1
|
Subbotina E, Souza LR, Zimmerman J, Anastas P. Room temperature catalytic upgrading of unpurified lignin depolymerization oil into bisphenols and butene-2. Nat Commun 2024; 15:5892. [PMID: 39003256 PMCID: PMC11246530 DOI: 10.1038/s41467-024-49812-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2024] [Accepted: 06/19/2024] [Indexed: 07/15/2024] Open
Abstract
Lignin is the largest source of renewable aromatics on earth. Despite numerous techniques for lignin depolymerization into mixtures of valuable monomers, methods for their upgrading into final products are scarce. The state of the art upgrading methods generally rely on catalytic funneling, requiring high temperatures, catalyst loadings and hydrogen pressure, and lead to the loss of functionality and bio-based carbon content. Here an alternative approach is presented, whereby the target monomers are selectively converted in unpurified mixtures into easily separable final products under mild conditions. We use reductive catalytic fractionation of wood to convert lignin into iso-eugenol and propenyl syringol enriched oil followed by an olefin metathesis to yield bisphenols and butene-2, thus, valorizing all bio-based carbons. To further demonstrate the synthetic utility of the obtained bisphenols we converted them into polyesters with a high glass transition temperature (Tg = 140.3 °C) and thermal stability (Td50% = 330 °C).
Collapse
Affiliation(s)
- Elena Subbotina
- Department of Chemistry, Yale University, 225 Prospect St, New Haven, CT, USA.
- Department of Fibre and Polymer Technology, Wallenberg Wood Science Center, KTH Royal Institute of Technology, Teknikringen 56, 100 44, Stockholm, Sweden.
- Center for Green Chemistry & Green Engineering at Yale, 370 Prospect St, New Haven, CT, USA.
| | - Layra Rodrigues Souza
- Center for Green Chemistry & Green Engineering at Yale, 370 Prospect St, New Haven, CT, USA
| | - Julie Zimmerman
- Center for Green Chemistry & Green Engineering at Yale, 370 Prospect St, New Haven, CT, USA
- Department of Chemical and Environmental Engineering, Yale University, 17 Hillhouse Ave, New Haven, CT, USA
- Yale School of the Environment, 195 Prospect St, New Haven, CT, USA
| | - Paul Anastas
- Department of Chemistry, Yale University, 225 Prospect St, New Haven, CT, USA.
- Center for Green Chemistry & Green Engineering at Yale, 370 Prospect St, New Haven, CT, USA.
- Department of Chemical and Environmental Engineering, Yale University, 17 Hillhouse Ave, New Haven, CT, USA.
- Yale School of the Environment, 195 Prospect St, New Haven, CT, USA.
- Yale School of Public Health, 60 College St, New Haven, CT, USA.
| |
Collapse
|
2
|
Krueger R, Feng E, Barzova P, Lieberman N, Lin S, Moeller KD. Anodic Cyclizations, Densely Functionalized Synthetic Building Blocks, and the Importance of Recent Mechanistic Observations. J Org Chem 2024; 89:1927-1940. [PMID: 38231008 DOI: 10.1021/acs.joc.3c02659] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2024]
Abstract
Anodic cyclization reactions can provide a versatile method for converting newly obtained chiral lactols to densely functionalized cyclic building blocks. The method works by first converting the lactol into an electron-rich olefin and then oxidatively generating a radical cation that is trapped by a nucleophile. Historically, such reactions have benefited from the use of less polar radical cations when the trapping nucleophile is a heteroatom and more polar radical cations when the reaction forms C-C bonds. This forced one to optimize underperforming reactions by resynthesizing the substrate. Here, we show that by taking advantage of methods that serve to drive a reversible initial cyclization reaction toward the product, this dichotomy and need to manipulate the substrate can be avoided. Two such methods were utilized: a faster second oxidation step and a mediated electrolysis. Both led to successful cyclizations using a polar radical cation and heteroatom nucleophiles.
Collapse
Affiliation(s)
- Ruby Krueger
- Department of Chemistry, Washington University in St. Louis, St. Louis, Missouri 63130, United States
| | - Enqi Feng
- Department of Chemistry, Washington University in St. Louis, St. Louis, Missouri 63130, United States
| | - Polina Barzova
- Department of Chemistry, Washington University in St. Louis, St. Louis, Missouri 63130, United States
| | - Noah Lieberman
- Department of Chemistry, Washington University in St. Louis, St. Louis, Missouri 63130, United States
| | - Song Lin
- Department of Chemistry and Biological Chemistry, Cornell University, Ithaca, New York 14853, United States
| | - Kevin D Moeller
- Department of Chemistry, Washington University in St. Louis, St. Louis, Missouri 63130, United States
| |
Collapse
|
3
|
Guo L, Chu R, Hao X, Lei Y, Li H, Ma D, Wang G, Tung CH, Wang Y. Ag 3PO 4 enables the generation of long-lived radical cations for visible light-driven [2 + 2] and [4 + 2] pericyclic reactions. Nat Commun 2024; 15:979. [PMID: 38302484 PMCID: PMC10834519 DOI: 10.1038/s41467-024-45217-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Accepted: 01/18/2024] [Indexed: 02/03/2024] Open
Abstract
Photocatalytic redox reactions are important for synthesizing fine chemicals from olefins, but the limited lifetime of radical cation intermediates severely restricts semiconductor photocatalysis efficiency. Here, we report that Ag3PO4 can efficiently catalyze intramolecular and intermolecular [2 + 2] and Diels-Alder cycloadditions under visible-light irradiation. The approach is additive-free, catalyst-recyclable. Mechanistic studies indicate that visible-light irradiation on Ag3PO4 generates holes with high oxidation power, which oxidize aromatic alkene adsorbates into radical cations. In photoreduced Ag3PO4, the conduction band electron (eCB-) has low reduction power due to the delocalization among the Ag+-lattices, while the particle surfaces have a strong electrostatic interaction with the radical cations, which considerably stabilize the radical cations against recombination with eCB-. The radical cation on the particle's surfaces has a lifetime of more than 2 ms, 75 times longer than homogeneous systems. Our findings highlight the effectiveness of inorganic semiconductors for challenging radical cation-mediated synthesis driven by sunlight.
Collapse
Affiliation(s)
- Lirong Guo
- Key Lab for Colloid and Interface Science of Ministry of Education, School of Chemistry and Chemical Engineering Shandong University Jinan, 250100, Jinan, China
| | - Rongchen Chu
- Key Lab for Colloid and Interface Science of Ministry of Education, School of Chemistry and Chemical Engineering Shandong University Jinan, 250100, Jinan, China
| | - Xinyu Hao
- Key Lab for Colloid and Interface Science of Ministry of Education, School of Chemistry and Chemical Engineering Shandong University Jinan, 250100, Jinan, China
| | - Yu Lei
- Key Laboratory of Photochemistry, Institute of Chemistry Chinese Academy of Sciences Beijing, 100190, Beijing, China
| | - Haibin Li
- Key Lab for Colloid and Interface Science of Ministry of Education, School of Chemistry and Chemical Engineering Shandong University Jinan, 250100, Jinan, China
| | - Dongge Ma
- College of Chemistry and Materials Engineering Beijing Technology and Business University Beijing, 100048, Beijing, China
| | - Guo Wang
- Department of Chemistry Capital Normal University Beijing, 100048, Beijing, China
| | - Chen-Ho Tung
- Key Lab for Colloid and Interface Science of Ministry of Education, School of Chemistry and Chemical Engineering Shandong University Jinan, 250100, Jinan, China
| | - Yifeng Wang
- Key Lab for Colloid and Interface Science of Ministry of Education, School of Chemistry and Chemical Engineering Shandong University Jinan, 250100, Jinan, China.
| |
Collapse
|
4
|
Hashimoto Y, Horiguchi G, Kamiya H, Okada Y. Design of a Photocatalytic [2+2] Cycloaddition Reaction Using Redox‐Tag Strategy. Chemistry 2022; 28:e202202018. [DOI: 10.1002/chem.202202018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Indexed: 11/07/2022]
Affiliation(s)
- Yasuhiro Hashimoto
- Department of Chemical Engineering Tokyo University of Agriculture and Technology 2-24-16 Naka-cho 184-8588 Koganei Tokyo Japan
| | - Genki Horiguchi
- Energy Catalyst Technology Group Energy Process Research Institute (EPRI) National Institute of Advanced Industrial Science and Technology (AIST) 16-1 Onogawa 305-8559 Tsukuba Ibaraki Japan
| | - Hidehiro Kamiya
- Department of Chemical Engineering Tokyo University of Agriculture and Technology 2-24-16 Naka-cho 184-8588 Koganei Tokyo Japan
| | - Yohei Okada
- Department of Applied Biological Science Tokyo University of Agriculture and Technology 3-5-8 Saiwai-cho 183-8509 Fuchu Tokyo Japan
| |
Collapse
|
5
|
Nakayama K, Kamiya H, Okada Y. Radical cation Diels–Alder reactions of arylidene cycloalkanes. Beilstein J Org Chem 2022; 18:1100-1106. [PMID: 36105722 PMCID: PMC9443414 DOI: 10.3762/bjoc.18.112] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2022] [Accepted: 08/18/2022] [Indexed: 11/23/2022] Open
Abstract
TiO2 photoelectrochemical and electrochemical radical cation Diels–Alder reactions of arylidene cycloalkanes are described, leading to the construction of spiro ring systems. Although the mechanism remains an open question, arylidene cyclobutanes are found to be much more effective in the reaction than other cycloalkanes. Since the reaction is completed with a substoichiometric amount of electricity, a radical cation chain pathway is likely to be involved.
Collapse
Affiliation(s)
- Kaii Nakayama
- Department of Chemical Engineering, Tokyo University of Agriculture and Technology, 2-24-16 Naka-cho, Koganei, Tokyo 184-8588, Japan
| | - Hidehiro Kamiya
- Department of Chemical Engineering, Tokyo University of Agriculture and Technology, 2-24-16 Naka-cho, Koganei, Tokyo 184-8588, Japan
| | - Yohei Okada
- Department of Applied Biological Science, Tokyo University of Agriculture and Technology, 3-5-8 Saiwai-cho, Fuchu, Tokyo 183-8509, Japan
| |
Collapse
|
6
|
Matsumoto A, Yamamoto M, Maruoka K. Cationic DABCO-Based Catalyst for Site-Selective C–H Alkylation via Photoinduced Hydrogen-Atom Transfer. ACS Catal 2022. [DOI: 10.1021/acscatal.1c05484] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- Akira Matsumoto
- Graduate School of Pharmaceutical Sciences, Kyoto University, Sakyo, Kyoto 606-8501, Japan
| | - Masanori Yamamoto
- Graduate School of Pharmaceutical Sciences, Kyoto University, Sakyo, Kyoto 606-8501, Japan
| | - Keiji Maruoka
- Graduate School of Pharmaceutical Sciences, Kyoto University, Sakyo, Kyoto 606-8501, Japan
- School of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou 510006, China
| |
Collapse
|
7
|
Cao S, Tang T, Li J, He Z. Visible light-driven [3 + 3] annulation reaction of 2 H-azirines with Huisgen zwitterions and synthesis of 1,2,4-triazines. Org Chem Front 2022. [DOI: 10.1039/d2qo00564f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A visible light-driven [3 + 3] annulation reaction of 2H-azirines with Huisgen zwitterions is developed for the first time.
Collapse
Affiliation(s)
- Shixuan Cao
- State Key Laboratory of Elemento-Organic Chemistry, College of Chemistry, Nankai University, Tianjin 300071, China
| | - Tong Tang
- State Key Laboratory of Elemento-Organic Chemistry, College of Chemistry, Nankai University, Tianjin 300071, China
| | - Jiatian Li
- State Key Laboratory of Elemento-Organic Chemistry, College of Chemistry, Nankai University, Tianjin 300071, China
| | - Zhengjie He
- State Key Laboratory of Elemento-Organic Chemistry, College of Chemistry, Nankai University, Tianjin 300071, China
- Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin 300071, China
| |
Collapse
|
8
|
Ohmura S, Isogai R, Ishihara K. Radical Cation [4+2] Cycloaddition of Non‐Conjugated Tetrasubstituted Alkenes by an FeCl
3
/AgSbF
6
Co‐Initiator. ASIAN J ORG CHEM 2021. [DOI: 10.1002/ajoc.202100473] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Shuhei Ohmura
- Graduate School of Engineering Nagoya University Furo-cho, Chikusa, Nagoya 464-8603 Japan
| | - Ryosuke Isogai
- Graduate School of Engineering Nagoya University Furo-cho, Chikusa, Nagoya 464-8603 Japan
| | - Kazuaki Ishihara
- Graduate School of Engineering Nagoya University Furo-cho, Chikusa, Nagoya 464-8603 Japan
| |
Collapse
|
9
|
Medcalf Z, Moeller KD. Anodic Olefin Coupling Reactions: Elucidating Radical Cation Mechanisms and the Interplay between Cyclization and Second Oxidation Steps. CHEM REC 2021; 21:2442-2452. [PMID: 34117713 DOI: 10.1002/tcr.202100118] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2021] [Revised: 05/18/2021] [Indexed: 12/13/2022]
Abstract
Anodic olefin coupling reactions generate new bonds and ring skeletons through a net two electron process that reverses the polarity of a known, electron-rich functional group. While much of the early work on the mechanism of these reactions focused on the initial oxidation and cyclization steps of the process, the second oxidation step also plays a central role in determining the success of the reaction. Evidence supporting this observation is presented, along with evidence that optimization of this second oxidation step is not enough to pull a poor cyclization to the desired product. Successful cyclization reactions require optimization of both processes.
Collapse
Affiliation(s)
- Zach Medcalf
- Department of Chemistry, Washington University in Saint Louis, One Brookings Drive, 63130-4899, St Louis, MO, USA
| | - Kevin D Moeller
- Department of Chemistry, Washington University in Saint Louis, One Brookings Drive, 63130-4899, St Louis, MO, USA
| |
Collapse
|
10
|
Okada Y. Synthetic Semiconductor Photoelectrochemistry. CHEM REC 2021; 21:2223-2238. [PMID: 33769685 DOI: 10.1002/tcr.202100029] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2021] [Revised: 03/10/2021] [Indexed: 01/06/2023]
Abstract
In the field of synthetic organic chemistry, photochemical and electrochemical approaches are often considered to be competing technologies that induce single electron transfer (SET). Recently, their fusion, i. e., the "photoelectrochemical" approach, has become the focus of attention. In this approach, both solar and electrical energy are used in creative combinations. Historically, the term "photoelectrochemistry" has been used in more inorganic fields, where a photovoltaic effect exhibited by semiconducting materials is employed. Semiconductors have also been studied intensively as photocatalysts; however, they recently have taken a back seat to molecular photocatalysts. In this account, we would like to revisit semiconductor photocatalysts in the field of synthetic organic chemistry to demonstrate that semiconductor "photoelectrochemical" approaches are more than mere alternatives to molecular photochemical and/or electrochemical approaches.
Collapse
Affiliation(s)
- Yohei Okada
- Department of Chemical Engineering, Tokyo University of Agriculture and Technology, 2-24-16 Naka-cho, Koganei, Tokyo, 184-8588, Japan
| |
Collapse
|
11
|
Zhu Q, Luo Y, Guo Y, Zhang Y, Tao Y. Saegusa Oxidation of Enol Ethers at Extremely Low Pd-Catalyst Loadings under Ligand-free and Aqueous Conditions: Insight into the Pd(II)/Cu(II)-Catalyst System. J Org Chem 2021; 86:5463-5476. [PMID: 33765382 DOI: 10.1021/acs.joc.0c02987] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
A highly efficient and practical Pd(II)/Cu(OAc)2-catalyst system of Saegusa oxidation, which converts enol ethers to the corresponding enals with a number of diverse substrates at extremely low catalyst loadings (500 mol ppm) under ligand-free and aqueous conditions, is described. Its synthetic utility was demonstrated by large-scale applications of the catalyst system to important nature molecules. This work allows Saegusa oxidation to become a highly practical approach to preparing enals and also suggests new insight into the Pd(II)/Cu(II)-catalyst system for dehydrogenation of carbonyl compounds and decreasing Pd-catalyst loadings.
Collapse
Affiliation(s)
- Quan Zhu
- Kunming Biohome Technology Co. Limited, Kunming 650501, PR China
| | - Yunsong Luo
- Kunming Biohome Technology Co. Limited, Kunming 650501, PR China
| | - Yongyan Guo
- Kunming Biohome Technology Co. Limited, Kunming 650501, PR China
| | - Yushun Zhang
- School of Chemical Science and Technology, Yunnan University, Kunming 650091, PR China
| | - Yunhai Tao
- School of Chemical Science and Technology, Yunnan University, Kunming 650091, PR China.,Kunming Biohome Technology Co. Limited, Kunming 650501, PR China
| |
Collapse
|
12
|
OKADA Y. Redox-Neutral Radical-Cation Reactions: Multiple Carbon–Carbon Bond Formations Enabled by Single-Electron Transfer. ELECTROCHEMISTRY 2020. [DOI: 10.5796/electrochemistry.20-00088] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Affiliation(s)
- Yohei OKADA
- Department of Chemical Engineering, Tokyo University of Agriculture and Technology
| |
Collapse
|
13
|
Maeta N, Kamiya H, Okada Y. Radical-Cation Vinylcyclopropane Rearrangements by TiO2 Photocatalysis. J Org Chem 2020; 85:6551-6566. [PMID: 32233367 DOI: 10.1021/acs.joc.0c00544] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Affiliation(s)
- Naoya Maeta
- Department of Chemical Engineering, Tokyo University of Agriculture and Technology, 2-24-16 Naka-cho, Koganei, Tokyo 184-8588, Japan
| | - Hidehiro Kamiya
- Department of Chemical Engineering, Tokyo University of Agriculture and Technology, 2-24-16 Naka-cho, Koganei, Tokyo 184-8588, Japan
| | - Yohei Okada
- Department of Chemical Engineering, Tokyo University of Agriculture and Technology, 2-24-16 Naka-cho, Koganei, Tokyo 184-8588, Japan
| |
Collapse
|