1
|
Yedase GS, Murgeshan R, Yatham VR. Minisci C-H Alkylation of Heterocycles with Unactivated Alkyl Iodides Enabled by Visible Light Photocatalysis. J Org Chem 2025; 90:3412-3419. [PMID: 40013461 DOI: 10.1021/acs.joc.4c03151] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/28/2025]
Abstract
In this work, we developed a general catalytic strategy that allows Minisci C-H alkylation of a variety of heterocycles using unactivated alkyl halide as an alkyl radical source under visible light photocatalysis. Mild reaction conditions, employing 4CzIPN as an organophotocatalyst and aerial oxygen as a green terminal oxidant, a broad scope, good functional group tolerance, and late-stage C-H alkylation of bioactive and pharmaceutically relevant molecules are advantages of the protocol. Preliminary mechanistic studies indicate the involvement of the α-amino alkyl radical and the alkyl radical and further involvement of aerial oxygen under our reaction conditions.
Collapse
Affiliation(s)
- Girish Suresh Yedase
- School of Chemistry, Indian Institute of Science Education and Research, Thiruvananthapuram 695551, India
| | - Ruveen Murgeshan
- School of Chemistry, Indian Institute of Science Education and Research, Thiruvananthapuram 695551, India
| | - Veera Reddy Yatham
- School of Chemistry, Indian Institute of Science Education and Research, Thiruvananthapuram 695551, India
| |
Collapse
|
2
|
Lee AL, Mooney DT, McKee H. Direct C-H functionalisation of azoles via Minisci reactions. Org Biomol Chem 2024. [PMID: 39479918 DOI: 10.1039/d4ob01526f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2024]
Abstract
Azoles have widespread applications in medicinal chemistry; for example, thiazoles, imidazoles, benzimidazoles, isoxazoles, tetrazoles and triazoles appear in the top 25 most frequently used N-heterocycles in FDA-approved drugs. Efficient routes for the late-stage C-H functionalisation of azole cores would therefore be highly desirable. The Minisci reaction, a nucleophilic radical addition reaction onto N-heterocyclic bases, is a direct C-H functionalisation reaction that has the potential to be a powerful method for C-H functionalisations of azole scaffolds. However, azoles have not been as widely studied as substrates for modern Minisci-type reactions as they are often more electron-rich and thus more challenging substrates compared to electron-poor 6-membered N-heterocycles such as quinolines, pyrazines and pyridines typically used in Minisci reactions. Nevertheless, with the prevalence of azole scaffolds in drug design, the Minisci reaction has the potential to be a transformative tool for late-stage C-H functionalisations to efficiently access decorated azole motifs. This review thus aims to give an overview of the C-H functionalisation of azoles via Minisci-type reactions, highlighting recent progress, existing limitations and potential areas for growth.
Collapse
Affiliation(s)
- Ai-Lan Lee
- EaStCHEM School of Chemistry, University of Edinburgh, David Brewster Road, Edinburgh, EH9 3FJ, UK.
| | - David T Mooney
- Institute of Chemical Sciences, School of Engineering and Physical Sciences, Heriot-Watt University, Edinburgh, EH14 4AS, UK
| | - Heather McKee
- Institute of Chemical Sciences, School of Engineering and Physical Sciences, Heriot-Watt University, Edinburgh, EH14 4AS, UK
| |
Collapse
|
3
|
Wang X, He J, Wang YN, Zhao Z, Jiang K, Yang W, Zhang T, Jia S, Zhong K, Niu L, Lan Y. Strategies and Mechanisms of First-Row Transition Metal-Regulated Radical C-H Functionalization. Chem Rev 2024; 124:10192-10280. [PMID: 39115179 DOI: 10.1021/acs.chemrev.4c00188] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/12/2024]
Abstract
Radical C-H functionalization represents a useful means of streamlining synthetic routes by avoiding substrate preactivation and allowing access to target molecules in fewer steps. The first-row transition metals (Ti, V, Cr, Mn, Fe, Co, Ni, and Cu) are Earth-abundant and can be employed to regulate radical C-H functionalization. The use of such metals is desirable because of the diverse interaction modes between first-row transition metal complexes and radical species including radical addition to the metal center, radical addition to the ligand of metal complexes, radical substitution of the metal complexes, single-electron transfer between radicals and metal complexes, hydrogen atom transfer between radicals and metal complexes, and noncovalent interaction between the radicals and metal complexes. Such interactions could improve the reactivity, diversity, and selectivity of radical transformations to allow for more challenging radical C-H functionalization reactions. This review examines the achievements in this promising area over the past decade, with a focus on the state-of-the-art while also discussing existing limitations and the enormous potential of high-value radical C-H functionalization regulated by these metals. The aim is to provide the reader with a detailed account of the strategies and mechanisms associated with such functionalization.
Collapse
Affiliation(s)
- Xinghua Wang
- College of Chemistry, and Pingyuan Laboratory, Zhengzhou University, Zhengzhou, Henan 450001, P. R. China
| | - Jing He
- College of Chemistry, and Pingyuan Laboratory, Zhengzhou University, Zhengzhou, Henan 450001, P. R. China
| | - Ya-Nan Wang
- School of Chemistry and Chemical Engineering, Chongqing Key Laboratory of Chemical Theory and Mechanism, Chongqing University, Chongqing 401331, P. R. China
| | - Zhenyan Zhao
- College of Chemistry, and Pingyuan Laboratory, Zhengzhou University, Zhengzhou, Henan 450001, P. R. China
| | - Kui Jiang
- College of Chemistry, and Pingyuan Laboratory, Zhengzhou University, Zhengzhou, Henan 450001, P. R. China
| | - Wei Yang
- College of Chemistry, and Pingyuan Laboratory, Zhengzhou University, Zhengzhou, Henan 450001, P. R. China
| | - Tao Zhang
- Institute of Intelligent Innovation, Henan Academy of Sciences, Zhengzhou, Henan 451162, P. R. China
| | - Shiqi Jia
- College of Chemistry, and Pingyuan Laboratory, Zhengzhou University, Zhengzhou, Henan 450001, P. R. China
| | - Kangbao Zhong
- State Key Laboratory of Antiviral Drugs, Pingyuan Laboratory, Henan Normal University, Xinxiang, Henan 453007, P. R. China
| | - Linbin Niu
- College of Chemistry, and Pingyuan Laboratory, Zhengzhou University, Zhengzhou, Henan 450001, P. R. China
- State Key Laboratory of Antiviral Drugs, Pingyuan Laboratory, Henan Normal University, Xinxiang, Henan 453007, P. R. China
| | - Yu Lan
- College of Chemistry, and Pingyuan Laboratory, Zhengzhou University, Zhengzhou, Henan 450001, P. R. China
- School of Chemistry and Chemical Engineering, Chongqing Key Laboratory of Chemical Theory and Mechanism, Chongqing University, Chongqing 401331, P. R. China
- State Key Laboratory of Antiviral Drugs, Pingyuan Laboratory, Henan Normal University, Xinxiang, Henan 453007, P. R. China
| |
Collapse
|
4
|
Mondal S, Mandal S, Mondal S, Midya SP, Ghosh P. Photocatalytic decarboxylation of free carboxylic acids and their functionalization. Chem Commun (Camb) 2024; 60:9645-9658. [PMID: 39120531 DOI: 10.1039/d4cc03189j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/10/2024]
Abstract
Visible light mediated decarboxylative functionalization of carboxylic acids and their derivatives has recently emerged as a novel and powerful toolkit for small molecule activation in diverse carbon-carbon and carbon-hetero bond forming reactions. Naturally abundant highly functionalized bench-stable carboxylic acid analogs have been employed as promising alternatives to non-trivial organometallic reagents for mild and eco-benign synthetic transformation with traceless CO2 by-products. In this highlight article, we focus on the development of various photodecarboxylative functionalization strategies along with intra/inter-molecular cyclization via concerted single electron transfer (SET) or energy transfer (ET) pathways. Moreover, widely explored carboxylic acids are systematically classified here into four categories; i.e., α-keto, aliphatic, α,β-unsaturated, and aromatic analogs for a concise overview to the readership. The association of decarboxylative radical species with coupling partners to construct C-C and C-N/O/S/P/X bonds for each analogous acid has been presented in brief.
Collapse
Affiliation(s)
- Subal Mondal
- School of Chemical Sciences, Indian Association for the Cultivation of Science, Kolkata 700032, India.
| | - Subham Mandal
- School of Chemical Sciences, Indian Association for the Cultivation of Science, Kolkata 700032, India.
| | - Soumya Mondal
- School of Chemical Sciences, Indian Association for the Cultivation of Science, Kolkata 700032, India.
| | - Siba P Midya
- Department of Chemistry, Jadavpur University, 188 Raja S. C. Mullick Road, Kolkata 700032, India
| | - Pradyut Ghosh
- School of Chemical Sciences, Indian Association for the Cultivation of Science, Kolkata 700032, India.
| |
Collapse
|
5
|
Kanti Bera S, Porcheddu A. Pioneering Metal-Free Late-Stage C-H Functionalization Using Acridinium Salt Photocatalysis. Chemistry 2024:e202402809. [PMID: 39136621 DOI: 10.1002/chem.202402809] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2024] [Accepted: 08/13/2024] [Indexed: 10/23/2024]
Abstract
Using organic dyes as photocatalysts is an innovative approach to photocatalytic organic transformations. These dyes offer advantages such as widespread availability, adaptable absorption properties, and diverse chemical structures. Recent progress has led to the development of organic photocatalysts that can utilize visible light to modify chemically inert C-H bonds. These catalysts are sustainable, selective, and versatile, enabling mild reactions, late-stage functionalization, and various transformations in line with green chemistry principles. As catalysts in photoredox chemistry, they contribute to the development of efficient and environmentally friendly synthetic pathways. Acridinium-based organic photocatalysts have proved valuable in late-stage C-H functionalization, enabling transformative reactions under mild conditions. This review emphasizes their innovative features, such as organic frameworks, efficient light absorption properties, and their applications in modifying complex molecules. It provides an overview of recent advancements in the use of acridinium-based organic photocatalysts for late-stage C-H bond functionalization without the need for transition metals, showcasing their potential to expedite the development of new molecules and igniting excitement about the prospects of this research in the field.
Collapse
Affiliation(s)
- Shyamal Kanti Bera
- Università degli Studi di Cagliari, Dipartimento di Scienze Chimiche e Geologiche, Cittadella Universitaria, 09042, Cagliari, Italy
| | - Andrea Porcheddu
- Università degli Studi di Cagliari, Dipartimento di Scienze Chimiche e Geologiche, Cittadella Universitaria, 09042, Cagliari, Italy
| |
Collapse
|
6
|
III R, Lujan B, Martinez A, Manasi R, DeBow JD, Kou KGM. A Fenton Approach to Aromatic Radical Cations and Diarylmethane Synthesis. J Org Chem 2023; 88:15060-15066. [PMID: 37847050 PMCID: PMC10629232 DOI: 10.1021/acs.joc.3c01505] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Indexed: 10/18/2023]
Abstract
Manipulating carbon-centered radicals to add to electron-deficient systems is a well-precedented process. By coupling the Fe(II)-mediated Fenton reaction with the Fe(III)-mediated single-electron oxidation of anisolic compounds, we demonstrate how electron-rich carbon-centered radicals can react with electron-rich arenes through a radical-polar cascade pathway. This bioinspired approach produces diarylmethane derivatives from simple unfunctionalized precursors.
Collapse
Affiliation(s)
- Robert
Crowley III
- Department of Chemistry, University of California, Riverside, 501 Big Springs Road, Riverside, California 92521, United States
| | | | | | - Roni Manasi
- Department of Chemistry, University of California, Riverside, 501 Big Springs Road, Riverside, California 92521, United States
| | - Justin D. DeBow
- Department of Chemistry, University of California, Riverside, 501 Big Springs Road, Riverside, California 92521, United States
| | - Kevin G. M. Kou
- Department of Chemistry, University of California, Riverside, 501 Big Springs Road, Riverside, California 92521, United States
| |
Collapse
|
7
|
Chen B, Huang Z, Hu Z, Liu X, Weng J. Visible Light Induced C2 Alkylation of 2
H
‐Benzoxazoles with Cycloalkanes and Ethers
via
Selectfluor‐Mediated Oxidation. ChemistrySelect 2023. [DOI: 10.1002/slct.202204773] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/17/2023]
Affiliation(s)
- Bo Chen
- College of Chemical Engineering Zhejiang University of Technology Hangzhou 310014 China
| | - Zhen Huang
- College of Chemical Engineering Zhejiang University of Technology Hangzhou 310014 China
| | - Zhi‐Gang Hu
- College of Chemical Engineering Zhejiang University of Technology Hangzhou 310014 China
| | - Xing‐Hai Liu
- College of Chemical Engineering Zhejiang University of Technology Hangzhou 310014 China
| | - Jian‐Quan Weng
- College of Chemical Engineering Zhejiang University of Technology Hangzhou 310014 China
| |
Collapse
|
8
|
Hu CH, Li Y. Visible-Light Photoredox-Catalyzed Decarboxylation of α-Oxo Carboxylic Acids to C1-Deuterated Aldehydes and Aldehydes. J Org Chem 2022; 88:6401-6406. [DOI: 10.1021/acs.joc.2c02299] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Affiliation(s)
- Chun-Hong Hu
- Frontier Institute of Science and Technology, Xi’an Jiaotong University, Xi’an, Shaanxi 710054, P. R. China
| | - Yang Li
- Frontier Institute of Science and Technology, Xi’an Jiaotong University, Xi’an, Shaanxi 710054, P. R. China
| |
Collapse
|
9
|
Uchikura T, Tsubono K, Hara Y, Akiyama T. Dual-Role Halogen-Bonding-Assisted EDA-SET/HAT Photoreaction System with Phenol Catalyst and Aryl Iodide: Visible-Light-Driven Carbon–Carbon Bond Formation. J Org Chem 2022; 87:15499-15510. [DOI: 10.1021/acs.joc.2c02032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Affiliation(s)
- Tatsuhiro Uchikura
- Department of Chemistry, Faculty of Science, Gakushuin University, 1-5-1, Mejiro,
Toshima-ku, Tokyo 171-8588, Japan
| | - Kazushi Tsubono
- Department of Chemistry, Faculty of Science, Gakushuin University, 1-5-1, Mejiro,
Toshima-ku, Tokyo 171-8588, Japan
| | - Yurina Hara
- Department of Chemistry, Faculty of Science, Gakushuin University, 1-5-1, Mejiro,
Toshima-ku, Tokyo 171-8588, Japan
| | - Takahiko Akiyama
- Department of Chemistry, Faculty of Science, Gakushuin University, 1-5-1, Mejiro,
Toshima-ku, Tokyo 171-8588, Japan
| |
Collapse
|
10
|
Chen M, Xu J, Zhao D, Sun F, Tian S, Tu D, Lu C, Yan H. Site-Selective Functionalization of Carboranes at the Electron-Rich Boron Vertex: Photocatalytic B-C Coupling via a Carboranyl Cage Radical. Angew Chem Int Ed Engl 2022; 61:e202205672. [PMID: 35670361 DOI: 10.1002/anie.202205672] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2022] [Indexed: 12/14/2022]
Abstract
Functionalization of carboranes in a vertex-specific manner is a perennial challenge. Here, we report a photocatalytic B-C coupling for the selective functionalization of carboranes at the boron site which is most distal to carbon. This reaction was achieved by the photo-induced decarboxylation of carborane carboxylic acids to generate boron vertex-centered carboranyl radicals. Theoretical calculations also demonstrate that the reaction more easily occurs at the boron site bearing higher electron density owing to the lower energy barrier for a single-electron transfer to generate a carboranyl radical. By using this strategy, a number of functionalized carboranes could be accessed through alkylation, alkenylation, and heteroarylation under mild conditions. Moreover, both a highly efficient blue emitter with a solid-state luminous efficiency of 42 % and a drug candidate for boron neutron capture therapy (BNCT) containing targeting and fluorine units were obtained.
Collapse
Affiliation(s)
- Meng Chen
- State Key Laboratory of Coordination Chemistry, Jiangsu Key Laboratory of Advanced Organic Materials, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, China
| | - Jingkai Xu
- State Key Laboratory of Coordination Chemistry, Jiangsu Key Laboratory of Advanced Organic Materials, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, China
| | - Deshi Zhao
- State Key Laboratory of Coordination Chemistry, Jiangsu Key Laboratory of Advanced Organic Materials, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, China
| | - Fangxiang Sun
- State Key Laboratory of Coordination Chemistry, Jiangsu Key Laboratory of Advanced Organic Materials, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, China
| | - Songlin Tian
- State Key Laboratory of Coordination Chemistry, Jiangsu Key Laboratory of Advanced Organic Materials, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, China
| | - Deshuang Tu
- State Key Laboratory of Coordination Chemistry, Jiangsu Key Laboratory of Advanced Organic Materials, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, China
| | - Changsheng Lu
- State Key Laboratory of Coordination Chemistry, Jiangsu Key Laboratory of Advanced Organic Materials, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, China
| | - Hong Yan
- State Key Laboratory of Coordination Chemistry, Jiangsu Key Laboratory of Advanced Organic Materials, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, China
| |
Collapse
|
11
|
Chandu P, Das D, Ghosh KG, Sureshkumar D. Visible‐Light Photoredox Catalyzed Decarboxylative Alkylation of Vinylcyclopropanes. Adv Synth Catal 2022. [DOI: 10.1002/adsc.202200227] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Palasetty Chandu
- Department of Chemical Sciences Indian Institute of Science Education and Research Kolkata Mohanpur West Bengal 741246 India
| | - Debabrata Das
- Department of Chemical Sciences Indian Institute of Science Education and Research Kolkata Mohanpur West Bengal 741246 India
| | - Krishna G. Ghosh
- Department of Chemical Sciences Indian Institute of Science Education and Research Kolkata Mohanpur West Bengal 741246 India
| | - Devarajulu Sureshkumar
- Department of Chemical Sciences Indian Institute of Science Education and Research Kolkata Mohanpur West Bengal 741246 India
| |
Collapse
|
12
|
Del Río-Rodríguez R, Fragoso-Jarillo L, Garrido-Castro AF, Maestro MC, Fernández-Salas JA, Alemán J. General electrochemical Minisci alkylation of N-heteroarenes with alkyl halides. Chem Sci 2022; 13:6512-6518. [PMID: 35756520 PMCID: PMC9172443 DOI: 10.1039/d2sc01799g] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2022] [Accepted: 04/26/2022] [Indexed: 11/30/2022] Open
Abstract
Herein, we report, a general, facile and environmentally friendly Minisci-type alkylation of N-heteroarenes under simple and straightforward electrochemical conditions using widely available alkyl halides as radical precursors. Primary, secondary and tertiary alkyl radicals have been shown to be efficiently generated and coupled with a large variety of N-heteroarenes. The method presents a very high functional group tolerance, including various heterocyclic-based natural products, which highlights the robustness of the methodology. This applicability has been further proved in the synthesis of various interesting biologically valuable building blocks. In addition, we have proposed a mechanism based on different proofs and pieces of electrochemical evidence.
Collapse
Affiliation(s)
| | - Lorena Fragoso-Jarillo
- Organic Chemistry Department, Universidad Autónoma de Madrid Módulo 2 28049 Madrid Spain
| | | | - M Carmen Maestro
- Organic Chemistry Department, Universidad Autónoma de Madrid Módulo 2 28049 Madrid Spain
| | - Jose A Fernández-Salas
- Organic Chemistry Department, Universidad Autónoma de Madrid Módulo 2 28049 Madrid Spain
- Institute for Advanced Research in Chemical Sciences (IAdChem), Universidad Autónoma de Madrid Madrid Spain
| | - José Alemán
- Organic Chemistry Department, Universidad Autónoma de Madrid Módulo 2 28049 Madrid Spain
- Institute for Advanced Research in Chemical Sciences (IAdChem), Universidad Autónoma de Madrid Madrid Spain
- Center for Innovation in Advanced Chemistry (ORFEO-CINQA), Universidad Autónoma de Madrid Spain
| |
Collapse
|
13
|
Chen M, Xu J, Zhao D, Sun F, Tian S, Tu D, Lu C, Yan H. Site‐Selective Functionalization of Carboranes at Electron‐Rich Boron Vertex: Photocatalytic B‐C Coupling via a Carboranyl Cage Radical. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202205672] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Meng Chen
- Nanjing University School of Chemistry and Chemical Engineering CHINA
| | - Jingkai Xu
- Nanjing University School of Chemistry and Chemical Engineering CHINA
| | - Deshi Zhao
- Nanjing University School of Chemistry and Chemical Engineering CHINA
| | - Fangxiang Sun
- Nanjing University School of Chemistry and Chemical Engineering CHINA
| | - Songlin Tian
- Nanjing University School of Chemistry and Chemical Engineering CHINA
| | - Deshuang Tu
- Nanjing University School of Chemistry and Chemical Engineering CHINA
| | - Changsheng Lu
- Nanjing University School of Chemistry and Chemical Engineering CHINA
| | - Hong Yan
- Nanjing University School of Chemistry and Chemical Engineering 22 Hankou Rd. 210093 Nanjing CHINA
| |
Collapse
|
14
|
Li DS, Liu T, Hong Y, Cao CL, Wu J, Deng HP. Stop-Flow Microtubing Reactor-Assisted Visible Light-Induced Hydrogen-Evolution Cross Coupling of Heteroarenes with C(sp 3)–H Bonds. ACS Catal 2022. [DOI: 10.1021/acscatal.2c01087] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Dong-Sheng Li
- Jiangsu Key Laboratory of Pesticide Science and Department of Chemistry, College of Sciences, Nanjing Agricultural University, Nanjing 210095, People’s Republic of China
| | - Tao Liu
- Department of Chemistry, National University of Singapore, 3 Science Drive 3, Singapore 117543, Republic of Singapore
| | - Yang Hong
- Jiangsu Key Laboratory of Pesticide Science and Department of Chemistry, College of Sciences, Nanjing Agricultural University, Nanjing 210095, People’s Republic of China
| | - Chen-Lin Cao
- Jiangsu Key Laboratory of Pesticide Science and Department of Chemistry, College of Sciences, Nanjing Agricultural University, Nanjing 210095, People’s Republic of China
| | - Jie Wu
- Department of Chemistry, National University of Singapore, 3 Science Drive 3, Singapore 117543, Republic of Singapore
- National University of Singapore (Suzhou) Research Institute, No. 377 Lin Quan Street, Suzhou Industrial Park, Suzhou, Jiangsu 215123, People’s Republic of China
| | - Hong-Ping Deng
- Jiangsu Key Laboratory of Pesticide Science and Department of Chemistry, College of Sciences, Nanjing Agricultural University, Nanjing 210095, People’s Republic of China
| |
Collapse
|
15
|
Li Y, Wu P, Yang Z. Synthesis of 2-Aryl Benzoxazoles from Benzoxazoles and α-Ketoic Acids by Photoredox Catalysis. CHINESE J ORG CHEM 2022. [DOI: 10.6023/cjoc202110030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
16
|
Liu Y, Wang Z, Meng J, Li C, Sun K. Research Progress of Photoelectric Co-catalysis. CHINESE J ORG CHEM 2022. [DOI: 10.6023/cjoc202106051] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
17
|
Liu X, Guo Z, Liu Y, Chen X, Li J, Zou D, Wu Y, Wu Y. Metal-Free Alkylation of Quinoxalinones with Aryl Alkyl ketones. Org Biomol Chem 2022; 20:1391-1395. [DOI: 10.1039/d1ob02260a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The first metal-free method for alkylation of quinoxalinones using cheap and stable aryl alkyl ketones as nucleophilic alkylation reagents is reported. This strategy greatly broadens the application channels of aryl...
Collapse
|
18
|
Photocatalyst-free visible light induced decarboxylative alkylation of quinoxalin-2(1H)-ones with carboxylic acids. Tetrahedron Lett 2022. [DOI: 10.1016/j.tetlet.2021.153595] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
19
|
Delgado P, Glass RJ, Geraci G, Duvadie R, Majumdar D, Robinson RI, Elmaarouf I, Mikus M, Tan KL. Use of Green Solvents in Metallaphotoredox Cross-Electrophile Coupling Reactions Utilizing a Lipophilic Modified Dual Ir/Ni Catalyst System. J Org Chem 2021; 86:17428-17436. [PMID: 34808052 DOI: 10.1021/acs.joc.1c02013] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
Facilitating photoredox coupling reactions in process-friendly green solvents was achieved by the successful application of a dual Ir/Ni catalyst system with enhanced solubility properties. These photochemical reactions (specifically Br-Br sp2-sp3 cross electrophile coupling) are reported in a head to head comparison to the standard di-t-Bu bipyridine ligand Ir/Ni catalyst system. This presentation highlights the benefits of altering the solubility properties of the ligands used in the Ir/Ni dual catalyst.
Collapse
Affiliation(s)
- Pete Delgado
- Global Discovery Chemistry-SynTech Group, Novartis Institutes for Biomedical Research, 250 Massachusetts Avenue, Cambridge, Massachusetts 02139, United States
| | - Raoul J Glass
- Global Discovery Chemistry-SynTech Group, Novartis Institutes for Biomedical Research, 250 Massachusetts Avenue, Cambridge, Massachusetts 02139, United States
| | - Gina Geraci
- Global Discovery Chemistry-SynTech Group, Novartis Institutes for Biomedical Research, 250 Massachusetts Avenue, Cambridge, Massachusetts 02139, United States
| | - Rohit Duvadie
- Global Discovery Chemistry-SynTech Group, Novartis Institutes for Biomedical Research, 250 Massachusetts Avenue, Cambridge, Massachusetts 02139, United States
| | - Dyuti Majumdar
- Global Discovery Chemistry-SynTech Group, Novartis Institutes for Biomedical Research, 250 Massachusetts Avenue, Cambridge, Massachusetts 02139, United States
| | - Richard I Robinson
- Global Discovery Chemistry-SynTech Group, Novartis Institutes for Biomedical Research, 250 Massachusetts Avenue, Cambridge, Massachusetts 02139, United States
| | - Imran Elmaarouf
- Global Discovery Chemistry-SynTech Group, Novartis Institutes for Biomedical Research, 250 Massachusetts Avenue, Cambridge, Massachusetts 02139, United States
| | - Malte Mikus
- Global Discovery Chemistry-SynTech Group, Novartis Institutes for Biomedical Research, 250 Massachusetts Avenue, Cambridge, Massachusetts 02139, United States
| | - Kian L Tan
- Global Discovery Chemistry-SynTech Group, Novartis Institutes for Biomedical Research, 250 Massachusetts Avenue, Cambridge, Massachusetts 02139, United States
| |
Collapse
|
20
|
Sang R, Noble A, Aggarwal VK. Chiral Benzothiophene Synthesis via Enantiospecific Coupling of Benzothiophene S-Oxides with Boronic Esters. Angew Chem Int Ed Engl 2021; 60:25313-25317. [PMID: 34582085 DOI: 10.1002/anie.202112180] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2021] [Indexed: 12/15/2022]
Abstract
Benzothiophenes are valuable heterocycles that are widely used in medicines, agrochemicals, and materials science. Herein, we report a general method for the synthesis of enantioenriched 2,3-disubstituted benzothiophenes via a transition-metal-free C2-alkylation of benzothiophenes with boronic esters. The reactions utilize benzothiophene S-oxides in lithiation-borylations to generate intermediate arylboronate complexes, and subsequent Tf2 O-promoted S-O bond cleavage to trigger a Pummerer-type 1,2-metalate shift, which gives the coupled products with complete enantiospecificity. Primary, secondary and tertiary alkyl boronic esters and aryl boronic esters are successfully coupled with a range of C3-substituted benzothiophenes. Importantly, this transformation does not require the use of C3 directing groups, therefore it overcomes a major limitation of previously developed transition-metal-mediated C2 alkylations of benzothiophenes.
Collapse
Affiliation(s)
- Ruocheng Sang
- School of Chemistry, University of Bristol, Cantock's Close, Bristol, BS8 1TS, UK
| | - Adam Noble
- School of Chemistry, University of Bristol, Cantock's Close, Bristol, BS8 1TS, UK
| | - Varinder K Aggarwal
- School of Chemistry, University of Bristol, Cantock's Close, Bristol, BS8 1TS, UK
| |
Collapse
|
21
|
Sang R, Noble A, Aggarwal VK. Chiral Benzothiophene Synthesis via Enantiospecific Coupling of Benzothiophene S‐Oxides with Boronic Esters. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202112180] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Ruocheng Sang
- School of Chemistry University of Bristol Cantock's Close Bristol BS8 1TS UK
| | - Adam Noble
- School of Chemistry University of Bristol Cantock's Close Bristol BS8 1TS UK
| | | |
Collapse
|
22
|
Chan AY, Perry IB, Bissonnette NB, Buksh BF, Edwards GA, Frye LI, Garry OL, Lavagnino MN, Li BX, Liang Y, Mao E, Millet A, Oakley JV, Reed NL, Sakai HA, Seath CP, MacMillan DWC. Metallaphotoredox: The Merger of Photoredox and Transition Metal Catalysis. Chem Rev 2021; 122:1485-1542. [PMID: 34793128 DOI: 10.1021/acs.chemrev.1c00383] [Citation(s) in RCA: 654] [Impact Index Per Article: 163.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
The merger of photoredox catalysis with transition metal catalysis, termed metallaphotoredox catalysis, has become a mainstay in synthetic methodology over the past decade. Metallaphotoredox catalysis has combined the unparalleled capacity of transition metal catalysis for bond formation with the broad utility of photoinduced electron- and energy-transfer processes. Photocatalytic substrate activation has allowed the engagement of simple starting materials in metal-mediated bond-forming processes. Moreover, electron or energy transfer directly with key organometallic intermediates has provided novel activation modes entirely complementary to traditional catalytic platforms. This Review details and contextualizes the advancements in molecule construction brought forth by metallaphotocatalysis.
Collapse
Affiliation(s)
- Amy Y Chan
- Merck Center for Catalysis at Princeton University, Princeton, New Jersey 08544, United States
| | - Ian B Perry
- Merck Center for Catalysis at Princeton University, Princeton, New Jersey 08544, United States
| | - Noah B Bissonnette
- Merck Center for Catalysis at Princeton University, Princeton, New Jersey 08544, United States
| | - Benito F Buksh
- Merck Center for Catalysis at Princeton University, Princeton, New Jersey 08544, United States
| | - Grant A Edwards
- Merck Center for Catalysis at Princeton University, Princeton, New Jersey 08544, United States
| | - Lucas I Frye
- Merck Center for Catalysis at Princeton University, Princeton, New Jersey 08544, United States
| | - Olivia L Garry
- Merck Center for Catalysis at Princeton University, Princeton, New Jersey 08544, United States
| | - Marissa N Lavagnino
- Merck Center for Catalysis at Princeton University, Princeton, New Jersey 08544, United States
| | - Beryl X Li
- Merck Center for Catalysis at Princeton University, Princeton, New Jersey 08544, United States
| | - Yufan Liang
- Merck Center for Catalysis at Princeton University, Princeton, New Jersey 08544, United States
| | - Edna Mao
- Merck Center for Catalysis at Princeton University, Princeton, New Jersey 08544, United States
| | - Agustin Millet
- Merck Center for Catalysis at Princeton University, Princeton, New Jersey 08544, United States
| | - James V Oakley
- Merck Center for Catalysis at Princeton University, Princeton, New Jersey 08544, United States
| | - Nicholas L Reed
- Merck Center for Catalysis at Princeton University, Princeton, New Jersey 08544, United States
| | - Holt A Sakai
- Merck Center for Catalysis at Princeton University, Princeton, New Jersey 08544, United States
| | - Ciaran P Seath
- Merck Center for Catalysis at Princeton University, Princeton, New Jersey 08544, United States
| | - David W C MacMillan
- Merck Center for Catalysis at Princeton University, Princeton, New Jersey 08544, United States
| |
Collapse
|
23
|
Li J, Huang CY, Han JT, Li CJ. Development of a Quinolinium/Cobaloxime Dual Photocatalytic System for Oxidative C–C Cross-Couplings via H2 Release. ACS Catal 2021. [DOI: 10.1021/acscatal.1c04073] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- Jianbin Li
- Department of Chemistry, FQRNT Centre for Green Chemistry and Catalysis, McGill University, 801 Sherbrooke Street W, Montreal, Quebec H3A 0B8, Canada
| | - Chia-Yu Huang
- Department of Chemistry, FQRNT Centre for Green Chemistry and Catalysis, McGill University, 801 Sherbrooke Street W, Montreal, Quebec H3A 0B8, Canada
| | - Jing-Tan Han
- Department of Chemistry, FQRNT Centre for Green Chemistry and Catalysis, McGill University, 801 Sherbrooke Street W, Montreal, Quebec H3A 0B8, Canada
| | - Chao-Jun Li
- Department of Chemistry, FQRNT Centre for Green Chemistry and Catalysis, McGill University, 801 Sherbrooke Street W, Montreal, Quebec H3A 0B8, Canada
| |
Collapse
|
24
|
Bergamaschi E, Weike C, Mayerhofer VJ, Funes-Ardoiz I, Teskey CJ. Dual Photoredox/Cobaloxime Catalysis for Cross-Dehydrogenative α-Heteroarylation of Amines. Org Lett 2021; 23:5378-5382. [PMID: 34196560 DOI: 10.1021/acs.orglett.1c01703] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
We report a dual-catalytic platform for the cross-dehydrogenative-coupling between (benzo-)thiazoles and amines which combines low loadings of an iridium photoredox catalyst and a cobaloxime catalyst under blue light irradiation. This transformation occurs without stoichiometric oxidants, giving products in moderate to excellent yields. DFT calculations support the key role of Co(II) for rearomatization of the radical-addition intermediate to generate the product.
Collapse
Affiliation(s)
- Enrico Bergamaschi
- Institute of Organic Chemistry, RWTH Aachen University, Landoltweg 1, 52074 Aachen, Germany
| | - Christopher Weike
- Institute of Organic Chemistry, RWTH Aachen University, Landoltweg 1, 52074 Aachen, Germany
| | - Victor J Mayerhofer
- Institute of Organic Chemistry, RWTH Aachen University, Landoltweg 1, 52074 Aachen, Germany
| | - Ignacio Funes-Ardoiz
- Department of Chemistry, Centro de Investigación en Síntesis Química (CISQ), Universidad de La Rioja, Madre de Dios 53, 26006 Logroño, Spain
| | - Christopher J Teskey
- Institute of Organic Chemistry, RWTH Aachen University, Landoltweg 1, 52074 Aachen, Germany
| |
Collapse
|
25
|
Ikeda Y, Mandai T, Yonekura K, Shirakawa E. Alkylation of Heteroaryl Chlorides through Homolytic Aromatic Substitution by Alkyl Radicals Derived from Alkyl Formates. CHEM LETT 2021. [DOI: 10.1246/cl.210015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Yuko Ikeda
- Department of Applied Chemistry for Environment, School of Science and Technology, Kwansei Gakuin University, 2-1 Gakuen, Sanda, Hyogo 669-1337, Japan
| | - Tomoya Mandai
- Department of Applied Chemistry for Environment, School of Science and Technology, Kwansei Gakuin University, 2-1 Gakuen, Sanda, Hyogo 669-1337, Japan
| | - Kyohei Yonekura
- Department of Applied Chemistry for Environment, School of Science and Technology, Kwansei Gakuin University, 2-1 Gakuen, Sanda, Hyogo 669-1337, Japan
| | - Eiji Shirakawa
- Department of Applied Chemistry for Environment, School of Science and Technology, Kwansei Gakuin University, 2-1 Gakuen, Sanda, Hyogo 669-1337, Japan
| |
Collapse
|
26
|
Liu J, Li P, Sun L, Zhang Y. Visible-Light Photoredox-Catalyzed Decarboxylative α-tert-Butylation of C(sp3)–H Bonds of N-Aryltetrahydroisoquinolines with Pivalic Acid under Transition-Metal-Free Conditions. Synlett 2021. [DOI: 10.1055/a-1458-5785] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
AbstractA transition-metal-free visible-light photoredox-catalyzed decarboxylative alkylation of the benzylic C(sp3)–H bonds of N-aryltetrahydroisoquinolines is reported. The method tolerates various functional groups and proceeds smoothly without requiring a stoichiometric oxidant. A preliminary mechanistic study indicated that a radical process is involved in the reaction.
Collapse
Affiliation(s)
- Jie Liu
- Key Laboratory of Green and Precise Synthetic Chemistry and Applications, Ministry of Education; Department of Chemistry, Huaibei Normal University
| | - Pinhua Li
- Key Laboratory of Green and Precise Synthetic Chemistry and Applications, Ministry of Education; Department of Chemistry, Huaibei Normal University
- Anhui Laboratory of Clean Catalytic Engineering, Anhui Laboratory of Functional Complexes for Materials Chemistry and Application, College of Chemical and Environmental Engineering, Anhui Polytechnic University
| | - Li Sun
- Key Laboratory of Green and Precise Synthetic Chemistry and Applications, Ministry of Education; Department of Chemistry, Huaibei Normal University
| | - Yicheng Zhang
- Key Laboratory of Green and Precise Synthetic Chemistry and Applications, Ministry of Education; Department of Chemistry, Huaibei Normal University
| |
Collapse
|
27
|
Yu H, Zhao H, Xu X, Zhang X, Yu Z, Li L, Wang P, Shi Q, Xu L. Rhodium(I)‐Catalyzed C2‐Selective Decarbonylative C−H Alkylation of Indoles with Alkyl Carboxylic Acids and Anhydrides. ASIAN J ORG CHEM 2021. [DOI: 10.1002/ajoc.202000712] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- Haiyang Yu
- Department of Chemistry Renmin University of China Beijing 100872 P. R. China
| | - Haoqiang Zhao
- Department of Chemistry Renmin University of China Beijing 100872 P. R. China
| | - Xin Xu
- Department of Chemistry Renmin University of China Beijing 100872 P. R. China
| | - Xin Zhang
- Department of Chemistry Renmin University of China Beijing 100872 P. R. China
| | - Zexin Yu
- Department of Chemistry Renmin University of China Beijing 100872 P. R. China
| | - Lingchao Li
- Jiangsu Zenji Pharmaceuticals Ltd. Huaian 223100 P. R. China
| | - Peng Wang
- Department of Chemistry Renmin University of China Beijing 100872 P. R. China
| | - Qian Shi
- College of Chemistry & Materials Engineering Wenzhou University Wenzhou 325035 P. R. China
| | - Lijin Xu
- Department of Chemistry Renmin University of China Beijing 100872 P. R. China
| |
Collapse
|
28
|
Tian W, Zhu Y, He Y, Wang M, Song X, Bai J, Xiao Q. Hydroxyl Assisted, Photoredox/Cobalt Co‐catalyzed Semi‐Hydrogenation and Tandem Cyclization of
o
‐Alkynylphenols for Access to 2,3‐Dihydrobenzofurans. Adv Synth Catal 2021. [DOI: 10.1002/adsc.202000986] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Affiliation(s)
- Wan‐Fa Tian
- Institute of Organic Chemistry Jiangxi Science & Technology Normal University Key Laboratory of Organic Chemistry Jiangxi Province Nanchang 330013 People's Republic of China
| | - Yao Zhu
- Institute of Organic Chemistry Jiangxi Science & Technology Normal University Key Laboratory of Organic Chemistry Jiangxi Province Nanchang 330013 People's Republic of China
| | - Yong‐Qin He
- School of Pharmaceutical Science Nanchang University Nanchang 330006 People's Republic of China
| | - Mei Wang
- Institute of Organic Chemistry Jiangxi Science & Technology Normal University Key Laboratory of Organic Chemistry Jiangxi Province Nanchang 330013 People's Republic of China
| | - Xian‐Rong Song
- Institute of Organic Chemistry Jiangxi Science & Technology Normal University Key Laboratory of Organic Chemistry Jiangxi Province Nanchang 330013 People's Republic of China
| | - Jiang Bai
- Institute of Organic Chemistry Jiangxi Science & Technology Normal University Key Laboratory of Organic Chemistry Jiangxi Province Nanchang 330013 People's Republic of China
| | - Qiang Xiao
- Institute of Organic Chemistry Jiangxi Science & Technology Normal University Key Laboratory of Organic Chemistry Jiangxi Province Nanchang 330013 People's Republic of China
| |
Collapse
|
29
|
Zhao H, Ni N, Li X, Cheng D, Xu X. The coupling reaction of α-silylamines with Baylis-Hillman adducts by visible light photoredox catalysis. Tetrahedron Lett 2021. [DOI: 10.1016/j.tetlet.2020.152746] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
30
|
Phosphoric Acid Mediated Light‐Induced Minisci C−H Alkylation of
N
‐Heteroarenes. European J Org Chem 2021. [DOI: 10.1002/ejoc.202001538] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
31
|
Wang GZ, Fu MC, Zhao B, Shang R. Photocatalytic decarboxylative alkylations of C(sp3)-H and C(sp2)-H bonds enabled by ammonium iodide in amide solvent. Sci China Chem 2021. [DOI: 10.1007/s11426-020-9905-1] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
32
|
Zhu X, Li X, Li X, Lv J, Sun K, Song X, Yang D. Decarboxylative C–H alkylation of heteroarenes by copper catalysis. Org Chem Front 2021. [DOI: 10.1039/d1qo00210d] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
A copper-catalyzed decarboxylative C–H alkylation of heteroarenes with alkyl carboxylic acids has been realized.
Collapse
Affiliation(s)
- Xiaolong Zhu
- Key Laboratory of Optic-electric Sensing and Analytical Chemistry for Life Science
- MOE
- College of Chemistry and Molecular Engineering
- Qingdao University of Science and Technology
- Qingdao
| | - Xuan Li
- Key Laboratory of Optic-electric Sensing and Analytical Chemistry for Life Science
- MOE
- College of Chemistry and Molecular Engineering
- Qingdao University of Science and Technology
- Qingdao
| | - Xuehao Li
- Key Laboratory of Optic-electric Sensing and Analytical Chemistry for Life Science
- MOE
- College of Chemistry and Molecular Engineering
- Qingdao University of Science and Technology
- Qingdao
| | - Jian Lv
- Key Laboratory of Optic-electric Sensing and Analytical Chemistry for Life Science
- MOE
- College of Chemistry and Molecular Engineering
- Qingdao University of Science and Technology
- Qingdao
| | - Kai Sun
- College of Chemistry and Chemical Engineering
- YanTai University
- Yantai
- P. R. China
| | - Xiuyan Song
- Key Laboratory of Optic-electric Sensing and Analytical Chemistry for Life Science
- MOE
- College of Chemistry and Molecular Engineering
- Qingdao University of Science and Technology
- Qingdao
| | - Daoshan Yang
- Key Laboratory of Optic-electric Sensing and Analytical Chemistry for Life Science
- MOE
- College of Chemistry and Molecular Engineering
- Qingdao University of Science and Technology
- Qingdao
| |
Collapse
|
33
|
Tian M, Wang Y, Bu X, Wang Y, Yang X. An ultrastable olefin-linked covalent organic framework for photocatalytic decarboxylative alkylations under highly acidic conditions. Catal Sci Technol 2021. [DOI: 10.1039/d1cy00293g] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
An ultrastable olefin-linked covalent organic framework 2D-COF-2 offers an alternative heterogeneous photocatalyst for photocatalytic decarboxylative alkylations, exhibiting impressive effciency, sustainabilty and promising industrial potential.
Collapse
Affiliation(s)
- Miao Tian
- Institute of Catalysis for Energy and Environment
- College of Chemistry and Chemical Engineering
- Shenyang Normal University
- Shenyang 110034
- P. R. China
| | - Yichun Wang
- Institute of Catalysis for Energy and Environment
- College of Chemistry and Chemical Engineering
- Shenyang Normal University
- Shenyang 110034
- P. R. China
| | - Xiubin Bu
- Institute of Catalysis for Energy and Environment
- College of Chemistry and Chemical Engineering
- Shenyang Normal University
- Shenyang 110034
- P. R. China
| | - Yichen Wang
- Institute of Catalysis for Energy and Environment
- College of Chemistry and Chemical Engineering
- Shenyang Normal University
- Shenyang 110034
- P. R. China
| | - Xiaobo Yang
- Institute of Catalysis for Energy and Environment
- College of Chemistry and Chemical Engineering
- Shenyang Normal University
- Shenyang 110034
- P. R. China
| |
Collapse
|
34
|
Morgan D, Yarwood SJ, Barker G. Recent Developments in C−H Functionalisation of Benzofurans and Benzothiophenes. European J Org Chem 2020. [DOI: 10.1002/ejoc.202001470] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Affiliation(s)
- David Morgan
- Institute of Chemical Sciences Heriot-Watt University Riccarton EH14 4AS Edinburgh UK
| | - Stephen J. Yarwood
- Institute of Biological Chemistry Biophysics and Bioengineering Heriot-Watt University Riccarton EH14 4AS Edinburgh UK
| | - Graeme Barker
- Institute of Chemical Sciences Heriot-Watt University Riccarton EH14 4AS Edinburgh UK
| |
Collapse
|
35
|
Liu DY, Liu X, Gao Y, Wang CQ, Tian JS, Loh TP. Decarboxylative C-H Alkylation of Heteroarene N-Oxides by Visible Light/Copper Catalysis. Org Lett 2020; 22:8978-8983. [PMID: 33174421 DOI: 10.1021/acs.orglett.0c03382] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
This paper reports a highly site-selective alkylation of heteroarene N-oxides using hypervalent iodine(III) carboxylates to serve as an alkylating agent in the presence of a cheap copper catalyst under visible light conditions. This mild method proceeds at room temperature in an air atmosphere and can withstand various heteroarene N-oxides as well as various primary, secondary, and tertiary alkyl carboxylic acids. It also provides a practical method for enabling the rapid conversion of commercially available raw materials into medically relevant "drug-like" molecules.
Collapse
Affiliation(s)
- Duan-Yang Liu
- Institute of Advanced Synthesis (IAS), Nanjing Tech University (NanjingTech), Nanjing 211816, P. R. China
| | - Xu Liu
- Institute of Advanced Synthesis (IAS), Nanjing Tech University (NanjingTech), Nanjing 211816, P. R. China
| | - Yan Gao
- Institute of Advanced Synthesis (IAS), Northwestern Polytechnical University (NPU), Xi'an 710072, China.,Yangtze River Delta Research Institute of Northwestern Polytechnical University, Taicang, Jiangsu 215400, China
| | - Chao-Qun Wang
- Institute of Advanced Synthesis (IAS), Nanjing Tech University (NanjingTech), Nanjing 211816, P. R. China
| | - Jie-Sheng Tian
- Institute of Advanced Synthesis (IAS), Northwestern Polytechnical University (NPU), Xi'an 710072, China.,Yangtze River Delta Research Institute of Northwestern Polytechnical University, Taicang, Jiangsu 215400, China.,Institute of Advanced Synthesis (IAS), Nanjing Tech University (NanjingTech), Nanjing 211816, P. R. China
| | - Teck-Peng Loh
- Institute of Advanced Synthesis (IAS), Northwestern Polytechnical University (NPU), Xi'an 710072, China.,Yangtze River Delta Research Institute of Northwestern Polytechnical University, Taicang, Jiangsu 215400, China.,Institute of Advanced Synthesis (IAS), Nanjing Tech University (NanjingTech), Nanjing 211816, P. R. China.,Division of Chemistry and Biological Chemistry, School of Physical and Mathematical Sciences, Nanyang Technological University, Singapore 637371
| |
Collapse
|
36
|
Santos MS, Cybularczyk‐Cecotka M, König B, Giedyk M. Minisci C−H Alkylation of Heteroarenes Enabled by Dual Photoredox/Bromide Catalysis in Micellar Solutions**. Chemistry 2020; 26:15323-15329. [DOI: 10.1002/chem.202002320] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2020] [Revised: 06/23/2020] [Indexed: 12/16/2022]
Affiliation(s)
- Marilia S. Santos
- Institute of Organic Chemistry Faculty of Chemistry and Pharmacy University of Regensburg Universitätsstraße 31 93053 Regensburg Germany
| | | | - Burkhard König
- Institute of Organic Chemistry Faculty of Chemistry and Pharmacy University of Regensburg Universitätsstraße 31 93053 Regensburg Germany
| | - Maciej Giedyk
- Institute of Organic Chemistry Polish Academy of Sciences Kasprzaka 44/52 01-224 Warsaw Poland
| |
Collapse
|
37
|
Chen Y, Ni N, Cheng D, Xu X. The coupling of alkylboronic acids with α-(trifluoromethyl)styrenes by Lewis base/photoredox dual catalysis. Tetrahedron Lett 2020. [DOI: 10.1016/j.tetlet.2020.152425] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
38
|
Xu P, Chen P, Xu H. Scalable Photoelectrochemical Dehydrogenative Cross‐Coupling of Heteroarenes with Aliphatic C−H Bonds. Angew Chem Int Ed Engl 2020; 59:14275-14280. [DOI: 10.1002/anie.202005724] [Citation(s) in RCA: 96] [Impact Index Per Article: 19.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2020] [Indexed: 11/06/2022]
Affiliation(s)
- Pin Xu
- State Key Laboratory of Physical Chemistry of Solid Surfaces Key Laboratory of Chemical Biology of Fujian Province iChEM, and College of Chemistry and Chemical Engineering Xiamen University Xiamen 361005 P. R. China
| | - Peng‐Yu Chen
- State Key Laboratory of Physical Chemistry of Solid Surfaces Key Laboratory of Chemical Biology of Fujian Province iChEM, and College of Chemistry and Chemical Engineering Xiamen University Xiamen 361005 P. R. China
| | - Hai‐Chao Xu
- State Key Laboratory of Physical Chemistry of Solid Surfaces Key Laboratory of Chemical Biology of Fujian Province iChEM, and College of Chemistry and Chemical Engineering Xiamen University Xiamen 361005 P. R. China
| |
Collapse
|
39
|
Xu P, Chen P, Xu H. Scalable Photoelectrochemical Dehydrogenative Cross‐Coupling of Heteroarenes with Aliphatic C−H Bonds. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.202005724] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Pin Xu
- State Key Laboratory of Physical Chemistry of Solid Surfaces Key Laboratory of Chemical Biology of Fujian Province iChEM, and College of Chemistry and Chemical Engineering Xiamen University Xiamen 361005 P. R. China
| | - Peng‐Yu Chen
- State Key Laboratory of Physical Chemistry of Solid Surfaces Key Laboratory of Chemical Biology of Fujian Province iChEM, and College of Chemistry and Chemical Engineering Xiamen University Xiamen 361005 P. R. China
| | - Hai‐Chao Xu
- State Key Laboratory of Physical Chemistry of Solid Surfaces Key Laboratory of Chemical Biology of Fujian Province iChEM, and College of Chemistry and Chemical Engineering Xiamen University Xiamen 361005 P. R. China
| |
Collapse
|
40
|
Guo R, Zuo M, Tian Q, Hou C, Sun S, Guo W, Wu H, Chu W, Sun Z. Visible Light‐Induced Decarboxylative Alkylation of Heterocyclic Aromatics with Carboxylic Acids via Anthocyanin as a Photocatalyst. Chem Asian J 2020; 15:1976-1981. [DOI: 10.1002/asia.202000277] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2020] [Revised: 05/07/2020] [Indexed: 11/07/2022]
Affiliation(s)
- Rui Guo
- School of Chemistry and Materials Science Key Laboratory of Chemical Engineering Process & Technology for High-efficiency ConversionHeilongjiang University Harbin 150080 P. R. China
| | - Minghui Zuo
- School of Chemistry and Materials Science Key Laboratory of Chemical Engineering Process & Technology for High-efficiency ConversionHeilongjiang University Harbin 150080 P. R. China
| | - Qinye Tian
- School of Chemistry and Materials Science Key Laboratory of Chemical Engineering Process & Technology for High-efficiency ConversionHeilongjiang University Harbin 150080 P. R. China
| | - Chuanfu Hou
- School of Chemistry and Materials Science Key Laboratory of Chemical Engineering Process & Technology for High-efficiency ConversionHeilongjiang University Harbin 150080 P. R. China
| | - Shouneng Sun
- School of Chemistry and Materials Science Key Laboratory of Chemical Engineering Process & Technology for High-efficiency ConversionHeilongjiang University Harbin 150080 P. R. China
| | - Weihao Guo
- School of Chemistry and Materials Science Key Laboratory of Chemical Engineering Process & Technology for High-efficiency ConversionHeilongjiang University Harbin 150080 P. R. China
| | - Hongfeng Wu
- School of Chemistry and Materials Science Key Laboratory of Chemical Engineering Process & Technology for High-efficiency ConversionHeilongjiang University Harbin 150080 P. R. China
| | - Wenyi Chu
- School of Chemistry and Materials Science Key Laboratory of Chemical Engineering Process & Technology for High-efficiency ConversionHeilongjiang University Harbin 150080 P. R. China
| | - Zhizhong Sun
- School of Chemistry and Materials Science Key Laboratory of Chemical Engineering Process & Technology for High-efficiency ConversionHeilongjiang University Harbin 150080 P. R. China
| |
Collapse
|
41
|
Zhao H, Xu X, Yu H, Li B, Xu X, Li H, Xu L, Fan Q, Walsh PJ. Rh(I)-Catalyzed C6-Selective Decarbonylative Alkylation of 2-Pyridones with Alkyl Carboxylic Acids and Anhydrides. Org Lett 2020; 22:4228-4234. [DOI: 10.1021/acs.orglett.0c01277] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Affiliation(s)
- Haoqiang Zhao
- Department of Chemistry, Renmin University of China, Beijing 100872, China
- Roy and Diana Vagelos Laboratories, Penn/Merck Laboratory for High-Throughput Experimentation, Department of Chemistry, University of Pennsylvania, 231 South 34th Street, Philadelphia, Pennsylvania 19104-6323, United States
| | - Xin Xu
- Department of Chemistry, Renmin University of China, Beijing 100872, China
| | - Haiyang Yu
- Department of Chemistry, Renmin University of China, Beijing 100872, China
| | - Bohan Li
- Department of Chemistry, Renmin University of China, Beijing 100872, China
| | - Xingyu Xu
- Department of Chemistry, Renmin University of China, Beijing 100872, China
| | - Huanrong Li
- Department of Chemistry, Renmin University of China, Beijing 100872, China
| | - Lijin Xu
- Department of Chemistry, Renmin University of China, Beijing 100872, China
| | - Qinghua Fan
- Beijing National Laboratory for Molecular Sciences and Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
| | - Patrick J. Walsh
- Roy and Diana Vagelos Laboratories, Penn/Merck Laboratory for High-Throughput Experimentation, Department of Chemistry, University of Pennsylvania, 231 South 34th Street, Philadelphia, Pennsylvania 19104-6323, United States
| |
Collapse
|
42
|
|
43
|
Lai X, Shu X, Song J, Xu H. Electrophotocatalytic Decarboxylative C−H Functionalization of Heteroarenes. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.202002900] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Xiao‐Li Lai
- State Key Laboratory of Physical Chemistry of Solid Surfaces Laboratory of Chemical Biology of Fujian Province College of Chemistry and Chemical Engineering Xiamen University Xiamen 361005 P. R. China
| | - Xiao‐Min Shu
- State Key Laboratory of Physical Chemistry of Solid Surfaces Laboratory of Chemical Biology of Fujian Province College of Chemistry and Chemical Engineering Xiamen University Xiamen 361005 P. R. China
| | - Jinshuai Song
- College of Chemistry and Institute of Green Catalysis Zhengzhou University Zhengzhou 450001 P. R. China
| | - Hai‐Chao Xu
- State Key Laboratory of Physical Chemistry of Solid Surfaces Laboratory of Chemical Biology of Fujian Province College of Chemistry and Chemical Engineering Xiamen University Xiamen 361005 P. R. China
| |
Collapse
|
44
|
Lai X, Shu X, Song J, Xu H. Electrophotocatalytic Decarboxylative C−H Functionalization of Heteroarenes. Angew Chem Int Ed Engl 2020; 59:10626-10632. [DOI: 10.1002/anie.202002900] [Citation(s) in RCA: 90] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2020] [Indexed: 11/06/2022]
Affiliation(s)
- Xiao‐Li Lai
- State Key Laboratory of Physical Chemistry of Solid Surfaces Laboratory of Chemical Biology of Fujian Province College of Chemistry and Chemical Engineering Xiamen University Xiamen 361005 P. R. China
| | - Xiao‐Min Shu
- State Key Laboratory of Physical Chemistry of Solid Surfaces Laboratory of Chemical Biology of Fujian Province College of Chemistry and Chemical Engineering Xiamen University Xiamen 361005 P. R. China
| | - Jinshuai Song
- College of Chemistry and Institute of Green Catalysis Zhengzhou University Zhengzhou 450001 P. R. China
| | - Hai‐Chao Xu
- State Key Laboratory of Physical Chemistry of Solid Surfaces Laboratory of Chemical Biology of Fujian Province College of Chemistry and Chemical Engineering Xiamen University Xiamen 361005 P. R. China
| |
Collapse
|
45
|
Cao H, Kuang Y, Shi X, Wong KL, Tan BB, Kwan JMC, Liu X, Wu J. Photoinduced site-selective alkenylation of alkanes and aldehydes with aryl alkenes. Nat Commun 2020; 11:1956. [PMID: 32327665 PMCID: PMC7181776 DOI: 10.1038/s41467-020-15878-6] [Citation(s) in RCA: 108] [Impact Index Per Article: 21.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2020] [Accepted: 03/25/2020] [Indexed: 11/09/2022] Open
Abstract
The dehydrogenative alkenylation of C-H bonds with alkenes represents an atom- and step-economical approach for olefin synthesis and molecular editing. Site-selective alkenylation of alkanes and aldehydes with the C-H substrate as the limiting reagent holds significant synthetic value. We herein report a photocatalytic method for the direct alkenylation of alkanes and aldehydes with aryl alkenes in the absence of any external oxidant. A diverse range of commodity feedstocks and pharmaceutical compounds are smoothly alkenylated in useful yields with the C-H partner as the limiting reagent. The late-stage alkenylation of complex molecules occurs with high levels of site selectivity for sterically accessible and electron-rich C-H bonds. This strategy relies on the synergistic combination of direct hydrogen atom transfer photocatalysis with cobaloxime-mediated hydrogen-evolution cross-coupling, which promises to inspire additional perspectives for selective C-H functionalizations in a green manner.
Collapse
Affiliation(s)
- Hui Cao
- Department of Chemistry, National University of Singapore, 3 Science Drive 3, Singapore, 117543, Republic of Singapore.,National University of Singapore (Suzhou) Research Institute, 377 Lin Quan Street, Suzhou Industrial Park, Suzhou, Jiangsu, 215123, P. R. China
| | - Yulong Kuang
- Department of Chemistry, National University of Singapore, 3 Science Drive 3, Singapore, 117543, Republic of Singapore
| | - Xiangcheng Shi
- Department of Chemistry, National University of Singapore, 3 Science Drive 3, Singapore, 117543, Republic of Singapore
| | - Koi Lin Wong
- Department of Chemistry, National University of Singapore, 3 Science Drive 3, Singapore, 117543, Republic of Singapore
| | - Boon Beng Tan
- Department of Chemistry, National University of Singapore, 3 Science Drive 3, Singapore, 117543, Republic of Singapore
| | - Jeric Mun Chung Kwan
- Department of Chemistry, National University of Singapore, 3 Science Drive 3, Singapore, 117543, Republic of Singapore
| | - Xiaogang Liu
- Department of Chemistry, National University of Singapore, 3 Science Drive 3, Singapore, 117543, Republic of Singapore.,National University of Singapore (Suzhou) Research Institute, 377 Lin Quan Street, Suzhou Industrial Park, Suzhou, Jiangsu, 215123, P. R. China
| | - Jie Wu
- Department of Chemistry, National University of Singapore, 3 Science Drive 3, Singapore, 117543, Republic of Singapore. .,National University of Singapore (Suzhou) Research Institute, 377 Lin Quan Street, Suzhou Industrial Park, Suzhou, Jiangsu, 215123, P. R. China.
| |
Collapse
|
46
|
van Vliet KM, van Leeuwen NS, Brouwer AM, de Bruin B. Visible-light-induced addition of carboxymethanide to styrene from monochloroacetic acid. Beilstein J Org Chem 2020; 16:398-408. [PMID: 32273903 PMCID: PMC7113555 DOI: 10.3762/bjoc.16.38] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2020] [Accepted: 03/05/2020] [Indexed: 11/23/2022] Open
Abstract
Where monochloroacetic acid is widely used as a starting material for the synthesis of relevant groups of compounds, many of these synthetic procedures are based on nucleophilic substitution of the carbon chlorine bond. Oxidative or reductive activation of monochloroacetic acid results in radical intermediates, leading to reactivity different from the traditional reactivity of this compound. Here, we investigated the possibility of applying monochloroacetic acid as a substrate for photoredox catalysis with styrene to directly produce γ-phenyl-γ-butyrolactone. Instead of using nucleophilic substitution, we cleaved the carbon chlorine bond by single-electron reduction, creating a radical species. We observed that the reaction works best in nonpolar solvents. The reaction does not go to full conversion, but selectively forms γ-phenyl-γ-butyrolactone and 4-chloro-4-phenylbutanoic acid. Over time the catalyst precipitates from solution (perhaps in a decomposed form in case of fac-[Ir(ppy)3]), which was proven by mass spectrometry and EPR spectroscopy for one of the catalysts (N,N-5,10-di(2-naphthalene)-5,10-dihydrophenazine) used in this work. The generation of HCl resulting from lactone formation could be an additional problem for organometallic photoredox catalysts used in this reaction. In an attempt to trap one of the radical intermediates with TEMPO, we observed a compound indicating the generation of a chloromethyl radical.
Collapse
Affiliation(s)
- Kaj M van Vliet
- Van 't Hoff Institute for Molecular Sciences, Faculty of Science, University of Amsterdam, Science Park 904, 1098 XH Amsterdam, Netherlands
| | - Nicole S van Leeuwen
- Van 't Hoff Institute for Molecular Sciences, Faculty of Science, University of Amsterdam, Science Park 904, 1098 XH Amsterdam, Netherlands
| | - Albert M Brouwer
- Van 't Hoff Institute for Molecular Sciences, Faculty of Science, University of Amsterdam, Science Park 904, 1098 XH Amsterdam, Netherlands
| | - Bas de Bruin
- Van 't Hoff Institute for Molecular Sciences, Faculty of Science, University of Amsterdam, Science Park 904, 1098 XH Amsterdam, Netherlands
| |
Collapse
|
47
|
Tu JL, Liu JL, Tang W, Su M, Liu F. Radical Aza-Cyclization of α-Imino-oxy Acids for Synthesis of Alkene-Containing N-Heterocycles via Dual Cobaloxime and Photoredox Catalysis. Org Lett 2020; 22:1222-1226. [DOI: 10.1021/acs.orglett.0c00224] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- Jia-Lin Tu
- Jiangsu Key Laboratory of Neuropsychiatric Diseases and Department of Medicinal Chemistry, College of Pharmaceutical Sciences, Soochow University, 199 Ren-Ai Road, Suzhou, Jiangsu 215123, People’s Republic of China
| | - Jia-Li Liu
- Jiangsu Key Laboratory of Neuropsychiatric Diseases and Department of Medicinal Chemistry, College of Pharmaceutical Sciences, Soochow University, 199 Ren-Ai Road, Suzhou, Jiangsu 215123, People’s Republic of China
| | - Wan Tang
- Jiangsu Key Laboratory of Neuropsychiatric Diseases and Department of Medicinal Chemistry, College of Pharmaceutical Sciences, Soochow University, 199 Ren-Ai Road, Suzhou, Jiangsu 215123, People’s Republic of China
| | - Ma Su
- Jiangsu Key Laboratory of Neuropsychiatric Diseases and Department of Medicinal Chemistry, College of Pharmaceutical Sciences, Soochow University, 199 Ren-Ai Road, Suzhou, Jiangsu 215123, People’s Republic of China
| | - Feng Liu
- Jiangsu Key Laboratory of Neuropsychiatric Diseases and Department of Medicinal Chemistry, College of Pharmaceutical Sciences, Soochow University, 199 Ren-Ai Road, Suzhou, Jiangsu 215123, People’s Republic of China
| |
Collapse
|
48
|
Tian W, He Y, Song X, Ding H, Ye J, Guo W, Xiao Q. cis
‐Selective Transfer Semihydrogenation of Alkynes by Merging Visible‐Light Catalysis with Cobalt Catalysis. Adv Synth Catal 2020. [DOI: 10.1002/adsc.201901562] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Affiliation(s)
- Wan‐Fa Tian
- Institute of Organic ChemistryJiangxi Science & Technology Normal UniversityKey Laboratory of Organic Chemistry, Jiangxi Province Nanchang 330013, People's Republic of China
| | - Yong‐Qin He
- School of Pharmaceutical ScienceNanchang University Nanchang 330006 People's Republic of China
| | - Xian‐Rong Song
- Institute of Organic ChemistryJiangxi Science & Technology Normal UniversityKey Laboratory of Organic Chemistry, Jiangxi Province Nanchang 330013, People's Republic of China
| | - Hai‐Xin Ding
- Institute of Organic ChemistryJiangxi Science & Technology Normal UniversityKey Laboratory of Organic Chemistry, Jiangxi Province Nanchang 330013, People's Republic of China
| | - Jing Ye
- Institute of Organic ChemistryJiangxi Science & Technology Normal UniversityKey Laboratory of Organic Chemistry, Jiangxi Province Nanchang 330013, People's Republic of China
| | - Wen‐Jie Guo
- Institute of Organic ChemistryJiangxi Science & Technology Normal UniversityKey Laboratory of Organic Chemistry, Jiangxi Province Nanchang 330013, People's Republic of China
| | - Qiang Xiao
- Institute of Organic ChemistryJiangxi Science & Technology Normal UniversityKey Laboratory of Organic Chemistry, Jiangxi Province Nanchang 330013, People's Republic of China
| |
Collapse
|
49
|
Ikarashi G, Morofuji T, Kano N. Terminal-oxidant-free photocatalytic C–H alkylations of heteroarenes with alkylsilicates as alkyl radical precursors. Chem Commun (Camb) 2020; 56:10006-10009. [DOI: 10.1039/d0cc03286g] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Alkylsilicates bearing C,O-bidentate ligands could achieve photocatalytic C–H alkylations of heteroarenes under acidic conditions without adding any terminal oxidant.
Collapse
Affiliation(s)
- Gun Ikarashi
- Department of Chemistry
- Faculty of Science
- Gakushuin University 1-5-1 Mejiro
- Tokyo 171-8588
- Japan
| | - Tatsuya Morofuji
- Department of Chemistry
- Faculty of Science
- Gakushuin University 1-5-1 Mejiro
- Tokyo 171-8588
- Japan
| | - Naokazu Kano
- Department of Chemistry
- Faculty of Science
- Gakushuin University 1-5-1 Mejiro
- Tokyo 171-8588
- Japan
| |
Collapse
|