1
|
Suresh S, Kavala V, Yao CF. Iodine-Catalyzed Annulation Reaction of Ortho-Formylarylketones with Indoles: A General Strategy for the Synthesis of Indolylbenzo[ b]carbazoles. J Org Chem 2023; 88:3666-3677. [PMID: 36890622 DOI: 10.1021/acs.joc.2c02868] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/10/2023]
Abstract
The iodine-catalyzed cascade reaction of ortho-formylarylketones with indoles for the synthesis of indolylbenzo[b]carbazoles is reported. The reaction is initiated in the presence of iodine by two successive nucleophilic additions of indoles with an aldehyde group of ortho-formylarylketones, and the ketone does not undergo a nucleophilic addition and only involves in the Friedel-Crafts-type cyclization. A variety of substrates are tested, and the efficiency of this reaction is demonstrated with gram-scale reactions.
Collapse
Affiliation(s)
- Sundaram Suresh
- Department of Chemistry, National Taiwan Normal University, No. 88, Sec. 4, Ting-Zhou Road, Taipei 11677, Taiwan, Taiwan, R.O.C
| | - Veerababurao Kavala
- Department of Chemistry, National Taiwan Normal University, No. 88, Sec. 4, Ting-Zhou Road, Taipei 11677, Taiwan, Taiwan, R.O.C
| | - Ching-Fa Yao
- Department of Chemistry, National Taiwan Normal University, No. 88, Sec. 4, Ting-Zhou Road, Taipei 11677, Taiwan, Taiwan, R.O.C
| |
Collapse
|
2
|
Suryawanshi MD, Suryawanshi GD, Lawande SP. Heteropoly Acids an Efficient Catalyst for Ultrasound Promoted Synthesis of Substituted Indazole. Polycycl Aromat Compd 2022. [DOI: 10.1080/10406638.2022.2083197] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Affiliation(s)
- Manohar D. Suryawanshi
- Department of Chemistry, Shri Chhatrapati Shivaji Mahavidyalaya, Ahmednagar, Maharashtra, India
| | | | - Shamrao P. Lawande
- Department of Chemistry, Shri Chhatrapati Shivaji Mahavidyalaya, Ahmednagar, Maharashtra, India
| |
Collapse
|
3
|
Rhodium-Catalyzed C-H Annulation of Free Anilines with Vinylene Carbonate as a Bifunctional Synthon. Org Lett 2021; 23:8910-8915. [PMID: 34757750 DOI: 10.1021/acs.orglett.1c03404] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Chemical transformation with vinylene carbonate as an emerging synthetic unit has recently attracted considerable attention. This report is a novel conversion pattern with vinylene carbonate, in which such a vibrant reagent unprecedentedly acts as a difunctional coupling partner to complete the C-H annulation of free anilines. From commercially available substrates, this protocol leads to the rapid construction of synthetically versatile 2-methylquinoline derivatives (43 examples) with excellent functionality tolerance.
Collapse
|
4
|
Yu XX, Zhao P, Zhou Y, Huang C, Wang LS, Wu YD, Wu AX. Iodine-Promoted Formal [3+2] Cycloaddition of Enaminone: Access to 2-Hydroxy-1,2-dihydro-pyrrol-3-ones with Quaternary Carbon Center. J Org Chem 2021; 86:12141-12147. [PMID: 34479411 DOI: 10.1021/acs.joc.1c01476] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
A novel iodine promoted cyclization of enaminone with aryl methyl ketones has been developed as a straightforward method for constructing 2-hydroxy-pyrrol-3(2H)-ones. This strategy affords structurally diverse 2-hydroxy-pyrrol-3(2H)-ones rings in high yields. Moreover, a quarternary alcohol has been constructed efficiently in the reaction. Product purification required only washing with CH2Cl2 solvent, thereby avoiding traditional chromatography and recrystallization, making this an example of group-assisted purification chemistry.
Collapse
Affiliation(s)
- Xiao-Xiao Yu
- Key Laboratory of Pesticide & Chemical Biology, Ministry of Education, College of Chemistry, Central China Normal University, Wuhan 430079, People's Republic of China
| | - Peng Zhao
- Key Laboratory of Pesticide & Chemical Biology, Ministry of Education, College of Chemistry, Central China Normal University, Wuhan 430079, People's Republic of China
| | - You Zhou
- Key Laboratory of Pesticide & Chemical Biology, Ministry of Education, College of Chemistry, Central China Normal University, Wuhan 430079, People's Republic of China
| | - Chun Huang
- Key Laboratory of Pesticide & Chemical Biology, Ministry of Education, College of Chemistry, Central China Normal University, Wuhan 430079, People's Republic of China
| | - Li-Sheng Wang
- Key Laboratory of Pesticide & Chemical Biology, Ministry of Education, College of Chemistry, Central China Normal University, Wuhan 430079, People's Republic of China
| | - Yan-Dong Wu
- Key Laboratory of Pesticide & Chemical Biology, Ministry of Education, College of Chemistry, Central China Normal University, Wuhan 430079, People's Republic of China
| | - An-Xin Wu
- Key Laboratory of Pesticide & Chemical Biology, Ministry of Education, College of Chemistry, Central China Normal University, Wuhan 430079, People's Republic of China
| |
Collapse
|
5
|
Yu XX, Zhao P, Zhou Y, Huang C, Wang LS, Wu YD, Wu AX. Employing Arylacetylene as a Diene Precursor and Dienophile: Synthesis of Quinoline via the Povarov Reaction. J Org Chem 2021; 86:8381-8388. [PMID: 34106703 DOI: 10.1021/acs.joc.1c00793] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
A novel I2-mediated Povarov reaction of arylacetylenes and anilines for the synthesis of 2,4-substituted quinolines has been developed, in which arylacetylene first acts as both a diene precursor and dienophile. This work further develops the Povarov reaction to expand the types of diene precursors. Preliminary mechanistic studies indicate that the I2/DMSO system realized the oxidative carbonylation of C(sp)-H of arylacetylene and then undergoes a [4 + 2] cycloaddition reaction.
Collapse
Affiliation(s)
- Xiao-Xiao Yu
- Key Laboratory of Pesticide & Chemical Biology, Ministry of Education, College of Chemistry, Central China Normal University, Wuhan 430079, P. R. China
| | - Peng Zhao
- Key Laboratory of Pesticide & Chemical Biology, Ministry of Education, College of Chemistry, Central China Normal University, Wuhan 430079, P. R. China
| | - You Zhou
- Key Laboratory of Pesticide & Chemical Biology, Ministry of Education, College of Chemistry, Central China Normal University, Wuhan 430079, P. R. China
| | - Chun Huang
- Key Laboratory of Pesticide & Chemical Biology, Ministry of Education, College of Chemistry, Central China Normal University, Wuhan 430079, P. R. China
| | - Li-Sheng Wang
- Key Laboratory of Pesticide & Chemical Biology, Ministry of Education, College of Chemistry, Central China Normal University, Wuhan 430079, P. R. China
| | - Yan-Dong Wu
- Key Laboratory of Pesticide & Chemical Biology, Ministry of Education, College of Chemistry, Central China Normal University, Wuhan 430079, P. R. China
| | - An-Xin Wu
- Key Laboratory of Pesticide & Chemical Biology, Ministry of Education, College of Chemistry, Central China Normal University, Wuhan 430079, P. R. China
| |
Collapse
|
6
|
Solvent-dependent metal-free chemoselective synthesis of benzimidazoles and 1,3,5-triarylbenzenes from 2-amino anilines and aryl alkyl ketones catalyzed by I2. Tetrahedron Lett 2021. [DOI: 10.1016/j.tetlet.2021.153016] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
7
|
Rajai-Daryasarei S, Gohari MH, Mohammadi N. Reactions involving aryl methyl ketone and molecular iodine: a powerful tool in the one-pot synthesis of heterocycles. NEW J CHEM 2021. [DOI: 10.1039/d1nj03572j] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
The preparation of heterocyclic compounds has attracted great attention in organic chemistry because of their extensive application in the field of bioactive molecules, materials science, and natural products.
Collapse
Affiliation(s)
| | | | - Narges Mohammadi
- School of Chemistry, College of Science, University of Tehran, 14155-6455 Tehran, Iran
| |
Collapse
|
8
|
Jadhav PM, Rode AB, Kótai L, Pawar RP, Tekale SU. Revisiting applications of molecular iodine in organic synthesis. NEW J CHEM 2021. [DOI: 10.1039/d1nj02560k] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Molecular iodine contributes significantly to organic transformations in synthetic organic chemistry. It works effectively due to its mild Lewis acidic character, ability as an oxidizing agent, good moisture stability, and easy availability.
Collapse
Affiliation(s)
- Popat M. Jadhav
- Department of Chemistry, Deogiri College, Aurangabad 431 005, Maharashtra, India
| | - Ambadas B. Rode
- Regional Centre for Biotechnology, Faridabad-121 001, Haryana (NCR Delhi), India
| | - László Kótai
- Research Centre for Natural Sciences, ELKH, H-1117, Budapest, Hungary
| | - Rajendra P. Pawar
- Department of Chemistry, Shiv Chhatrapati College, Aurangabad 431005, Maharashtra, India
| | - Sunil U. Tekale
- Department of Chemistry, Deogiri College, Aurangabad 431 005, Maharashtra, India
| |
Collapse
|
9
|
John SE, Gulati S, Shankaraiah N. Recent advances in multi-component reactions and their mechanistic insights: a triennium review. Org Chem Front 2021. [DOI: 10.1039/d0qo01480j] [Citation(s) in RCA: 49] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
This review summarizes the recent developments in MCRs, incorporating different strategies along with their mechanistic aspects.
Collapse
Affiliation(s)
- Stephy Elza John
- Department of Medicinal Chemistry
- National Institute of Pharmaceutical Education and Research (NIPER)
- Hyderabad – 500 037
- India
| | - Shivani Gulati
- Department of Medicinal Chemistry
- National Institute of Pharmaceutical Education and Research (NIPER)
- Hyderabad – 500 037
- India
| | - Nagula Shankaraiah
- Department of Medicinal Chemistry
- National Institute of Pharmaceutical Education and Research (NIPER)
- Hyderabad – 500 037
- India
| |
Collapse
|
10
|
Zhang H, Wang H, Jiang Y, Cao F, Gao W, Zhu L, Yang Y, Wang X, Wang Y, Chen J, Feng Y, Deng X, Lu Y, Hu X, Li X, Zhang J, Shi T, Wang Z. Recent Advances in Iodine-Promoted C-S/N-S Bonds Formation. Chemistry 2020; 26:17289-17317. [PMID: 32470225 DOI: 10.1002/chem.202001414] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2020] [Revised: 05/27/2020] [Indexed: 12/19/2022]
Abstract
Sulfur-containing scaffold, as a ubiquitous structural motif, has been frequently used in natural products, bioactive chemicals and pharmaceuticals, particularly C-S/N-S bonds are indispensable in many biological important compounds and pharmaceuticals. Development of mild and general methods for C-S/N-S bonds formation has great significance in modern research. Iodine and its derivatives have been recognized as inexpensive, environmentally benign and easy-handled catalysts or reagents to promote the construction of C-S/N-S bonds under mild reaction conditions, with good regioselectivities and broad substrate scope. Especially based on this, several new strategies, such as oxidation relay strategy, have been greatly developed and accelerated the advancement of this field. This review focuses on recent advances in iodine and its derivatives promoted hybridized C-S/N-S bonds formation. The features and mechanisms of corresponding reactions are summarized and the results of some cases are compared with those of previous reports. In addition, the future of this domain is discussed.
Collapse
Affiliation(s)
- Honghua Zhang
- School of Pharmacy, Lanzhou University, 199 West Donggang Road, Lanzhou, 730000, P. R. China
| | - Huihong Wang
- State Key Laboratory of Applied Organic Chemistry, College of, Chemistry and Chemical Engineering, Lanzhou University, 222 South Tianshui Road, Lanzhou, 730000, P. R. China
| | - Yi Jiang
- School of Pharmacy, Lanzhou University, 199 West Donggang Road, Lanzhou, 730000, P. R. China
| | - Fei Cao
- State Key Laboratory of Applied Organic Chemistry, College of, Chemistry and Chemical Engineering, Lanzhou University, 222 South Tianshui Road, Lanzhou, 730000, P. R. China
| | - Weiwei Gao
- State Key Laboratory of Applied Organic Chemistry, College of, Chemistry and Chemical Engineering, Lanzhou University, 222 South Tianshui Road, Lanzhou, 730000, P. R. China
| | - Longqing Zhu
- School of Pharmacy, Lanzhou University, 199 West Donggang Road, Lanzhou, 730000, P. R. China
| | - Yuhang Yang
- School of Pharmacy, Lanzhou University, 199 West Donggang Road, Lanzhou, 730000, P. R. China
| | - Xiaodong Wang
- School of Pharmacy, Lanzhou University, 199 West Donggang Road, Lanzhou, 730000, P. R. China
| | - Yongqiang Wang
- School of Pharmacy, Lanzhou University, 199 West Donggang Road, Lanzhou, 730000, P. R. China
| | - Jinhong Chen
- School of Pharmacy, Lanzhou University, 199 West Donggang Road, Lanzhou, 730000, P. R. China
| | - Yiyue Feng
- School of Pharmacy, Lanzhou University, 199 West Donggang Road, Lanzhou, 730000, P. R. China
| | - Xuemei Deng
- School of Pharmacy, Lanzhou University, 199 West Donggang Road, Lanzhou, 730000, P. R. China
| | - Yingmei Lu
- School of Pharmacy, Lanzhou University, 199 West Donggang Road, Lanzhou, 730000, P. R. China
| | - Xiaoling Hu
- School of Pharmacy, Lanzhou University, 199 West Donggang Road, Lanzhou, 730000, P. R. China
| | - Xiangxiang Li
- School of Pharmacy, Lanzhou University, 199 West Donggang Road, Lanzhou, 730000, P. R. China
| | - Juan Zhang
- School of Pharmacy, Lanzhou University, 199 West Donggang Road, Lanzhou, 730000, P. R. China
| | - Tao Shi
- School of Pharmacy, Lanzhou University, 199 West Donggang Road, Lanzhou, 730000, P. R. China
| | - Zhen Wang
- School of Pharmacy, Lanzhou University, 199 West Donggang Road, Lanzhou, 730000, P. R. China.,State Key Laboratory of Applied Organic Chemistry, College of, Chemistry and Chemical Engineering, Lanzhou University, 222 South Tianshui Road, Lanzhou, 730000, P. R. China
| |
Collapse
|
11
|
Chen S, Bai R, Li M, Liu P, Gu Y. Acid‐Acid‐Catalyzed Tandem Reactions Driven by an Additive‐Like Component. CHEM REC 2020. [DOI: 10.1002/tcr.202000097] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Shaomin Chen
- Key Laboratory for Large-Format Battery Materials and System Ministry of Education School of Chemistry and Chemical Engineering Huazhong University of Science and Technology Wuhan 430074 P.R. China
- Key Laboratory for Green Processing of Chemical Engineering of Xinjiang Bingtuan School of Chemistry and Chemical Engineering Shihezi University Shihezi 832004 P.R. China
| | - Rongxian Bai
- Key Laboratory for Large-Format Battery Materials and System Ministry of Education School of Chemistry and Chemical Engineering Huazhong University of Science and Technology Wuhan 430074 P.R. China
| | - Minghao Li
- Key Laboratory for Large-Format Battery Materials and System Ministry of Education School of Chemistry and Chemical Engineering Huazhong University of Science and Technology Wuhan 430074 P.R. China
| | - Ping Liu
- Key Laboratory for Green Processing of Chemical Engineering of Xinjiang Bingtuan School of Chemistry and Chemical Engineering Shihezi University Shihezi 832004 P.R. China
| | - Yanlong Gu
- Key Laboratory for Large-Format Battery Materials and System Ministry of Education School of Chemistry and Chemical Engineering Huazhong University of Science and Technology Wuhan 430074 P.R. China
- State Key Laboratory for Oxo Synthesis and Selective Oxidation Lanzhou Institute of Chemical Physics Lanzhou 730000 P.R. China
| |
Collapse
|
12
|
Liu C, Chen D, Fu Y, Wang F, Luo J, Huang S. Sulfoxide Reduction/C(sp 3)-S Metathesis Cascade in Ionic Liquid. Org Lett 2020; 22:5701-5705. [PMID: 32614190 DOI: 10.1021/acs.orglett.0c02089] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
A sulfoxide reduction/C-S bond metathesis cascade between sulfoxides and alkyl bromides has been developed to access high-value sulfides without the use of any catalysts or bases. In this cascade, classical Kornblum oxidation is employed to reduce sulfoxides with alkyl bromides in ionic liquid. This protocol features high functional tolerance, mild conditions, promising scalability, and sustainable solvents.
Collapse
Affiliation(s)
- Chenjing Liu
- Jiangsu Provincial Key Lab for the Chemistry and Utilization of Agro-Forest Biomass, Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Jiangsu Key Lab of Biomass-Based Green Fuels and Chemicals, College of Chemical Engineering, Nanjing Forestry University, Nanjing, 210037, People's Republic of China
| | - Dengfeng Chen
- Jiangsu Provincial Key Lab for the Chemistry and Utilization of Agro-Forest Biomass, Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Jiangsu Key Lab of Biomass-Based Green Fuels and Chemicals, College of Chemical Engineering, Nanjing Forestry University, Nanjing, 210037, People's Republic of China
| | - Yuanyuan Fu
- Jiangsu Provincial Key Lab for the Chemistry and Utilization of Agro-Forest Biomass, Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Jiangsu Key Lab of Biomass-Based Green Fuels and Chemicals, College of Chemical Engineering, Nanjing Forestry University, Nanjing, 210037, People's Republic of China
| | - Fei Wang
- Jiangsu Provincial Key Lab for the Chemistry and Utilization of Agro-Forest Biomass, Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Jiangsu Key Lab of Biomass-Based Green Fuels and Chemicals, College of Chemical Engineering, Nanjing Forestry University, Nanjing, 210037, People's Republic of China
| | - Jinyue Luo
- Jiangsu Provincial Key Lab for the Chemistry and Utilization of Agro-Forest Biomass, Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Jiangsu Key Lab of Biomass-Based Green Fuels and Chemicals, College of Chemical Engineering, Nanjing Forestry University, Nanjing, 210037, People's Republic of China
| | - Shenlin Huang
- Jiangsu Provincial Key Lab for the Chemistry and Utilization of Agro-Forest Biomass, Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Jiangsu Key Lab of Biomass-Based Green Fuels and Chemicals, College of Chemical Engineering, Nanjing Forestry University, Nanjing, 210037, People's Republic of China
| |
Collapse
|
13
|
Wang H, Wang Y, Han Y, Zhao W, Wang X. Humic acid as an efficient and reusable catalyst for one pot three-component green synthesis of 5-substituted 1 H-tetrazoles in water. RSC Adv 2020; 10:784-789. [PMID: 35494449 PMCID: PMC9047532 DOI: 10.1039/c9ra08523h] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2019] [Accepted: 12/23/2019] [Indexed: 12/13/2022] Open
Abstract
Humic acid is a non toxic, inexpensive, easily available high-molecular weight polymer. A simple and facile one pot three-component synthesis of 5-substituted 1H-tetrazoles from aldehydes, hydroxyamine hydrochloride and sodium azide using humic acid as an efficient catalyst in water is described. The method reported has several advantages such as high to excellent yields, easy work-up, mild reaction conditions, use of water as a green solvent, and a commercially available, nontoxic and reusable catalyst.
Collapse
Affiliation(s)
- Hongshe Wang
- College of Chemistry and Chemical Engineering, Baoji University of Arts and Sciences Baoji 721013 China
| | - Yichun Wang
- College of Pharmacy, Shaanxi University of Chinese Medicine Xianyang 712046 China
| | - Yinfeng Han
- College of Chemistry and Chemical Engineering, Baoji University of Arts and Sciences Baoji 721013 China
| | - Weixing Zhao
- College of Chemistry and Chemical Engineering, Baoji University of Arts and Sciences Baoji 721013 China
| | - Xiaomei Wang
- College of Chemistry and Chemical Engineering, Baoji University of Arts and Sciences Baoji 721013 China
| |
Collapse
|
14
|
Geng X, Wang C, Huang C, Bao Y, Zhao P, Zhou Y, Wu YD, Feng LL, Wu AX. Employing TosMIC as a C1N1 “Two-Atom Synthon” in Imidazole Synthesis by Neighboring Group Assistance Strategy. Org Lett 2019; 22:140-144. [DOI: 10.1021/acs.orglett.9b04060] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Affiliation(s)
- Xiao Geng
- Key Laboratory of Pesticide & Chemical Biology, Ministry of Education, College of Chemistry, Central China Normal University, Wuhan 430079, P. R. China
| | - Can Wang
- Key Laboratory of Pesticide & Chemical Biology, Ministry of Education, College of Chemistry, Central China Normal University, Wuhan 430079, P. R. China
| | - Chun Huang
- Key Laboratory of Pesticide & Chemical Biology, Ministry of Education, College of Chemistry, Central China Normal University, Wuhan 430079, P. R. China
| | - Yang Bao
- Key Laboratory of Pesticide & Chemical Biology, Ministry of Education, College of Chemistry, Central China Normal University, Wuhan 430079, P. R. China
| | - Peng Zhao
- Key Laboratory of Pesticide & Chemical Biology, Ministry of Education, College of Chemistry, Central China Normal University, Wuhan 430079, P. R. China
| | - You Zhou
- Key Laboratory of Pesticide & Chemical Biology, Ministry of Education, College of Chemistry, Central China Normal University, Wuhan 430079, P. R. China
| | | | - Ling-ling Feng
- Key Laboratory of Pesticide & Chemical Biology, Ministry of Education, College of Chemistry, Central China Normal University, Wuhan 430079, P. R. China
| | - An-Xin Wu
- Key Laboratory of Pesticide & Chemical Biology, Ministry of Education, College of Chemistry, Central China Normal University, Wuhan 430079, P. R. China
- State Key Laboratory of Applied Organic Chemistry, Lanzhou University, Lanzhou 730000, P. R. China
| |
Collapse
|
15
|
Wagare DS, Sonone A, Farooqui M, Durrani A. An Efficient and Green Microwave-Assisted One Pot Synthesis of Imidazothiadiazoles in PEG-400 and Water. Polycycl Aromat Compd 2019. [DOI: 10.1080/10406638.2019.1695637] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Affiliation(s)
| | - Ashwini Sonone
- Department of chemistry, Rafiq Zakaria College for Women, Aurangabad, M.S, India
| | - Mazahar Farooqui
- Department of chemistry, Rafiq Zakaria College for Women, Aurangabad, M.S, India
| | - Ayesha Durrani
- Department of chemistry, Rafiq Zakaria College for Women, Aurangabad, M.S, India
| |
Collapse
|