1
|
Sharma R, Sihag N, Gupta P, Manna K, Yadav MR. Photoinduced Ni-catalyzed carbohalogenation of monofluoro, gem-difluoro, and trifluoromethyl tethered alkenes. Chem Commun (Camb) 2025; 61:7273-7276. [PMID: 40260980 DOI: 10.1039/d5cc01034a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/24/2025]
Abstract
A photoexcited nickel-catalyzed carbohalogenation reaction of fluoroalkenes has been demonstrated to afford halofluoroalkyl oxindoles featuring a quaternary center. The broad substrate scope with retention of fluorine atoms, followed by efficient synthetic transformations of iodo-gem-difluoroalkyl oxindoles, highlights the advantages of this methodology. Additionally, control experiments and DFT calculations have been conducted to elucidate the significance of the triplet-excited state of the nickel catalyst.
Collapse
Affiliation(s)
- Ruchi Sharma
- Department of Chemistry, Indian Institute of Technology Delhi, MS 720, 6th floor, Hauz Khas, New Delhi, 110016, India.
| | - Naveen Sihag
- Department of Chemistry, Indian Institute of Technology Delhi, MS 720, 6th floor, Hauz Khas, New Delhi, 110016, India.
| | - Poorvi Gupta
- Department of Chemistry, Indian Institute of Technology Delhi, MS 720, 6th floor, Hauz Khas, New Delhi, 110016, India.
| | - Kuntal Manna
- Department of Chemistry, Indian Institute of Technology Delhi, MS 720, 6th floor, Hauz Khas, New Delhi, 110016, India.
| | - M Ramu Yadav
- Department of Chemistry, Indian Institute of Technology Delhi, MS 720, 6th floor, Hauz Khas, New Delhi, 110016, India.
| |
Collapse
|
2
|
Marchese AD, Durant AG, Reid CM, Jans C, Arora R, Lautens M. Pd(0)/Blue Light Promoted Carboiodination Reaction – Evidence for Reversible C–I Bond Formation via a Radical Pathway. J Am Chem Soc 2022; 144:20554-20560. [DOI: 10.1021/jacs.2c09716] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Austin D. Marchese
- Davenport Research Laboratories, Department of Chemistry, University of Toronto, 80 St. George Street, Toronto, Ontario Canada, M5S 3H6
| | - Andrew G. Durant
- Davenport Research Laboratories, Department of Chemistry, University of Toronto, 80 St. George Street, Toronto, Ontario Canada, M5S 3H6
| | - Cian M. Reid
- Davenport Research Laboratories, Department of Chemistry, University of Toronto, 80 St. George Street, Toronto, Ontario Canada, M5S 3H6
| | - Clara Jans
- Davenport Research Laboratories, Department of Chemistry, University of Toronto, 80 St. George Street, Toronto, Ontario Canada, M5S 3H6
| | - Ramon Arora
- Davenport Research Laboratories, Department of Chemistry, University of Toronto, 80 St. George Street, Toronto, Ontario Canada, M5S 3H6
| | - Mark Lautens
- Davenport Research Laboratories, Department of Chemistry, University of Toronto, 80 St. George Street, Toronto, Ontario Canada, M5S 3H6
| |
Collapse
|
3
|
Delcaillau T, Schmitt HL, Boehm P, Falk E, Morandi B. Palladium-Catalyzed Carbothiolation of Alkenes and Alkynes for the Synthesis of Heterocycles. ACS Catal 2022. [DOI: 10.1021/acscatal.2c01178] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Affiliation(s)
- Tristan Delcaillau
- Laboratorium für Organische Chemie, ETH Zürich, Vladimir-Prelog-Weg 3, HCI, Zürich 8093, Switzerland
| | - Hendrik L. Schmitt
- Laboratorium für Organische Chemie, ETH Zürich, Vladimir-Prelog-Weg 3, HCI, Zürich 8093, Switzerland
| | - Philip Boehm
- Laboratorium für Organische Chemie, ETH Zürich, Vladimir-Prelog-Weg 3, HCI, Zürich 8093, Switzerland
| | - Eric Falk
- Laboratorium für Organische Chemie, ETH Zürich, Vladimir-Prelog-Weg 3, HCI, Zürich 8093, Switzerland
| | - Bill Morandi
- Laboratorium für Organische Chemie, ETH Zürich, Vladimir-Prelog-Weg 3, HCI, Zürich 8093, Switzerland
| |
Collapse
|
4
|
Yang J, Yang L, Gu J, Shuai L, Wang H, Ouyang Q, Li YL, Liu H, Gong L. Nickel-Catalyzed Reductive Cascade Arylalkylation of Alkenes with Alkylpyridinium Salts. Org Lett 2022; 24:2376-2380. [PMID: 35319219 DOI: 10.1021/acs.orglett.2c00599] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Herein, we describe a nickel-catalyzed reductive deaminative arylalkylation of tethered alkenes with pyridinium salts as C(sp3) electrophiles. This two-component dicarbofunctionalization reaction enables the efficient synthesis of various benzene-fused cyclic compounds bearing all-carbon quaternary centers. The approach presented in this paper proceeds under mild conditions, tolerating a wide variety of functional groups and heterocycles. It has been used to functionalize complicated molecules at a late stage.
Collapse
Affiliation(s)
- Jun Yang
- College of Chemistry and Environmental Engineering, Sichuan University of Science and Engineering, Zigong 643000, China
| | - Lina Yang
- College of Pharmacy, Army Medical University, Shapingba, Chongqing 400038, China
| | - Jing Gu
- College of Pharmacy, Army Medical University, Shapingba, Chongqing 400038, China
| | - Li Shuai
- College of Pharmacy, Army Medical University, Shapingba, Chongqing 400038, China
| | - Hui Wang
- School of Biological & Chemical Engineering, Chongqing University of Education, Nanan, Chongqing 400065, China
| | - Qin Ouyang
- College of Pharmacy, Army Medical University, Shapingba, Chongqing 400038, China
| | - Yu-Long Li
- College of Chemistry and Environmental Engineering, Sichuan University of Science and Engineering, Zigong 643000, China
| | - Haibin Liu
- National Engineering Research Center for Gelatin-Based Traditional Chinese Medicine, Dong'E E-Jiao Co. Ltd., Dong'E 252201, China
| | - Liang Gong
- College of Pharmacy, Army Medical University, Shapingba, Chongqing 400038, China
| |
Collapse
|
5
|
Marchese AD, Mirabi B, Johnson CE, Lautens M. Reversible C-C bond formation using palladium catalysis. Nat Chem 2022; 14:398-406. [PMID: 35301473 DOI: 10.1038/s41557-022-00898-0] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2021] [Accepted: 01/28/2022] [Indexed: 12/24/2022]
Abstract
A widely appreciated principle is that all reactions are fundamentally reversible. Observing reversible transition metal-catalysed reactions, particularly those that include the cleavage of C-C bonds, is more challenging. The development of palladium- and nickel-catalysed carboiodination reactions afforded access to the cis and trans diastereomers of the iodo-dihydroisoquinolone products. Using these substrates, an extensive study investigating the reversibility of C-C bond formation using a simple palladium catalyst was undertaken. Herein we report a comprehensive investigation of reversible C-C bond formation using palladium catalysis employing diastereomeric neopentyl iodides as the starting point. It was shown that both diastereomers could be converted to a common product under identical catalytic conditions. A combination of experimental and computational studies were used to probe the operative mechanism. A variety of concepts key to understanding the process of reversible C-C bond formations were investigated, including the effect of electronic and steric parameters on the C-C bond-cleavage step.
Collapse
Affiliation(s)
- Austin D Marchese
- Department of Chemistry, Davenport Chemical Laboratories, University of Toronto, Toronto, Ontario, Canada
| | - Bijan Mirabi
- Department of Chemistry, Davenport Chemical Laboratories, University of Toronto, Toronto, Ontario, Canada
| | - Colton E Johnson
- Department of Chemistry, Davenport Chemical Laboratories, University of Toronto, Toronto, Ontario, Canada
| | - Mark Lautens
- Department of Chemistry, Davenport Chemical Laboratories, University of Toronto, Toronto, Ontario, Canada.
| |
Collapse
|
6
|
Chen C, Huang Y, Ding J, Liu L, Zhu B. Palladium‐Catalyzed Carbamoyl‐Carbamoylation/ Carboxylation/Thioesterification of Alkene‐Tethered Carbamoyl Chlorides Using Mo(CO)
6
as the Carbonyl Source. Adv Synth Catal 2021. [DOI: 10.1002/adsc.202101130] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- Chen Chen
- Tianjin Key Laboratory of Structure and Performance for Functional Molecules College of Chemistry Tianjin Normal University Tianjin 300387 People's Republic of China
| | - Yujie Huang
- Tianjin Key Laboratory of Structure and Performance for Functional Molecules College of Chemistry Tianjin Normal University Tianjin 300387 People's Republic of China
| | - Jie Ding
- Tianjin Key Laboratory of Structure and Performance for Functional Molecules College of Chemistry Tianjin Normal University Tianjin 300387 People's Republic of China
| | - Liying Liu
- Tianjin Key Laboratory of Structure and Performance for Functional Molecules College of Chemistry Tianjin Normal University Tianjin 300387 People's Republic of China
| | - Bolin Zhu
- Tianjin Key Laboratory of Structure and Performance for Functional Molecules College of Chemistry Tianjin Normal University Tianjin 300387 People's Republic of China
| |
Collapse
|
7
|
Abstract
The Mizoroki-Heck reaction and its reductive analogue are staples of organic synthesis, but the ensuing products often lack a chemical handle for further transformation. Here we report an atom-economical cross-coupling of halopyridines and unactivated alkenes under photoredox catalysis to afford a series of alkene halopyridylation products. This protocol with mild and redox neutral conditions contributes broad substrate scope. As a complement to conventional Heck-type reaction, this radical process avoids the involvement of β-H elimination and thus useful pyridyl and halide groups could be simultaneously and regioselectively incorporated onto alkenes. The success depends on TFA-promoted domino photocatalytic oxidative quenching activation and radical-polar crossover pathway. Plausible mechanism is proposed based on mechanistic investigations. Moreover, the reserved C - X bonds of these products are beneficial for performing further synthetic elaborations.
Collapse
|
8
|
Ano Y, Kawai N, Chatani N. Palladium-catalyzed 1,1-alkynylbromination of alkenes with alkynyl bromides. Chem Sci 2021; 12:12326-12332. [PMID: 34603662 PMCID: PMC8480334 DOI: 10.1039/d1sc02873a] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2021] [Accepted: 08/13/2021] [Indexed: 12/17/2022] Open
Abstract
The palladium-catalyzed 1,1-alkynylbromination of terminal alkenes with a silyl-protected alkynyl bromide is reported. The method tolerates a diverse range of alkenes including vinylarenes, acrylates, and even electronically unbiased alkene derivatives to afford propargylic bromides regioselectively. Mechanistic studies and DFT calculations indicate that the 1,1-alkynylbromination reaction proceeds via the migration of the Pd center followed by the formation of a π-allenyl Pd intermediate, leading to the stereoselective reductive elimination of the C(sp3)–Br bond at the propargylic positon. The first Pd-catalyzed 1,1-alkynylbromination of terminal alkenes using alkynyl bromides, which provides direct access to a variety of functionalized propargylic bromides without the need for an external brominating reagent, is reported.![]()
Collapse
Affiliation(s)
- Yusuke Ano
- Department of Applied Chemistry, Faculty of Engineering, Osaka University 2-1 Yamadaoka, Suita Osaka 565-0871 Japan .,Center for Atomic and Molecular Technologies, Graduate School of Engineering, Osaka University 2-1 Yamadaoka, Suita Osaka 565-0871 Japan
| | - Natsuki Kawai
- Department of Applied Chemistry, Faculty of Engineering, Osaka University 2-1 Yamadaoka, Suita Osaka 565-0871 Japan
| | - Naoto Chatani
- Department of Applied Chemistry, Faculty of Engineering, Osaka University 2-1 Yamadaoka, Suita Osaka 565-0871 Japan
| |
Collapse
|
9
|
Su Y, Zhang S, Yuan Y, Ma Q, Sun Z, Yuan Y, Jia X. SbCl 3 initiated conjunctive C-H bond functionalization and carbochlorination between glycine esters and methylenecyclopropanes (MCPs). Chem Commun (Camb) 2021; 57:9878-9881. [PMID: 34494034 DOI: 10.1039/d1cc03744g] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
In the presence of dioxygen, an antimony trichloride enabled conjunctive sp3 C-H bond functionalization and carbochlorination of glycines was realized, providing a series of chlorinated quinolines in high yields. The mechanistic study shows that the antimony(V) species might be involved in the oxidation of the sp3 C-H bond and is followed by carbochlorination through a radical intermediate.
Collapse
Affiliation(s)
- Yichun Su
- School of Chemistry & Chemical Engineering, Yangzhou University, Siwangting Road 180, Yangzhou, Jiangsu, 225002, China.
| | - Shuwei Zhang
- School of Chemistry & Chemical Engineering, Yangzhou University, Siwangting Road 180, Yangzhou, Jiangsu, 225002, China.
| | - Yuan Yuan
- School of Chemistry & Chemical Engineering, Yangzhou University, Siwangting Road 180, Yangzhou, Jiangsu, 225002, China.
| | - Qiyuan Ma
- School of Chemistry & Chemical Engineering, Yangzhou University, Siwangting Road 180, Yangzhou, Jiangsu, 225002, China.
| | - Zheng Sun
- School of Chemistry & Chemical Engineering, Yangzhou University, Siwangting Road 180, Yangzhou, Jiangsu, 225002, China.
| | - Yu Yuan
- School of Chemistry & Chemical Engineering, Yangzhou University, Siwangting Road 180, Yangzhou, Jiangsu, 225002, China.
| | - Xiaodong Jia
- School of Chemistry & Chemical Engineering, Yangzhou University, Siwangting Road 180, Yangzhou, Jiangsu, 225002, China.
| |
Collapse
|
10
|
Marchese AD, Adrianov T, Lautens M. Recent Strategies for Carbon-Halogen Bond Formation Using Nickel. Angew Chem Int Ed Engl 2021; 60:16750-16762. [PMID: 33647169 DOI: 10.1002/anie.202101324] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2021] [Indexed: 12/12/2022]
Abstract
Nickel catalysis has demonstrated the capability of performing a broad range of synthetically challenging transformations over the last decade. Though recent literature has focused on the formation of C-C and C-N bonds, a variety of breakthroughs in the field of C-X bond generation have also been reported. A diverse range of strategies using nickel have been developed, in an effort to expand the scope and synthetic utility of these halogenation methods. This Minireview will cover six emerging strategies in this field including: oxidatively induced C-X reductive elimination, triflate-to-halogen exchange reactions, directed C-H halogenation, non-directed electrophilic C-H halogenation of arenes, enantioselective α-fluorination of carbonyl containing compounds, and 1,2-difunctionalization-halogenation reactions. The final section has been split into two parts: nickel-catalyzed hydrohalogenation and nickel-catalyzed carbohalogenation reactions.
Collapse
Affiliation(s)
- Austin D Marchese
- Department of Chemistry, Davenport Chemical Laboratories, University of Toronto, 80 St. George Street, Toronto, Ontario, M5S 3H6, Canada
| | - Timur Adrianov
- Department of Chemistry, Davenport Chemical Laboratories, University of Toronto, 80 St. George Street, Toronto, Ontario, M5S 3H6, Canada
| | - Mark Lautens
- Department of Chemistry, Davenport Chemical Laboratories, University of Toronto, 80 St. George Street, Toronto, Ontario, M5S 3H6, Canada
| |
Collapse
|
11
|
Marchese AD, Adrianov T, Lautens M. Recent Strategies for Carbon−Halogen Bond Formation Using Nickel. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202101324] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Affiliation(s)
- Austin D. Marchese
- Department of Chemistry Davenport Chemical Laboratories University of Toronto 80 St. George Street Toronto Ontario M5S 3H6 Canada
| | - Timur Adrianov
- Department of Chemistry Davenport Chemical Laboratories University of Toronto 80 St. George Street Toronto Ontario M5S 3H6 Canada
| | - Mark Lautens
- Department of Chemistry Davenport Chemical Laboratories University of Toronto 80 St. George Street Toronto Ontario M5S 3H6 Canada
| |
Collapse
|
12
|
Marchese AD, Adrianov T, Köllen MF, Mirabi B, Lautens M. Synthesis of Carbocyclic Compounds via a Nickel-Catalyzed Carboiodination Reaction. ACS Catal 2021. [DOI: 10.1021/acscatal.0c04956] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Affiliation(s)
- Austin D. Marchese
- Department of Chemistry, Davenport Chemical Laboratories, University of Toronto, Toronto, Ontario M5S 3H6, Canada
| | - Timur Adrianov
- Department of Chemistry, Davenport Chemical Laboratories, University of Toronto, Toronto, Ontario M5S 3H6, Canada
| | - Martin F. Köllen
- Department of Chemistry, Davenport Chemical Laboratories, University of Toronto, Toronto, Ontario M5S 3H6, Canada
| | - Bijan Mirabi
- Department of Chemistry, Davenport Chemical Laboratories, University of Toronto, Toronto, Ontario M5S 3H6, Canada
| | - Mark Lautens
- Department of Chemistry, Davenport Chemical Laboratories, University of Toronto, Toronto, Ontario M5S 3H6, Canada
| |
Collapse
|
13
|
Reznikov AN, Ashatkina MA, Klimochkin YN. Recent developments in asymmetric Heck type cyclization reactions for constructions of complex molecules. Org Biomol Chem 2021; 19:5673-5701. [PMID: 34113939 DOI: 10.1039/d1ob00496d] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Intramolecular carbometallation-initiated asymmetric transformations are a general and powerful approach for the construction of carbo- and heterocyclic systems with one and more stereocenters. In addition, the newly developed multiple cascade reactions are an attractive strategy for increasing the molecular complexity in one step. In recent years, great progress has been made in this area with the use of various palladium and nickel complexes with P- and N-donor chiral ligands. This review highlights recent developments in intramolecular asymmetric Heck reactions, reductive Heck reactions and various types of cascade transformations (intramolecular Heck/Heck, Heck/nucleophilic trapping, Heck/Tsuji-Trost, Heck/Suzuki-Miyaura, Heck/Sonogashira, and Heck/carbonylation) in the synthesis of complex molecules over the past 5 years. A number of examples from before 2016 are included as background information. Particular attention is paid to the use of inexpensive nickel complexes as highly efficient catalysts for a number of asymmetric reactions considered here. A perspective on current challenges and potential future developments in the field of asymmetric Heck type cyclizations is also provided.
Collapse
Affiliation(s)
- Alexander N Reznikov
- Samara State Technical University, 244, Molodogvardeyskaya st., Samara, 443100, Russian Federation.
| | - Maria A Ashatkina
- Samara State Technical University, 244, Molodogvardeyskaya st., Samara, 443100, Russian Federation.
| | - Yuri N Klimochkin
- Samara State Technical University, 244, Molodogvardeyskaya st., Samara, 443100, Russian Federation.
| |
Collapse
|
14
|
Syntheses of 3,3-Disubstituted Dihydrobenzofurans, Indolines, Indolinones and Isochromanes by Palladium-Catalyzed Tandem Reaction Using Pd(PPh3)2Cl2/(±)-BINAP as a Catalytic System. Catalysts 2020. [DOI: 10.3390/catal10091084] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
A general procedure for the tandem arylation reaction of arylbromide with heteroaryl compounds was developed by using Pd(PPh3)2Cl2/(±)-BINAP (1,1′-Binaphthalene-2,2′-diylbis (diphenylphosphane)) as catalytic system. Both sulphur- and oxygen-containing heterocycles were also employed as an efficient reagent for arylation, which gave moderate to excellent yields with moderate to good regioselectivities (5:1 to > 20:1 ir (isomer ratio)). Except for dihydrobenzofurans, indolines and indolinones, this type of tandem reaction was also expanded to synthesize isochromanes. The synthesized new compounds were well characterized through different spectroscopic techniques, such as 1H and 13C NMR (nuclear magnetic resonance), and mass spectral analysis.
Collapse
|
15
|
Transition‐Metal‐Catalyzed Carbohalogenative 1,2‐Difunctionalization of C−C Multiple Bonds. Adv Synth Catal 2020. [DOI: 10.1002/adsc.202000630] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
|
16
|
Marchese AD, Larin EM, Mirabi B, Lautens M. Metal-Catalyzed Approaches toward the Oxindole Core. Acc Chem Res 2020; 53:1605-1619. [PMID: 32706589 DOI: 10.1021/acs.accounts.0c00297] [Citation(s) in RCA: 118] [Impact Index Per Article: 23.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
The oxindole scaffold is a privileged structural motif that is found in a variety of bioactive targets and natural products. Moreover, derivatives of the oxindole structure are widely present in a number of biologically relevant compounds and are key intermediates in the synthesis of diverse natural products and pharmaceuticals. Therefore, novel methods to obtain oxindoles remain of high priority in synthetic organic chemistry.Over the past several decades, novel transition-metal-catalyzed methodologies have been applied toward the synthesis of a variety of heterocycles. A detailed mechanistic understanding facilitates the disruption of traditional catalytic pathways to access useful synthetic intermediates. The strategies employed have generally revolved around the generation of high-energy organometallic intermediates, which undergo cyclization reactions through domino processes. Domino cyclization methodologies are therefore attractive, as they allow facile access to functionalized oxindoles containing all-carbon quaternary centers or tetrasubstituted olefins with high chemo- and stereoselectivities. Furthermore, these developed synthetic strategies can often be easily applied in the syntheses of other related scaffolds.In this Account, we discuss the three unique strategies that our group has leveraged for the synthesis of valuable oxindole scaffolds. The first section in this Account outlines the use of an initial oxidative addition to a C(sp2)-X bond, followed by a migratory insertion, yielding a neopentyl species amenable to a variety of subsequent functionalizations. From this reactive neopentyl metal species, we have reported C-X reductive eliminations, anionic capture cascade reactions, and intramolecular C-H functionalization processes. The second section of this Account summarizes our group's findings on 1,2-insertions of a metal-nucleophile species across an unsaturation, generating a reactive organometallic intermediate; subsequent reactions with tethered electrophiles form the desired heterocyclic core. We have explored a wide array of transition metal-catalyzed strategies using this approach, including rhodium-catalyzed conjugate additions, an asymmetric copper-catalyzed borylcupration, and a palladium(II)-catalyzed chloropalladation protocol. The final section of this Account details the use of dual-metal catalysis to perform a cyclization through a C-H functionalization-allylation domino reaction. Throughout this Account, we provide details of mechanistic studies that better enabled our understanding of the domino processes.Overall, our group has developed methods exploiting the unique reactivity of palladium, nickel, copper, rhodium, and ruthenium catalysts to develop methods toward a wide array of oxindole scaffolds. On the basis of the utility, diversity, and applicability of the strategies developed, we believe that they will prove to be highly useful in the syntheses of other important targets and inspire further development and mechanistic understanding of various metal-catalyzed processes.
Collapse
Affiliation(s)
- Austin D. Marchese
- Department of Chemistry, Davenport Chemical Laboratories, University of Toronto, Toronto, Ontario M5S 3H6, Canada
| | - Egor M. Larin
- Department of Chemistry, Davenport Chemical Laboratories, University of Toronto, Toronto, Ontario M5S 3H6, Canada
| | - Bijan Mirabi
- Department of Chemistry, Davenport Chemical Laboratories, University of Toronto, Toronto, Ontario M5S 3H6, Canada
| | - Mark Lautens
- Department of Chemistry, Davenport Chemical Laboratories, University of Toronto, Toronto, Ontario M5S 3H6, Canada
| |
Collapse
|
17
|
Li YX, Cheng C, Tang L, Yang YY. Palladium catalyzed asymmetric allylic alkylation of isoquinolinedione derivatives in the preparation of quaternary carbon stereocenters. Org Biomol Chem 2020; 18:4551-4555. [PMID: 32484497 DOI: 10.1039/d0ob00765j] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
A highly enantioselective allylic alkylation of isoquinolinedione derivatives under palladium catalysis was developed in the preparation of quaternary carbon stereocenters. Under standard reaction conditions, excellent yields and enantioselectivities were realized and the products could be transformed into dihydroisoquinolone with vicinal chiral carbon centers or THIQ core structures in short steps with high yields.
Collapse
Affiliation(s)
- Ying-Xian Li
- State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Provincial Engineering Technology Research Center for Chemical Drug R&D, School of Pharmacy, Guizhou Medical University, Guiyang 550004, China.
| | - Cheng Cheng
- State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Provincial Engineering Technology Research Center for Chemical Drug R&D, School of Pharmacy, Guizhou Medical University, Guiyang 550004, China.
| | - Lei Tang
- State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Provincial Engineering Technology Research Center for Chemical Drug R&D, School of Pharmacy, Guizhou Medical University, Guiyang 550004, China.
| | - Yuan-Yong Yang
- State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Provincial Engineering Technology Research Center for Chemical Drug R&D, School of Pharmacy, Guizhou Medical University, Guiyang 550004, China.
| |
Collapse
|
18
|
Marchese AD, Wollenburg M, Mirabi B, Abel-Snape X, Whyte A, Glorius F, Lautens M. Nickel-Catalyzed Enantioselective Carbamoyl Iodination: A Surrogate for Carbamoyl Iodides. ACS Catal 2020. [DOI: 10.1021/acscatal.0c00841] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Austin D. Marchese
- Department of Chemistry, Davenport Chemical Laboratories, University of Toronto, 80 St. George Street, Toronto, Ontario M5S 3H6, Canada
| | - Marco Wollenburg
- Department of Chemistry, Davenport Chemical Laboratories, University of Toronto, 80 St. George Street, Toronto, Ontario M5S 3H6, Canada
- Organisch-Chemisches Institut, Westfälische Wilhelms-Universität Münster, Corrensstraße 40, 48149 Münster, Germany
| | - Bijan Mirabi
- Department of Chemistry, Davenport Chemical Laboratories, University of Toronto, 80 St. George Street, Toronto, Ontario M5S 3H6, Canada
| | - Xavier Abel-Snape
- Department of Chemistry, Davenport Chemical Laboratories, University of Toronto, 80 St. George Street, Toronto, Ontario M5S 3H6, Canada
| | - Andrew Whyte
- Department of Chemistry, Davenport Chemical Laboratories, University of Toronto, 80 St. George Street, Toronto, Ontario M5S 3H6, Canada
| | - Frank Glorius
- Organisch-Chemisches Institut, Westfälische Wilhelms-Universität Münster, Corrensstraße 40, 48149 Münster, Germany
| | - Mark Lautens
- Department of Chemistry, Davenport Chemical Laboratories, University of Toronto, 80 St. George Street, Toronto, Ontario M5S 3H6, Canada
| |
Collapse
|
19
|
Takahashi T, Kurahashi T, Matsubara S. Nickel-Catalyzed Intermolecular Carbobromination of Alkynes. ACS Catal 2020. [DOI: 10.1021/acscatal.0c00980] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Toshifumi Takahashi
- Department of Material Chemistry, Graduate School of Engineering, Kyoto University, Kyoto 615-8510, Japan
| | - Takuya Kurahashi
- Department of Material Chemistry, Graduate School of Engineering, Kyoto University, Kyoto 615-8510, Japan
| | - Seijiro Matsubara
- Department of Material Chemistry, Graduate School of Engineering, Kyoto University, Kyoto 615-8510, Japan
| |
Collapse
|
20
|
Cao W, Niu SL, Shuai L, Xiao Q. Copper-catalysed three-component carboiodination of arynes: expeditious synthesis ofo-alkynyl aryl iodides. Chem Commun (Camb) 2020; 56:972-975. [DOI: 10.1039/c9cc09160b] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
A copper-catalysed three-component reaction of arynes, terminal alkynes, and NIS provides an expeditious approach too-alkynyl aryl iodides.
Collapse
Affiliation(s)
- Wenxuan Cao
- College of Pharmacy
- Third Military Medical University
- Chongqing 400038
- P. R. China
| | - Sheng-Li Niu
- College of Pharmacy
- Third Military Medical University
- Chongqing 400038
- P. R. China
| | - Li Shuai
- College of Pharmacy
- Third Military Medical University
- Chongqing 400038
- P. R. China
| | - Qing Xiao
- College of Pharmacy
- Third Military Medical University
- Chongqing 400038
- P. R. China
| |
Collapse
|
21
|
Wu XX, Ye H, Dai H, Yang B, Wang Y, Chen S, Hu L. Palladium-catalyzed domino Heck cyclization/ring opening of sulfolenes/desulfitative coupling: regio- and stereoselective synthesis of alkylated conjugated dienes. Org Chem Front 2020. [DOI: 10.1039/d0qo00615g] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
An efficient cascade dienylation provides a range of alkylated conjugated diene compounds with the Z-configuration by introducing the C4 unit directly.
Collapse
Affiliation(s)
- Xin-Xing Wu
- College of Chemistry and Chemical Engineering
- Nantong University
- Nantong 226019
- P. R. China
| | - Hao Ye
- College of Chemistry and Chemical Engineering
- Nantong University
- Nantong 226019
- P. R. China
| | - Hong Dai
- College of Chemistry and Chemical Engineering
- Nantong University
- Nantong 226019
- P. R. China
| | - Bing Yang
- College of Chemistry and Chemical Engineering
- Nantong University
- Nantong 226019
- P. R. China
| | - Yang Wang
- College of Chemistry and Chemical Engineering
- Nantong University
- Nantong 226019
- P. R. China
| | - Shufeng Chen
- Inner Mongolia Key Laboratory of Fine Organic Synthesis
- College of Chemistry and Chemical Engineering
- Inner Mongolia University
- Hohhot 010021
- P. R. China
| | - Lanping Hu
- College of Chemistry and Chemical Engineering
- Nantong University
- Nantong 226019
- P. R. China
| |
Collapse
|