceutical Sciences North-West University Private Bag X6001 Potchefstroom 2520 South Africa
| | - Nitesh K. Nandwana
- Department of Chemistry Birla Institute of Technology and Science Pilani Pilani Campus 333031 Rajasthan India
- Departments of Medicine and Pharmacological Sciences Icahn School of Medicine at Mount Sinai New York, NY 10029 USA
| | - Lesetja J. Legoabe
- Centre of Excellence for Pharmaceutical Sciences North-West University Private Bag X6001 Potchefstroom 2520 South Africa
| | - Bhaskar C. Das
- Departments of Medicine and Pharmacological Sciences Icahn School of Medicine at Mount Sinai New York, NY 10029 USA
| | - Anil Kumar
- Department of Chemistry Birla Institute of Technology and Science Pilani Pilani Campus 333031 Rajasthan India
| |
Collapse
|
25
|
Li K, Chen J, Yang C, Zhang K, Pan C, Fan B. Blue Light Promoted Difluoroalkylation of Aryl Ketones: Synthesis of Quaternary Alkyl Difluorides and Tetrasubstituted Monofluoroalkenes. Org Lett 2020; 22:4261-4265. [DOI: 10.1021/acs.orglett.0c01294] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Kangkui Li
- Key Laboratory of Chemistry in Ethnic Medicinal Resources (Yunnan Minzu University), State Ethnic Affairs Commission & Ministry of Education, Yunnan Minzu University, Kunming 650031, Yunnan China
| | - Jingchao Chen
- Key Laboratory of Chemistry in Ethnic Medicinal Resources (Yunnan Minzu University), State Ethnic Affairs Commission & Ministry of Education, Yunnan Minzu University, Kunming 650031, Yunnan China
| | - Chunhui Yang
- Key Laboratory of Chemistry in Ethnic Medicinal Resources (Yunnan Minzu University), State Ethnic Affairs Commission & Ministry of Education, Yunnan Minzu University, Kunming 650031, Yunnan China
| | - Keyang Zhang
- Key Laboratory of Chemistry in Ethnic Medicinal Resources (Yunnan Minzu University), State Ethnic Affairs Commission & Ministry of Education, Yunnan Minzu University, Kunming 650031, Yunnan China
| | - Chunxiang Pan
- Key Laboratory of Chemistry in Ethnic Medicinal Resources (Yunnan Minzu University), State Ethnic Affairs Commission & Ministry of Education, Yunnan Minzu University, Kunming 650031, Yunnan China
| | - Baomin Fan
- School of Chemistry and Environment, Yunnan Minzu University, Kunming 650031, Yunnan China
- Key Laboratory of Chemistry in Ethnic Medicinal Resources (Yunnan Minzu University), State Ethnic Affairs Commission & Ministry of Education, Yunnan Minzu University, Kunming 650031, Yunnan China
| |
Collapse
|
26
|
Song GT, Qu CH, Chen JH, Xu ZG, Zhou CH, Chen ZZ. Synthesis of monofluorooxazoles with quaternary C-F centers through photoredox-catalyzed radical addition of methylene-2-oxazolines. Org Biomol Chem 2020; 18:2223-2226. [PMID: 32162639 DOI: 10.1039/d0ob00267d] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A novel photoredox-catalyzed radical addition of methylene-2-oxazolines has been developed under visible light irradiation to synthesize monofluorooxazoles with a quaternary carbon center using 2-bromo-2-fluoro-3-oxo-3-phenylpropionates as radical source. This method with a simple protocol, scalability and high yield offers a facile path to get diverse monofluorinated oxazoles with quaternary C-F centers, which are a class of highly valuable motifs and synthons.
Collapse
Affiliation(s)
- Gui-Ting Song
- College of Pharmacy, National & Local Joint Engineering Research Center of Targeted and Innovative Therapeutics, Chongqing Key Laboratory of Kinase Modulators as Innovative Medicine, Chongqing University of Arts and Sciences, Chongqing 402160, China. and Institute of Bioorganic & Medicinal Chemistry, Key Laboratory of Applied Chemistry of Chongqing Municipality, School of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, China
| | - Chuan-Hua Qu
- College of Pharmacy, National & Local Joint Engineering Research Center of Targeted and Innovative Therapeutics, Chongqing Key Laboratory of Kinase Modulators as Innovative Medicine, Chongqing University of Arts and Sciences, Chongqing 402160, China.
| | - Jin-Hong Chen
- College of Pharmacy, National & Local Joint Engineering Research Center of Targeted and Innovative Therapeutics, Chongqing Key Laboratory of Kinase Modulators as Innovative Medicine, Chongqing University of Arts and Sciences, Chongqing 402160, China.
| | - Zhi-Gang Xu
- College of Pharmacy, National & Local Joint Engineering Research Center of Targeted and Innovative Therapeutics, Chongqing Key Laboratory of Kinase Modulators as Innovative Medicine, Chongqing University of Arts and Sciences, Chongqing 402160, China.
| | - Cheng-He Zhou
- Institute of Bioorganic & Medicinal Chemistry, Key Laboratory of Applied Chemistry of Chongqing Municipality, School of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, China
| | - Zhong-Zhu Chen
- College of Pharmacy, National & Local Joint Engineering Research Center of Targeted and Innovative Therapeutics, Chongqing Key Laboratory of Kinase Modulators as Innovative Medicine, Chongqing University of Arts and Sciences, Chongqing 402160, China.
| |
Collapse
|
27
|
Mi X, Kong Y, Yang H, Zhang J, Pi C, Cui X. Visible-Light-Promoted Metal-Free C-H Trifluoromethylation of Imidazopyridines. European J Org Chem 2020. [DOI: 10.1002/ejoc.201901860] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Xia Mi
- College of Pharmacy; Henan University of Chinese Medicine; 450046 Zhengzhou P. R. China
| | - Yuanfang Kong
- College of Pharmacy; Henan University of Chinese Medicine; 450046 Zhengzhou P. R. China
| | - Huaixia Yang
- College of Pharmacy; Henan University of Chinese Medicine; 450046 Zhengzhou P. R. China
| | - Jingyu Zhang
- College of Pharmacy; Henan University of Chinese Medicine; 450046 Zhengzhou P. R. China
| | - Chao Pi
- College of Chemistry; Henan Key Laboratory of Chemical Biology and Organic Chemistry; Zhengzhou University; 450052 Zhengzhou P. R. China
| | - Xiuling Cui
- College of Chemistry; Henan Key Laboratory of Chemical Biology and Organic Chemistry; Zhengzhou University; 450052 Zhengzhou P. R. China
| |
Collapse
|
28
|
Dong DQ, Yang H, Shi JL, Si WJ, Wang ZL, Xu XM. Promising reagents for difluoroalkylation. Org Chem Front 2020. [DOI: 10.1039/d0qo00567c] [Citation(s) in RCA: 56] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
This review describes recent advances in difluoroalkylation reactions using different substrates.
Collapse
Affiliation(s)
- Dao-Qing Dong
- College of Chemistry and Pharmaceutical Sciences
- Qingdao Agricultural University
- Qingdao 266109
- China
| | - Huan Yang
- College of Chemistry and Pharmaceutical Sciences
- Qingdao Agricultural University
- Qingdao 266109
- China
| | - Jun-Lian Shi
- College of Chemistry and Pharmaceutical Sciences
- Qingdao Agricultural University
- Qingdao 266109
- China
| | - Wen-Jia Si
- College of Chemistry and Pharmaceutical Sciences
- Qingdao Agricultural University
- Qingdao 266109
- China
| | - Zu-Li Wang
- College of Chemistry and Pharmaceutical Sciences
- Qingdao Agricultural University
- Qingdao 266109
- China
| | - Xin-Ming Xu
- College of Chemistry and Chemical Engineering
- Yantai University
- Yantai 264005
- China
| |
Collapse
|
29
|
Bagdi AK, Hajra A. Visible light promoted C–H functionalization of imidazoheterocycles. Org Biomol Chem 2020; 18:2611-2631. [DOI: 10.1039/d0ob00246a] [Citation(s) in RCA: 57] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
The present review summarizes the visible light mediated direct C–H functionalizations of pharmacologically active imidazo[1,2-a]pyridines and other related heterocycles.
Collapse
Affiliation(s)
| | - Alakananda Hajra
- Department of Chemistry
- Visva-Bharati (A Central University)
- Santiniketan 731235
- India
| |
Collapse
|
30
|
Mao T, Ma MJ, Zhao L, Xue DP, Yu Y, Gu J, He CY. A general and green fluoroalkylation reaction promoted via noncovalent interactions between acetone and fluoroalkyl iodides. Chem Commun (Camb) 2020; 56:1815-1818. [DOI: 10.1039/c9cc09517a] [Citation(s) in RCA: 47] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
The first example of visible light promoted fluoroalkylation reactions initiated via noncovalent interactions between solvents and RFI is presented.
Collapse
Affiliation(s)
- Ting Mao
- Key Laboratory of Biocatalysis & Chiral Drug Synthesis of Guizhou Province
- Generic Drug Research Center of Guizhou Province
- School of Pharmacy
- Zunyi Medical University
- Zunyi
| | - Ming-Jian Ma
- Key Laboratory of Biocatalysis & Chiral Drug Synthesis of Guizhou Province
- Generic Drug Research Center of Guizhou Province
- School of Pharmacy
- Zunyi Medical University
- Zunyi
| | - Liang Zhao
- Key Laboratory of Biocatalysis & Chiral Drug Synthesis of Guizhou Province
- Generic Drug Research Center of Guizhou Province
- School of Pharmacy
- Zunyi Medical University
- Zunyi
| | - De-Pu Xue
- Key Laboratory of Biocatalysis & Chiral Drug Synthesis of Guizhou Province
- Generic Drug Research Center of Guizhou Province
- School of Pharmacy
- Zunyi Medical University
- Zunyi
| | - Yanbo Yu
- School of Medicine
- Washington University in St. Louis
- St. Louis
- USA
| | - Jiwei Gu
- School of Medicine
- Washington University in St. Louis
- St. Louis
- USA
| | - Chun-Yang He
- Key Laboratory of Biocatalysis & Chiral Drug Synthesis of Guizhou Province
- Generic Drug Research Center of Guizhou Province
- School of Pharmacy
- Zunyi Medical University
- Zunyi
| |
Collapse
|
31
|
Zhou J, Wang F, Lin Z, Cheng C, Zhang Q, Li J. Visible-Light-Induced para-Selective C(sp 2)-H Difluoroalkylation of Diverse (Hetero)aromatic Carbonyls. Org Lett 2019; 22:68-72. [PMID: 31854995 DOI: 10.1021/acs.orglett.9b03923] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
An efficient visible-light-induced para-selective C(sp2)-H difluoroalkylation of diverse electron-deficient (hetero)aromatic carbonyls (aldehydes and ketones) at ambient temperature has been developed by employing Ir(ppy)3 as the catalyst and 1,10-phenanthroline as the additive. This protocol was highlighted by its wide substrate scope, high regioselectivity, low catalyst usage, and operational simplicity.
Collapse
Affiliation(s)
- Jiadi Zhou
- Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals , Zhejiang University of Technology , Hangzhou 310014 , P.R. China
| | - Fang Wang
- College of Pharmaceutical Sciences , Zhejiang University of Technology , Hangzhou 310014 , P.R. China
| | - Zhihao Lin
- College of Pharmaceutical Sciences , Zhejiang University of Technology , Hangzhou 310014 , P.R. China
| | - Cheng Cheng
- College of Pharmaceutical Sciences , Zhejiang University of Technology , Hangzhou 310014 , P.R. China
| | - Qiwei Zhang
- College of Pharmaceutical Sciences , Zhejiang University of Technology , Hangzhou 310014 , P.R. China
| | - Jianjun Li
- Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals , Zhejiang University of Technology , Hangzhou 310014 , P.R. China.,College of Pharmaceutical Sciences , Zhejiang University of Technology , Hangzhou 310014 , P.R. China
| |
Collapse
|