1
|
Xiong D, Zhang S, Li Z, Yao H, Li L, Huang N, Wang N. Nucleophile-Controlled Regiodivergent Domino Reactions of Enetriones with γ-Bromocrotonates: Access to 1,3-Dienic Esters and Tetrasubstituted Pyrans. J Org Chem 2025; 90:5838-5844. [PMID: 40265728 DOI: 10.1021/acs.joc.4c03159] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/24/2025]
Abstract
Herein, we developed an efficient nucleophile-controlled regiodivergent domino reaction between enetriones and γ-bromocrotonates. This method allowed for the rapid synthesis of a range of 1,3-dienic esters and tetrasubstituted pyrans under metal-free conditions. In the presence of pyridine, a SN2 substitution/Michael addition/elimination sequence formed 1,3-dienic esters in satisfactory yields with high E-stereoselectivities. Alternatively, a SN2 substitution/Michael addition/cyclization/cyclopropanation/cyclopropane ring-opening process forged tetrasubstituted pyrans in good yields with the help of Et3N. It is interesting to note that the site-selective reactions of γ-bromocrotonates at the α- or γ-position were readily realized by modulating pyridine and Et3N. Furthermore, the simple pyridine and Et3N act as both nucleophiles in SN2 substitution reactions and Lewis bases in deprotonation processes.
Collapse
Affiliation(s)
- Dan Xiong
- Hubei Key Laboratory of Natural Products Research and Development, College of Biological and Pharmaceutical Sciences, China Three Gorges University, Yichang, Hubei 443002, China
| | - Sen Zhang
- Hubei Key Laboratory of Natural Products Research and Development, College of Biological and Pharmaceutical Sciences, China Three Gorges University, Yichang, Hubei 443002, China
| | - Zhiyue Li
- Hubei Key Laboratory of Natural Products Research and Development, College of Biological and Pharmaceutical Sciences, China Three Gorges University, Yichang, Hubei 443002, China
| | - Hui Yao
- Hubei Key Laboratory of Natural Products Research and Development, College of Biological and Pharmaceutical Sciences, China Three Gorges University, Yichang, Hubei 443002, China
- Hubei Three Gorges Laboratory, Yichang, Hubei 443007, China
| | - Linxuan Li
- Hubei Key Laboratory of Natural Products Research and Development, College of Biological and Pharmaceutical Sciences, China Three Gorges University, Yichang, Hubei 443002, China
| | - Nianyu Huang
- Hubei Key Laboratory of Natural Products Research and Development, College of Biological and Pharmaceutical Sciences, China Three Gorges University, Yichang, Hubei 443002, China
- Hubei Three Gorges Laboratory, Yichang, Hubei 443007, China
| | - Nengzhong Wang
- Hubei Key Laboratory of Natural Products Research and Development, College of Biological and Pharmaceutical Sciences, China Three Gorges University, Yichang, Hubei 443002, China
- Hubei Three Gorges Laboratory, Yichang, Hubei 443007, China
| |
Collapse
|
2
|
Bertus P, Caillé J. Advances in the Synthesis of Cyclopropylamines. Chem Rev 2025; 125:3242-3377. [PMID: 40048498 DOI: 10.1021/acs.chemrev.4c00674] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/27/2025]
Abstract
Cyclopropylamines are an important subclass of substituted cyclopropanes that combine the unique electronic and steric properties of cyclopropanes with the presence of a donor nitrogen atom. In addition to their presence in a diverse array of biologically active compounds, cyclopropylamines are utilized as important synthetic intermediates, particularly in ring-opening or cycloaddition reactions. Consequently, the synthesis of these compounds has constituted a significant research topic, as evidenced by the abundant published synthetic methods. In addition to the widely used Curtius rearrangement, classical cyclopropanation methods have been adapted to integrate a nitrogen function (Simmons-Smith reaction, metal-catalyzed reaction of diazo compounds on olefins, Michael-initiated ring-closure reactions) with significant advances in enantioselective synthesis. More recently, specific methods have been developed for the preparation of the aminocyclopropane moiety (Kulinkovich reactions applied to amides and nitriles, addition to cyclopropenes, metal-catalyzed reactions involving C-H functionalization, ...). The topic of this review is to present the different methods for the preparation of cyclopropylamine derivatives, with the aim of covering the methodological advances as best as possible, highlighting their scope, their stereochemical aspects and future trends.
Collapse
Affiliation(s)
- Philippe Bertus
- Institut des Molécules et Matériaux du Mans, IMMM, CNRS UMR 6283, Le Mans Université, 72000 Le Mans, France
| | - Julien Caillé
- Institut de Chimie Organique et Analytique, ICOA, CNRS UMR 7311, University of Orléans, 45100 Orléans, France
| |
Collapse
|
3
|
Yu S, Yu JT, Pan C. Advances in the synthesis of functionalized tetrahydropyridazines from hydrazones. Org Biomol Chem 2024; 22:7753-7766. [PMID: 39206967 DOI: 10.1039/d4ob01147c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/04/2024]
Abstract
The tetrahydropyridazine motif is widely present in plenty of natural products and biologically active molecules. Easily prepared from the condensation of carbonyls with hydrazines, hydrazones are versatile synthetic building blocks that are frequently used in organic synthesis. Hydrazones are also utilized in the synthesis of nitrogen-containing molecules, especially nitrogen-containing heterocycles. The presence of the CN-N unit in the product makes hydrazones ideal substrates for the synthesis of tetrahydropyridazine derivatives. Here, in this review, we summarize the recent progress in the construction of variously substituted tetrahydropyridazines from different hydrazone derivatives together with mechanism discussions.
Collapse
Affiliation(s)
- Sheng Yu
- School of Petrochemical Engineering, Changzhou University, Changzhou 213164, P. R. China.
| | - Jin-Tao Yu
- School of Petrochemical Engineering, Changzhou University, Changzhou 213164, P. R. China.
| | - Changduo Pan
- School of Chemistry and Chemical Engineering, Jiangsu University of Technology, Changzhou 213001, P. R. China.
| |
Collapse
|
4
|
Zhou H, Li Z, Chen J, Zhou S, Wang X, Zhang L, Chen J, Lv N. Synthesis of polysubstituted pyridazines via Cu-mediated C(sp 3)-C(sp 3) coupling/annulation of saturated ketones with acylhydrazones. Chem Commun (Camb) 2024; 60:9546-9549. [PMID: 39145417 DOI: 10.1039/d4cc02760d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/16/2024]
Abstract
Pyridazine is a significant skeleton that widely exists in drugs and bioactive molecules. We herein describe expeditious approaches to access polysubstituted pyridazines from readily accessible unactivated ketones and acylhydrazones via Cu-promoted C(sp3)-C(sp3) coupling/cyclization sequences in a single-step fashion. Notably, the disparate 3,4,6-trisubstituted pyridazines and 3,5-disubstituted pyridazines could be obtained by tailoring the ketone's structure and reaction conditions. These transformations feature good functional group compatibility, excellent step-economy, and chemoselectivity. The potential synthetic utility of these conversions is illustrated by scale-up reactions and late-stage derivatizations of the as-prepared pyridazine products.
Collapse
Affiliation(s)
- Honggui Zhou
- College of Chemistry & Materials Engineering, Wenzhou University, Wenzhou 325035, China.
| | - Zhefeng Li
- College of Chemistry & Materials Engineering, Wenzhou University, Wenzhou 325035, China.
| | - Juehong Chen
- College of Chemistry & Materials Engineering, Wenzhou University, Wenzhou 325035, China.
| | - Si Zhou
- College of Chemistry & Materials Engineering, Wenzhou University, Wenzhou 325035, China.
| | - Xinyu Wang
- College of Chemistry & Materials Engineering, Wenzhou University, Wenzhou 325035, China.
| | - Linwei Zhang
- College of Chemistry & Materials Engineering, Wenzhou University, Wenzhou 325035, China.
| | - Jiuxi Chen
- College of Chemistry & Materials Engineering, Wenzhou University, Wenzhou 325035, China.
| | - Ningning Lv
- College of Chemistry & Materials Engineering, Wenzhou University, Wenzhou 325035, China.
- Key Lab of Biohealth Materials and Chemistry of Wenzhou, Wenzhou 325035, China
| |
Collapse
|
5
|
Chen S, Liang P, Cai Y, Zhou L, Wang S. Substrate-directed divergent annulations of sulfur ylides: synthesis of functionalized bispirocyclopentane and bispirocyclopropane derivatives. Org Biomol Chem 2024; 22:2197-2202. [PMID: 38411569 DOI: 10.1039/d4ob00146j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/28/2024]
Abstract
Herein, an efficient, substrate-directed divergent [2 + 3]/[2 + 1] annulation of tetra-substituted oxa-dienes and allylic sulfur ylides has been successfully developed. Under precise annulation regulation, a series of functionalized bispirocyclopentane and bispirocyclopropane derivatives were synthesized in a highly stereoselective and economical manner (up to 95% yield, >20 : 1 dr or >20 : 1 E/Z). This protocol offers the advantages of mild conditions, high chemo-, regio- and diastereoselectivity and broad substrate compatibility. In addition, the synthetic practicality of this protocol was evaluated through a scale-up preparation and a series of three-component reactions utilizing in situ generated sulfur ylides.
Collapse
Affiliation(s)
- Siyi Chen
- Strait Institute of Flexible Electronics (SIFE, Future Technologies), Fujian Key Laboratory of Flexible Electronics, Fujian Normal University and Strait Laboratory of Flexible Electronics (SLoFE), Fuzhou 350117, China.
| | - Peiyao Liang
- Strait Institute of Flexible Electronics (SIFE, Future Technologies), Fujian Key Laboratory of Flexible Electronics, Fujian Normal University and Strait Laboratory of Flexible Electronics (SLoFE), Fuzhou 350117, China.
| | - Yilin Cai
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, Department of Chemistry, Zhejiang Normal University, Jinhua 321004, China.
| | - Liejin Zhou
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, Department of Chemistry, Zhejiang Normal University, Jinhua 321004, China.
| | - Shoulei Wang
- Strait Institute of Flexible Electronics (SIFE, Future Technologies), Fujian Key Laboratory of Flexible Electronics, Fujian Normal University and Strait Laboratory of Flexible Electronics (SLoFE), Fuzhou 350117, China.
| |
Collapse
|
6
|
Jin HS, Zhu T. Synthesis of Benzofuran-Fused Oxepines through Cs 2CO 3-Promoted [4 + 3] Annulation of Aurones with Crotonate-Derived Sulfonium Salts. J Org Chem 2024; 89:3271-3278. [PMID: 38332626 DOI: 10.1021/acs.joc.3c02715] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/10/2024]
Abstract
Benzofuran-fused derivatives display important and reliable therapeutic properties. Herein, we describe the synthesis of benzofuran-fused oxepines using aurones and crotonate-derived sulfonium salts via a [4 + 3] annulation reaction in the presence of Cs2CO3. This reaction proceeds under mild and operationally simple conditions. The synthetic utility of this approach was highlighted by several transformations, including the efficient synthesis of a novel tetracyclic fused benzofuran derivative.
Collapse
Affiliation(s)
- Hai-Shan Jin
- School of Chemistry and Materials Science, Jiangsu Normal University, Xuzhou 221116, Jiangsu, China
| | - Tong Zhu
- School of Chemistry and Materials Science, Jiangsu Normal University, Xuzhou 221116, Jiangsu, China
| |
Collapse
|
7
|
Wu Y, Wu X, Liu L, Yu JT, Pan C. Photocatalytic Carbosulfonylation/Cyclization of N-Homoallyl and N-Allyl Aldehyde Hydrazones toward Sulfonylated Tetrahydropyridazines and Dihydropyrazoles. Org Lett 2024; 26:122-126. [PMID: 38160407 DOI: 10.1021/acs.orglett.3c03733] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2024]
Abstract
N'-Benzylidene-N-homoallylacetohydrazides were designed and synthesized as novel skeletons for the construction of functionalized tetrahydropyridazines. A series of aryl- and alkylsulfonylated tetrahydropyridazines were obtained in yields of up to 94% employing sulfonyl chlorides as the sulfonyl radical sources under visible-light irradiation. Besides, sulfonylated dihydropyrazoles were also produced from N-allyl-N'-benzylideneacetohydrazides. Mechanistic investigations indicated that both energy transfer and single electron transfer processes were involved in accomplishing the radical 6/5-endo-trig cyclization to the C═N bond.
Collapse
Affiliation(s)
- Yechun Wu
- School of Petrochemical Engineering, Changzhou University, Changzhou 213164, P. R. China
| | - Xian Wu
- School of Petrochemical Engineering, Changzhou University, Changzhou 213164, P. R. China
| | - Lingli Liu
- School of Petrochemical Engineering, Changzhou University, Changzhou 213164, P. R. China
| | - Jin-Tao Yu
- School of Petrochemical Engineering, Changzhou University, Changzhou 213164, P. R. China
| | - Changduo Pan
- School of Petrochemical Engineering, Changzhou University, Changzhou 213164, P. R. China
- School of Chemistry and Chemical Engineering, Jiangsu University of Technology, Changzhou 213001, P. R. China
| |
Collapse
|
8
|
Zheng J, Gu H, Chen Q, Yang W. Access to thiazoline and spiro[indoline-3,3'-thiophene] scaffolds via a formal [3 + 2] annulation reaction of crotonate-derived sulfur ylides and β-ketothioamides. Org Biomol Chem 2023; 21:2069-2080. [PMID: 36807484 DOI: 10.1039/d3ob00087g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
A formal [3 + 2] annulation reaction of crotonate-derived sulfur ylides and β-ketothioamides (KTAs) was successfully developed to produce good-to-excellent yields of thiazoline and spiro[indoline-3,3'-thiophene] scaffolds. This transformation is a powerful tool for the synthesis of thiazoline and spiro[indoline-3,3'-thiophene] scaffolds due to its mild reaction conditions, easily accessible starting materials, and broad substrate scope. A large-scale reaction was carried out to ensure the practical applicability of this methodology. Finally, the plausible mechanistic pathway of the developed methodology was investigated.
Collapse
Affiliation(s)
- Jing Zheng
- School of Chemistry and Chemical Engineering, Nanchang University, 999 XueFu Road, Nanchang, 330031, China.
| | - Hong Gu
- School of Chemistry and Chemical Engineering, Nanchang University, 999 XueFu Road, Nanchang, 330031, China.
| | - Qinfang Chen
- School of Chemistry and Chemical Engineering, Nanchang University, 999 XueFu Road, Nanchang, 330031, China.
| | - Weiran Yang
- School of Chemistry and Chemical Engineering, Nanchang University, 999 XueFu Road, Nanchang, 330031, China.
| |
Collapse
|
9
|
Hsueh NC, Wang YH, Chang MY. Sequential condensation and double desulfonylative cyclopropanation of 1,2-bis(sulfonylmethyl)arenes with 3-arylacroleins: access to biscyclopropane-fused tetralins. Org Biomol Chem 2023; 21:1206-1221. [PMID: 36632710 DOI: 10.1039/d2ob02188a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Efficient tBuOK-mediated sequential condensation and double desulfonylative cyclopropanation of readily accessible 1,2-bis(sulfonylmethyl)arenes with 3-arylacroleins is described. This high-yielding, single-step strategy provides a variety of polysubstituted biscyclopropane-fused tetralins with six contiguous stereogenic centers via the construction of five carbon-carbon single bonds. A plausible mechanism is proposed and discussed. In the overall reaction process, water and sulfinic acid salts were generated as the byproducts.
Collapse
Affiliation(s)
- Nai-Chen Hsueh
- Department of Medicinal and Applied Chemistry, Kaohsiung Medical University, Kaohsiung 807, Taiwan.
| | - Yu-Han Wang
- Department of Medicinal and Applied Chemistry, Kaohsiung Medical University, Kaohsiung 807, Taiwan.
| | - Meng-Yang Chang
- Department of Medicinal and Applied Chemistry, Kaohsiung Medical University, Kaohsiung 807, Taiwan. .,Department of Medical Research, Kaohsiung Medical University Hospital, Kaohsiung 807, Taiwan.,NPUST College of Professional Studies, National Pingtung University of Science and Technology, Pingtung 912, Taiwan
| |
Collapse
|
10
|
Wun BJ, Hu YC, Chi CY, Chuang GJ. Photoinduced Decarbonylative Rearrangement of Diazabicyclo[2.2.2]Octenones: A Photochemical Approach of Diazabicyclo[4.1.0]heptene Skeleton from Masked o-Benzoquinone. J Org Chem 2023; 88:1235-1244. [PMID: 36606370 DOI: 10.1021/acs.joc.2c02373] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
We report a photoinduced decarbonylative rearrangement of diazabicyclo[2.2.2]octenone in the facile synthesis of a functionalized diazabicyclo[4.1.0]heptene skeleton, a unique derivative of the hydropyridazine type structure which could be found in a variety of biologically active natural products. The scope of functional group compatibility in the photoreaction was examined by taking advantage of the easy access of the heterobicyclo[2.2.2] structure from the Diels-Alder reaction of masked o-benzoquinones. 4-Phenyl-1,2,4-triazoline-3,5-dione served as the dienophile which provided the adjacent N-N unit in hexahydropyridazine-type products of subsequent photorearrangement.
Collapse
Affiliation(s)
- Bo-Jyun Wun
- Department of Chemistry, Chung Yuan Christian University, Chung-Li 320314, Taiwan
| | - Yung-Chen Hu
- Department of Chemistry, Chung Yuan Christian University, Chung-Li 320314, Taiwan
| | - Chu-Yun Chi
- Department of Chemistry, Chung Yuan Christian University, Chung-Li 320314, Taiwan
| | - Gary Jing Chuang
- Department of Chemistry, Chung Yuan Christian University, Chung-Li 320314, Taiwan
| |
Collapse
|
11
|
Yu J, Wang X, Xu M, Zhang B, Xiong Z, Mao H, Lv X, Zhou L. Synthesis of α-pyrones via gold-catalyzed cycloisomerization/[2 + 1] cycloaddition/rearrangement of enyne-amides and sulfur ylides. Org Chem Front 2023. [DOI: 10.1039/d2qo01388f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
A novel gold-catalyzed cycloisomerization/[2 + 1]cycloaddition/rearrangement of enyne-amides and sulfur ylides is reported. This strategy enables rapid and efficient construction of a series of α-pyrone derivatives.
Collapse
Affiliation(s)
- Jinhang Yu
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, Department of Chemistry, Zhejiang Normal University, 688 Yingbin Road, Jinhua 321004, P. R. China
| | - Xinyuan Wang
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, Department of Chemistry, Zhejiang Normal University, 688 Yingbin Road, Jinhua 321004, P. R. China
| | - Mengjiao Xu
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, Department of Chemistry, Zhejiang Normal University, 688 Yingbin Road, Jinhua 321004, P. R. China
| | - Bei Zhang
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, Department of Chemistry, Zhejiang Normal University, 688 Yingbin Road, Jinhua 321004, P. R. China
| | - Zuping Xiong
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, Department of Chemistry, Zhejiang Normal University, 688 Yingbin Road, Jinhua 321004, P. R. China
| | - Hui Mao
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, Department of Chemistry, Zhejiang Normal University, 688 Yingbin Road, Jinhua 321004, P. R. China
| | - Xin Lv
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, Department of Chemistry, Zhejiang Normal University, 688 Yingbin Road, Jinhua 321004, P. R. China
| | - Liejin Zhou
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, Department of Chemistry, Zhejiang Normal University, 688 Yingbin Road, Jinhua 321004, P. R. China
| |
Collapse
|
12
|
Diaza-1,3-butadienes as Useful Intermediate in Heterocycles Synthesis. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27196708. [PMID: 36235245 PMCID: PMC9573662 DOI: 10.3390/molecules27196708] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/11/2022] [Revised: 07/26/2022] [Accepted: 07/26/2022] [Indexed: 11/05/2022]
Abstract
Many heterocyclic compounds can be synthetized using diaza-1,3-butadienes (DADs) as key structural precursors. Isolated and in situ diaza-1,3-butadienes, produced from their respective precursors (typically imines and hydrazones) under a variety of conditions, can both react with a wide range of substrates in many kinds of reactions. Most of these reactions discussed here include nucleophilic additions, Michael-type reactions, cycloadditions, Diels–Alder, inverse electron demand Diels–Alder, and aza-Diels–Alder reactions. This review focuses on the reports during the last 10 years employing 1,2-diaza-, 1,3-diaza-, 2,3-diaza-, and 1,4-diaza-1,3-butadienes as intermediates to synthesize heterocycles such as indole, pyrazole, 1,2,3-triazole, imidazoline, pyrimidinone, pyrazoline, -lactam, and imidazolidine, among others. Fused heterocycles, such as quinazoline, isoquinoline, and dihydroquinoxaline derivatives, are also included in the review.
Collapse
|
13
|
Mari G, De Crescentini L, Favi G, Santeusanio S, Mantellini F. A facile protocol for the preparation of 2-carboxylated thieno [2,3- b] indoles: a de novo access to alkaloid thienodolin. Org Biomol Chem 2022; 20:4167-4175. [PMID: 35531860 DOI: 10.1039/d2ob00440b] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A metal-free strategy, alternative to the known complex cycloaddition reactions, towards 2-carboxylated thieno [2,3-b] indole derivatives has been successfully developed. The novel approach involves as starting materials easy accessible 1,2-diaza-1,3-dienes and indoline 2-thione and requires mild reaction conditions. Furthermore, the easy work-up required makes this method amenable for a one-pot approach as demonstrated in the preparation of thienodolin, a natural product isolated from Streptomyces albogriseolus that exhibits valuable biological properties.
Collapse
Affiliation(s)
- Giacomo Mari
- Department of Biomolecular Sciences, Section of Chemistry and Pharmaceutical Technologies, University of Urbino "Carlo Bo", Via I Maggetti 24, 61029 Urbino, PU, Italy.
| | - Lucia De Crescentini
- Department of Biomolecular Sciences, Section of Chemistry and Pharmaceutical Technologies, University of Urbino "Carlo Bo", Via I Maggetti 24, 61029 Urbino, PU, Italy.
| | - Gianfranco Favi
- Department of Biomolecular Sciences, Section of Chemistry and Pharmaceutical Technologies, University of Urbino "Carlo Bo", Via I Maggetti 24, 61029 Urbino, PU, Italy.
| | - Stefania Santeusanio
- Department of Biomolecular Sciences, Section of Chemistry and Pharmaceutical Technologies, University of Urbino "Carlo Bo", Via I Maggetti 24, 61029 Urbino, PU, Italy.
| | - Fabio Mantellini
- Department of Biomolecular Sciences, Section of Chemistry and Pharmaceutical Technologies, University of Urbino "Carlo Bo", Via I Maggetti 24, 61029 Urbino, PU, Italy.
| |
Collapse
|
14
|
Chatterjee A, Radhakrishnan D, Bandyopadhyay D, Kanchithalaivan S, Peruncheralathan S. Metal‐free ring opening of 5‐amino‐1,
4‐diaryl‐1
H
‐pyrazoles: A facile access to 2‐aryl‐3‐arylazoacrylonitriles. J Heterocycl Chem 2022. [DOI: 10.1002/jhet.4439] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Arpita Chatterjee
- School of Chemical Sciences National Institute of Science Education and Research (NISER) Bhubaneswar India
| | - Divya Radhakrishnan
- School of Chemical Sciences National Institute of Science Education and Research (NISER) Bhubaneswar India
| | - Debashruti Bandyopadhyay
- School of Chemical Sciences National Institute of Science Education and Research (NISER) Bhubaneswar India
| | - Selvaraj Kanchithalaivan
- School of Chemical Sciences National Institute of Science Education and Research (NISER) Bhubaneswar India
| | - Saravanan Peruncheralathan
- School of Chemical Sciences National Institute of Science Education and Research (NISER) Bhubaneswar India
| |
Collapse
|
15
|
Wang C, Fang L, Zhang L, Wang Y, Gao F, Wang Z. Base-mediated unprecedented tandem cyclization reaction of nitrilimines and sulfur ylides: facile approaches to multifunctionalized pyrazolines. Org Chem Front 2022. [DOI: 10.1039/d2qo00232a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
An interesting three-component tandem reaction between hydrazonoyl chlorides and α-keto-derived sulfonium salts is reported. Highly substituted pyrazolines were obtained in moderate to excellent yield under mild conditions. Moreover, α-keto-stabilised sulfur...
Collapse
|
16
|
Li JL, Li QZ, Zou WL, Jia ZQ. Recent Advances on Annulation Reactions with Allyl and Propargyl Sulfonium Salts. SYNTHESIS-STUTTGART 2022. [DOI: 10.1055/a-1578-2911] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
AbstractAllyl and propargyl sulfonium salts are readily available reagents that have recently emerged as versatile building blocks for the assembly of cyclic skeletons. As an alternative to classical sulfonium salts, allyl and propargyl sulfonium salts can be converted into the corresponding vinyl sulfur ylide or allenic sulfonium salt intermediates that contain diverse nucleophilic or electrophilic reactive positions, thereby enabling a great variety of annulation reactions. In this short review, we provide a comprehensive overview of the recent developments in this growing field by summarizing annulation reactions involving allyl and propargyl sulfonium salts. 1 Introduction2 Annulations with Allyl Sulfonium Salts3 Annulations with Propargyl Sulfonium Salts4 Conclusion
Collapse
|
17
|
Zhang L, Fang L, Huang H, Wang C, Gao F, Wang Z. Synthesis of Benzo[ e][1,4]thiazepines by Base-Induced Formal [4+3] Annulation Reaction of Aza- o-quinone Methides and Pyridinium 1,4-Zwitterionic Thiolates. J Org Chem 2021; 86:18156-18163. [PMID: 34866383 DOI: 10.1021/acs.joc.1c02433] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The base-induced formal [4+3] annulation reaction of in situ-formed aza-o-quinone methides and pyridinium 1,4-zwitterionic thiolates is reported. This protocol provides a novel and reliable method for the synthesis of biologically interesting benzo[e][1,4]thiazepine derivatives in synthetically useful yields. In addition, postsynthetic modification results in the formation of its sulfoxide and sulfone derivatives.
Collapse
Affiliation(s)
- Lijie Zhang
- School of Chemistry and Chemical Engineering, Chongqing University, Chongqing 401331, P. R. China
| | - Ling Fang
- College of Environment and Resources, Chongqing Technology and Business University, Chongqing 400067, P. R. China
| | - Hao Huang
- School of Chemistry and Chemical Engineering, Chongqing University, Chongqing 401331, P. R. China
| | - Chaofan Wang
- School of Chemistry and Chemical Engineering, Chongqing University, Chongqing 401331, P. R. China
| | - Fang Gao
- School of Chemistry and Chemical Engineering, Chongqing University, Chongqing 401331, P. R. China
| | - Zhiyong Wang
- School of Chemistry and Chemical Engineering, Chongqing University, Chongqing 401331, P. R. China
| |
Collapse
|
18
|
Lv Y, Meng J, Li C, Wang X, Ye Y, Sun K. Update on the Synthesis of N‐Heterocycles via Cyclization of Hydrazones (2017–2021). Adv Synth Catal 2021. [DOI: 10.1002/adsc.202101184] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Affiliation(s)
- Yunhe Lv
- College of Chemistry and Chemical Engineering Anyang Normal University Anyang 4550008 People's Republic of China
| | - Jianping Meng
- College of Chemistry and Chemical Engineering Yantai University Yantai 264005 People's Republic of China
| | - Chen Li
- College of Chemistry and Chemical Engineering Yantai University Yantai 264005 People's Republic of China
| | - Xin Wang
- College of Chemistry and Chemical Engineering Yantai University Yantai 264005 People's Republic of China
| | - Yong Ye
- College of Chemistry Zhengzhou University Zhengzhou 450001 People's Republic of China
| | - Kai Sun
- College of Chemistry and Chemical Engineering Yantai University Yantai 264005 People's Republic of China
| |
Collapse
|
19
|
Yang K, Li Z, Sheng Y, Deng J, Song Y, Liu Z, Jia A. Construction of CF
3
‐containing Oxepino[2,3‐
c
]pyrazole Motif via Sulfur Ylide‐mediated Annulation or Me
2
S involved One‐pot Reaction. ASIAN J ORG CHEM 2021. [DOI: 10.1002/ajoc.202100494] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Affiliation(s)
- Kaichuan Yang
- Jinhua Branch Sichuan Industrial Institute of Antibiotics Chengdu University Chengdu 610106 P. R. China
- Antibiotics Research and Re-evaluation Key Laboratory of Sichuan Province Sichuan Industrial Institute of Antibiotics, School of Pharmacy Chengdu University Chengdu 610106 P. R.China
| | - Zhi Li
- Antibiotics Research and Re-evaluation Key Laboratory of Sichuan Province Sichuan Industrial Institute of Antibiotics, School of Pharmacy Chengdu University Chengdu 610106 P. R.China
| | - Yiqun Sheng
- Jinhua Branch Sichuan Industrial Institute of Antibiotics Chengdu University Chengdu 610106 P. R. China
| | - Junfeng Deng
- Antibiotics Research and Re-evaluation Key Laboratory of Sichuan Province Sichuan Industrial Institute of Antibiotics, School of Pharmacy Chengdu University Chengdu 610106 P. R.China
| | - Yanxia Song
- Antibiotics Research and Re-evaluation Key Laboratory of Sichuan Province Sichuan Industrial Institute of Antibiotics, School of Pharmacy Chengdu University Chengdu 610106 P. R.China
| | - Zhenxiang Liu
- College of Pharmacy Jinhua Polytechnic Jinhua 321007 P. R. China
| | - Aiqiong Jia
- Antibiotics Research and Re-evaluation Key Laboratory of Sichuan Province Sichuan Industrial Institute of Antibiotics, School of Pharmacy Chengdu University Chengdu 610106 P. R.China
| |
Collapse
|
20
|
Aza-Diels-Alder reaction of both electron-deficient azoalkenes with electron-deficient 3-phencaylideneoxindoles and 3-aryliminooxindol-2-ones. GREEN SYNTHESIS AND CATALYSIS 2021. [DOI: 10.1016/j.gresc.2021.08.003] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
|
21
|
Shen LW, Li TT, You Y, Zhao JQ, Wang ZH, Yuan WC. Inverse Electron-Demand Aza-Diels-Alder Reaction of Cyclic Enamides with 1,2-Diaza-1,3-dienes in Situ Generated from α-Halogeno Hydrazones: Access to Fused Polycyclic Tetrahydropyridazine Derivatives. J Org Chem 2021; 86:11472-11481. [PMID: 34343003 DOI: 10.1021/acs.joc.1c00993] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
An efficient inverse electron-demand aza-Diels-Alder reaction of cyclic enamides and 1,2-diaza-1,3-dienes, which could be readily formed in situ from α-halogeno hydrazones and a base, has been successfully developed. With the developed approach, a wide range of fused polycyclic tetrahydropyridazines were smoothly obtained in up to 99% yield under benign reaction conditions. This reaction concept was also extended to acyclic enamide substrates for accessing 1,4,5,6-tetrahydropyridazines. A gram-scale experiment and further derivatizations of the polycyclic tetrahydropyridazine products were also conducted to verify the practicability of the methodology.
Collapse
Affiliation(s)
- Li-Wen Shen
- National Engineering Research Center of Chiral Drugs, Chengdu Institute of Organic Chemistry, Chinese Academy of Sciences, Chengdu, 610041, China.,Institute for Advanced Study, Chengdu University, Chengdu 610106, China.,University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Ting-Ting Li
- National Engineering Research Center of Chiral Drugs, Chengdu Institute of Organic Chemistry, Chinese Academy of Sciences, Chengdu, 610041, China.,Institute for Advanced Study, Chengdu University, Chengdu 610106, China.,University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Yong You
- Institute for Advanced Study, Chengdu University, Chengdu 610106, China
| | - Jian-Qiang Zhao
- Institute for Advanced Study, Chengdu University, Chengdu 610106, China
| | - Zhen-Hua Wang
- Institute for Advanced Study, Chengdu University, Chengdu 610106, China
| | - Wei-Cheng Yuan
- Institute for Advanced Study, Chengdu University, Chengdu 610106, China
| |
Collapse
|
22
|
Wang C, Fang L, Wang Z. Base-induced inverse-electron-demand aza-Diels-Alder reaction of azoalkenes and 1,3,5-triazinanes: Facile approaches to tetrahydro-1,2,4-triazines. Tetrahedron Lett 2021. [DOI: 10.1016/j.tetlet.2021.153303] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
|
23
|
Fei X, Zhao Y, Yang F, Guan X, Li Z, Wang D, Zhou M, Yang Y, He B. Construction of Oxepino[3,2‐
b
]indoles via [4+3] Annulation of 2‐Ylideneoxindoles with Crotonate‐Derived Sulfur Ylides. Adv Synth Catal 2021. [DOI: 10.1002/adsc.202001580] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Affiliation(s)
- Xing‐Hai Fei
- State Key Laboratory of Functions and Applications of Medicinal Plants School of Pharmacy Engineering Research Center for the Development and Application of Ethnic Medicine and TCM (Ministry of Education) Guizhou Medical University Guiyang 550004 People's Republic of China
| | - Yong‐Long Zhao
- State Key Laboratory of Functions and Applications of Medicinal Plants School of Pharmacy Engineering Research Center for the Development and Application of Ethnic Medicine and TCM (Ministry of Education) Guizhou Medical University Guiyang 550004 People's Republic of China
| | - Fen‐Fen Yang
- State Key Laboratory of Functions and Applications of Medicinal Plants School of Pharmacy Engineering Research Center for the Development and Application of Ethnic Medicine and TCM (Ministry of Education) Guizhou Medical University Guiyang 550004 People's Republic of China
| | - Xiang Guan
- State Key Laboratory of Functions and Applications of Medicinal Plants School of Pharmacy Engineering Research Center for the Development and Application of Ethnic Medicine and TCM (Ministry of Education) Guizhou Medical University Guiyang 550004 People's Republic of China
| | - Zong‐Qin Li
- Department of Neurology Sichuan Mianyang 404 Hospital Mianyang 621000 People's Republic of China
| | - Da‐Peng Wang
- Key Laboratory of Environmental Pollution Monitoring and Disease Control Ministry of Education Guizhou Medical University Guiyang 550025 People's Republic of China
| | - Meng Zhou
- State Key Laboratory of Functions and Applications of Medicinal Plants School of Pharmacy Engineering Research Center for the Development and Application of Ethnic Medicine and TCM (Ministry of Education) Guizhou Medical University Guiyang 550004 People's Republic of China
| | - Yuan‐Yong Yang
- State Key Laboratory of Functions and Applications of Medicinal Plants School of Pharmacy Engineering Research Center for the Development and Application of Ethnic Medicine and TCM (Ministry of Education) Guizhou Medical University Guiyang 550004 People's Republic of China
| | - Bin He
- State Key Laboratory of Functions and Applications of Medicinal Plants School of Pharmacy Engineering Research Center for the Development and Application of Ethnic Medicine and TCM (Ministry of Education) Guizhou Medical University Guiyang 550004 People's Republic of China
| |
Collapse
|
24
|
Mondal B, Maiti R, Yang X, Xu J, Tian W, Yan JL, Li X, Chi YR. Carbene-catalyzed enantioselective annulation of dinucleophilic hydrazones and bromoenals for access to aryl-dihydropyridazinones and related drugs. Chem Sci 2021; 12:8778-8783. [PMID: 34257877 PMCID: PMC8246082 DOI: 10.1039/d1sc01891d] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2021] [Accepted: 05/17/2021] [Indexed: 11/28/2022] Open
Abstract
4,5-Dihydropyridazinones bearing an aryl substituent at the C6-position are important motifs in drug molecules. Herein, we developed an efficient protocol to access aryl-dihydropyridazinone molecules via carbene-catalyzed asymmetric annulation between dinucleophilic arylidene hydrazones and bromoenals. Key steps in this reaction include polarity-inversion of aryl aldehyde-derived hydrazones followed by chemo-selective reaction with enal-derived α,β-unsaturated acyl azolium intermediates. The aryl-dihydropyridazinone products accessed by our protocol can be readily transformed into drugs and bioactive molecules. Polarity inversion of arylidene hydrazones to react with bromoenals via carbene organic catalysis is disclosed. The reaction enantioselectively affords 6-aryl-4,5-dihydropyridazinones and related drugs with proven commercial applications.![]()
Collapse
Affiliation(s)
- Bivas Mondal
- Division of Chemistry & Mathematical Science, School of Physical & Mathematical Sciences, Nanyang Technological University Singapore 637371 Singapore
| | - Rakesh Maiti
- Division of Chemistry & Mathematical Science, School of Physical & Mathematical Sciences, Nanyang Technological University Singapore 637371 Singapore
| | - Xing Yang
- Division of Chemistry & Mathematical Science, School of Physical & Mathematical Sciences, Nanyang Technological University Singapore 637371 Singapore
| | - Jun Xu
- Guizhou University of Traditional Chinese Medicine Guiyang 550025 China .,Division of Chemistry & Mathematical Science, School of Physical & Mathematical Sciences, Nanyang Technological University Singapore 637371 Singapore
| | - Weiyi Tian
- Guizhou University of Traditional Chinese Medicine Guiyang 550025 China
| | - Jia-Lei Yan
- Division of Chemistry & Mathematical Science, School of Physical & Mathematical Sciences, Nanyang Technological University Singapore 637371 Singapore
| | - Xiangyang Li
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University Huaxi District Guiyang 550025 China
| | - Yonggui Robin Chi
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University Huaxi District Guiyang 550025 China .,Division of Chemistry & Mathematical Science, School of Physical & Mathematical Sciences, Nanyang Technological University Singapore 637371 Singapore
| |
Collapse
|
25
|
Azzi E, Ghigo G, Parisotto S, Pellegrino F, Priola E, Renzi P, Deagostino A. Visible Light Mediated Photocatalytic N-Radical Cascade Reactivity of γ,δ-Unsaturated N-Arylsulfonylhydrazones: A General Approach to Structurally Diverse Tetrahydropyridazines. J Org Chem 2021; 86:3300-3323. [DOI: 10.1021/acs.joc.0c02605] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Affiliation(s)
- Emanuele Azzi
- Department of Chemistry, University of Torino, Via Pietro Giuria, 7-10125 Torino, Italy
| | - Giovanni Ghigo
- Department of Chemistry, University of Torino, Via Pietro Giuria, 7-10125 Torino, Italy
| | - Stefano Parisotto
- Department of Chemistry, University of Torino, Via Pietro Giuria, 7-10125 Torino, Italy
- Department of Organic Chemistry, Arrhenius Laboratory, Stockholm University, 106 91 Stockholm, Sweden
| | - Francesco Pellegrino
- Department of Chemistry, University of Torino, Via Pietro Giuria, 7-10125 Torino, Italy
| | - Emanuele Priola
- Department of Chemistry, University of Torino, Via Pietro Giuria, 7-10125 Torino, Italy
| | - Polyssena Renzi
- Department of Chemistry, University of Torino, Via Pietro Giuria, 7-10125 Torino, Italy
| | - Annamaria Deagostino
- Department of Chemistry, University of Torino, Via Pietro Giuria, 7-10125 Torino, Italy
| |
Collapse
|
26
|
Zuo WF, Zhou J, Wu YL, Fang HY, Lang XJ, Li Y, Zhan G, Han B. Synthesis of spiro(indoline-2,3′-hydropyridazine) via an “on-water” [4 + 2] annulation reaction. Org Chem Front 2021. [DOI: 10.1039/d0qo01422b] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
An on-water [4 + 2] annulation reaction between 2-methyl-3H-indolium salt and α-bromo N-acyl hydrazone has been developed. The environmentally friendly strategy provides the first facile access to spiro(indoline-2,3'-hydropyridazine) scaffolds.
Collapse
Affiliation(s)
- Wei-Fang Zuo
- State Key Laboratory of Southwestern Chinese Medicine Resources
- School of Pharmacy
- Chengdu University of Traditional Chinese Medicine
- Chengdu 611137
- P.R. China
| | - Jin Zhou
- State Key Laboratory of Southwestern Chinese Medicine Resources
- School of Pharmacy
- Chengdu University of Traditional Chinese Medicine
- Chengdu 611137
- P.R. China
| | - Yu-Ling Wu
- State Key Laboratory of Southwestern Chinese Medicine Resources
- School of Pharmacy
- Chengdu University of Traditional Chinese Medicine
- Chengdu 611137
- P.R. China
| | - Hua-Ying Fang
- State Key Laboratory of Southwestern Chinese Medicine Resources
- School of Pharmacy
- Chengdu University of Traditional Chinese Medicine
- Chengdu 611137
- P.R. China
| | - Xing-Jiang Lang
- State Key Laboratory of Southwestern Chinese Medicine Resources
- School of Pharmacy
- Chengdu University of Traditional Chinese Medicine
- Chengdu 611137
- P.R. China
| | - Ya Li
- State Key Laboratory of Southwestern Chinese Medicine Resources
- School of Pharmacy
- Chengdu University of Traditional Chinese Medicine
- Chengdu 611137
- P.R. China
| | - Gu Zhan
- State Key Laboratory of Southwestern Chinese Medicine Resources
- School of Pharmacy
- Chengdu University of Traditional Chinese Medicine
- Chengdu 611137
- P.R. China
| | - Bo Han
- State Key Laboratory of Southwestern Chinese Medicine Resources
- School of Pharmacy
- Chengdu University of Traditional Chinese Medicine
- Chengdu 611137
- P.R. China
| |
Collapse
|
27
|
Ye R, Sun J, Han Y, Yan CG. Molecular diversity of TEMPO-mediated cycloaddition of ketohydrazones and 3-phenacylideneoxindoles. NEW J CHEM 2021. [DOI: 10.1039/d0nj06036d] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
This reaction selectively proceeded via aza-Diels–Alder reaction, [3+2] cycloaddition and ring-opening of oxindole to give diverse spirooxindoles and polysubstituted pyrazoles.
Collapse
Affiliation(s)
- Rong Ye
- College of Chemistry & Chemical Engineering
- Yangzhou University
- Yangzhou 225002
- People's Republic of China
| | - Jing Sun
- College of Chemistry & Chemical Engineering
- Yangzhou University
- Yangzhou 225002
- People's Republic of China
| | - Ying Han
- College of Chemistry & Chemical Engineering
- Yangzhou University
- Yangzhou 225002
- People's Republic of China
| | - Chao-Guo Yan
- College of Chemistry & Chemical Engineering
- Yangzhou University
- Yangzhou 225002
- People's Republic of China
| |
Collapse
|
28
|
Meng Z, Wang Q, Lu D, Yue T, Ai P, Liu H, Yang W, Zheng J. Domino Annulation Reaction of Sulfur Ylides and Morita–Baylis–Hillman Carbonates of Isatins: Synthesis of Oxospiro[bicyclo[3.1.0]hexane-6,3′-indolin] Scaffolds. J Org Chem 2020; 85:15026-15037. [DOI: 10.1021/acs.joc.0c01919] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Affiliation(s)
- Zhongrong Meng
- College of Chemistry, Nanchang University, 999 XuFu Road, Nangchang 330031, China
| | - Qiongqiong Wang
- School of Resources Environmental and Chemical Engineering, Nanchang University, 999 XuFu Road, Nangchang 330031, China
| | - Doudou Lu
- School of Resources Environmental and Chemical Engineering, Nanchang University, 999 XuFu Road, Nangchang 330031, China
| | - Tingting Yue
- School of Resources Environmental and Chemical Engineering, Nanchang University, 999 XuFu Road, Nangchang 330031, China
| | - Pu Ai
- School of Resources Environmental and Chemical Engineering, Nanchang University, 999 XuFu Road, Nangchang 330031, China
| | - Hua Liu
- School of Pharmacy, Jiangxi University of Traditional Chinese Medicine, 1688 Meiling Road, Wanli District, Nanchang 330004, China
| | - Weiran Yang
- School of Resources Environmental and Chemical Engineering, Nanchang University, 999 XuFu Road, Nangchang 330031, China
| | - Jing Zheng
- School of Resources Environmental and Chemical Engineering, Nanchang University, 999 XuFu Road, Nangchang 330031, China
| |
Collapse
|
29
|
Parameshwar M, Singam MKR, Nagireddy A, Nanubolu JB, Reddy MS. Regioselective benzannulation of allylic sulfur ylides with ynones: a rapid access to substituted thioanisoles. Chem Commun (Camb) 2020; 56:13457-13460. [PMID: 33047759 DOI: 10.1039/d0cc05436d] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
The efficiency and selectivity of annulation reactions are often difficult to control in the presence of multiple potential reactive centers, like in the case of allylic sulfur ylides (ASY). Here, we describe a novel base mediated [3+3] benzannulation of ASY and readily available alkynones, which accomplishes the regioselective formation of multisubstituted thioanisoles, highly sought after chemical scaffolds. A new reactivity pattern of ASY has been unearthed, where it acted as both a 3C component and sulfur source in benzannulation. Use of a widely available base, operational simplicity and broad substrate scope are the additional salient features of the conversion.
Collapse
Affiliation(s)
- Matam Parameshwar
- Department of OSPC, CSIR-Indian Institute of Chemical Technology, Habsiguda, Hyderabad 500007, India.
| | | | | | | | | |
Collapse
|
30
|
Mari G, De Crescentini L, Favi G, Santeusanio S, Mantellini F. Metal and Oxidant Free Construction of Substituted‐ and/or Polycyclic Indoles: A Useful Alternative to Bischler and Related Syntheses. European J Org Chem 2020. [DOI: 10.1002/ejoc.202000845] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Giacomo Mari
- Department of Biomolecular Sciences University of Urbino “Carlo Bo” Via I Maggetti 24 61029 Urbino (PU) Italy
| | - Lucia De Crescentini
- Department of Biomolecular Sciences University of Urbino “Carlo Bo” Via I Maggetti 24 61029 Urbino (PU) Italy
| | - Gianfranco Favi
- Department of Biomolecular Sciences University of Urbino “Carlo Bo” Via I Maggetti 24 61029 Urbino (PU) Italy
| | - Stefania Santeusanio
- Department of Biomolecular Sciences University of Urbino “Carlo Bo” Via I Maggetti 24 61029 Urbino (PU) Italy
| | - Fabio Mantellini
- Department of Biomolecular Sciences University of Urbino “Carlo Bo” Via I Maggetti 24 61029 Urbino (PU) Italy
| |
Collapse
|
31
|
Turkett JA, Ringuette AE, Lindsley CW, Bender AM. Synthesis of Substituted 6,7-Dihydro-5 H-pyrrolo[2,3- c]pyridazines/pyrazines via Catalyst-Free Tandem Hydroamination-Aromatic Substitution. J Org Chem 2020; 85:6123-6130. [PMID: 32227869 DOI: 10.1021/acs.joc.9b03463] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Herein, we report an efficient and operationally simple synthesis of 6,7-dihydro-5H-pyrrolo[2,3-c]pyridazines and 6,7-dihydro-5H-pyrrolo[2,3-b]pyrazines via a tandem hydroamination-SNAr sequence that makes use of mild reagents under catalyst-free conditions in moderate to high yields. This chemistry expands the known scope of pyridazine/pyrazine chemistry and can be applied toward the synthesis of novel drug-like molecules with favorable bioactivity and pharmacokinetic properties.
Collapse
|
32
|
Chen Q, Pan Y, Zhao D, Yang W, Zheng J. Construct indeno[1,2-b]oxepine or cis-cyclopropylacrylate by sulfur ylides. RSC Adv 2020; 10:21895-21906. [PMID: 35516651 PMCID: PMC9054534 DOI: 10.1039/d0ra03919e] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2020] [Accepted: 05/29/2020] [Indexed: 12/11/2022] Open
Abstract
For the first time, the [4 + 3] or [2 + 1] annulation of crotonate-derived sulfur ylides with arylidenemalononitrile or arylidene-1H-indene-1,3(2H)-dione is reported using Na2CO3 as the base.
Collapse
Affiliation(s)
- Qinfang Chen
- School of Resources Environmental and Chemical Engineering
- Nanchang University
- Nangchang
- China
| | - Yihao Pan
- School of Resources Environmental and Chemical Engineering
- Nanchang University
- Nangchang
- China
| | - Dongxin Zhao
- School of Resources Environmental and Chemical Engineering
- Nanchang University
- Nangchang
- China
| | - Weiran Yang
- School of Resources Environmental and Chemical Engineering
- Nanchang University
- Nangchang
- China
| | - Jing Zheng
- School of Resources Environmental and Chemical Engineering
- Nanchang University
- Nangchang
- China
| |
Collapse
|
33
|
Wang C, Zhang J, Wang Z, Hui XP. Efficiently diastereoselective synthesis of functionalized hydro-carbazoles by base-mediated tandem annulation of 1-(2-amino-aryl)prop-2-en-1-ones and sulfur ylide. Org Chem Front 2020. [DOI: 10.1039/d0qo00423e] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
The base-promoted [3 + 3]/[1 + 4] tandem reaction of tosyl-protected o-amino α,β-unsaturated ketones and crotonate-derived sulfur ylide is developed for efficiently diastereoselective synthesis of functionalized hydrocarbazoles.
Collapse
Affiliation(s)
- Chengyuan Wang
- State Key Laboratory of Applied Organic Chemistry
- College of Chemistry and Chemical Engineering
- Lanzhou University
- Lanzhou 730000
- P. R. China
| | - Jiong Zhang
- State Key Laboratory of Applied Organic Chemistry
- College of Chemistry and Chemical Engineering
- Lanzhou University
- Lanzhou 730000
- P. R. China
| | - Zheyuan Wang
- State Key Laboratory of Applied Organic Chemistry
- College of Chemistry and Chemical Engineering
- Lanzhou University
- Lanzhou 730000
- P. R. China
| | - Xin-Ping Hui
- State Key Laboratory of Applied Organic Chemistry
- College of Chemistry and Chemical Engineering
- Lanzhou University
- Lanzhou 730000
- P. R. China
| |
Collapse
|