1
|
Liu C, Zhang L, You Q, Feng H, Huang J. Advancements in Desilylation Reactions for the Synthesis of Valuable Organic Molecules. CHEM REC 2024; 24:e202400120. [PMID: 39417771 DOI: 10.1002/tcr.202400120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2024] [Revised: 08/13/2024] [Indexed: 10/19/2024]
Abstract
Silicon, due to its abundance, non-toxicity, and cost-effectiveness, is a critical element in the earth's crust with significant industrial applications. In organic chemistry, main group elements, and in particular silicon, are extensively utilized as versatile synthetic intermediates. Despite the current challenges associated with harsh reaction conditions and unsustainable practices in synthesizing crucial organic structural molecules, desilylation reactions have emerged as a facilitative method, offering milder conditions and operational simplicity. This review provides a comprehensive analysis of recent advancements in the synthesis of valuable organic molecules through two distinct desilylation reactions. It systematically presents the synthesis of a variety of derivatives, such as furan, alcohol, N-heterocyclic, and ketone, highlighting the broad substrate tolerance of these reactions. This broad functional group compatibility suggests a promising future for the synthesis of a wide range of bioactive molecules, underscoring the significant potential of desilylation in contemporary organic synthesis.
Collapse
Affiliation(s)
- Chuang Liu
- College of Chemistry and Chemical Engineering, Shanghai University of Engineering Science, Shanghai, 201620, China
| | - Le Zhang
- Department of Chemistry, The University of Texas at Austin, Austin, TX, 78712, United States
| | - Qingqing You
- College of Chemistry and Chemical Engineering, Shanghai University of Engineering Science, Shanghai, 201620, China
| | - Huangdi Feng
- College of Chemistry and Chemical Engineering, Shanghai University of Engineering Science, Shanghai, 201620, China
| | - Junhai Huang
- College of Chemistry and Chemical Engineering, Shanghai University of Engineering Science, Shanghai, 201620, China
- Shanghai Engineering Research Center of Pharmaceutical Intelligent Equipment, Shanghai University of Engineering Science, Shanghai, 201620, China
| |
Collapse
|
2
|
Feng YL, Zhang BW, Xu Y, Jin S, Mazzarella D, Cao ZY. The reactivity of alkenyl boron reagents in catalytic reactions: recent advances and perspectives. Org Chem Front 2024; 11:7249-7277. [DOI: 10.1039/d4qo01703j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
Abstract
Recent advances focusing on novel reactivity of alkenyl boron reagents in polar or radical pathways within catalytic reactions by employing transition metal catalysis, organocatalysis have been summarized and discussed.
Collapse
Affiliation(s)
- Ya-Li Feng
- Engineering Research Center for Water Environment and Health of Henan, Zhengzhou University of Industrial Technology, Zhengzhou 451150, China
- Faculty of Biology and Chemistry, Arabaev Kyrgyz State University, Bishkek 720026, Kyrgyzstan
| | - Bo-Wen Zhang
- Engineering Research Center for Water Environment and Health of Henan, Zhengzhou University of Industrial Technology, Zhengzhou 451150, China
- Faculty of Biology and Chemistry, Arabaev Kyrgyz State University, Bishkek 720026, Kyrgyzstan
| | - Youzhi Xu
- College of Chemistry and Molecular Sciences, Henan University, Kaifeng 475004, P. R. China
| | - Shengnan Jin
- College of Chemistry and Molecular Sciences, Henan University, Kaifeng 475004, P. R. China
| | - Daniele Mazzarella
- Department of Chemical Sciences, University of Padova, Via Francesco Marzolo 1, 35131, Padova, Italy
| | - Zhong-Yan Cao
- College of Chemistry and Molecular Sciences, Henan University, Kaifeng 475004, P. R. China
| |
Collapse
|
3
|
Yokoyama H, Dokai Y, Kimaru N, Saito K, Yamada T. Lewis Acid-catalyzed Decarboxylative Cyanation of Cyclic Enol Carbonates — Access to Multi-substituted β-Ketonitriles —. CHEM LETT 2022. [DOI: 10.1246/cl.220017] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Affiliation(s)
- Haruki Yokoyama
- Department of Chemistry, Keio University, Hiyoshi, Kohoku-ku, Yokohama, Kanagawa 223-8522, Japan
| | - Yoichi Dokai
- Department of Chemistry, Keio University, Hiyoshi, Kohoku-ku, Yokohama, Kanagawa 223-8522, Japan
| | - Natsuki Kimaru
- Department of Chemistry, Keio University, Hiyoshi, Kohoku-ku, Yokohama, Kanagawa 223-8522, Japan
| | - Kodai Saito
- Department of Chemistry, Keio University, Hiyoshi, Kohoku-ku, Yokohama, Kanagawa 223-8522, Japan
| | - Tohru Yamada
- Department of Chemistry, Keio University, Hiyoshi, Kohoku-ku, Yokohama, Kanagawa 223-8522, Japan
| |
Collapse
|
4
|
He L, Liang C, Ouyang Y, Li L, Guo Y, Zhang P, Li W. α-Functionalization of ketones promoted by sunlight and heterogeneous catalysis in the aqueous phase. Org Biomol Chem 2022; 20:790-795. [PMID: 34994749 DOI: 10.1039/d1ob02249k] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Herein, a protocol that combines heterogeneous catalysis and solar photocatalysis for the regioselective α-substitution of asymmetric ketones with quinoxalinones has been reported. The result indicates that the reaction is more likely to occur on the α-carbon. This strategy provides a green and efficient way for the α-functionalization of ketones. A singlet oxygen involved mechanism is suggested for the transformation.
Collapse
Affiliation(s)
- Lei He
- College of Material, Chemistry and Chemical Engineering, Key Laboratory of Organosilicon Chemistry and Material Technology of Ministry of Education, Hangzhou Normal University, Hangzhou, 311121, China.
| | - Chenfeng Liang
- College of Material, Chemistry and Chemical Engineering, Key Laboratory of Organosilicon Chemistry and Material Technology of Ministry of Education, Hangzhou Normal University, Hangzhou, 311121, China.
| | - Yani Ouyang
- College of Material, Chemistry and Chemical Engineering, Key Laboratory of Organosilicon Chemistry and Material Technology of Ministry of Education, Hangzhou Normal University, Hangzhou, 311121, China.
| | - Lin Li
- College of Material, Chemistry and Chemical Engineering, Key Laboratory of Organosilicon Chemistry and Material Technology of Ministry of Education, Hangzhou Normal University, Hangzhou, 311121, China.
| | - Yirui Guo
- College of Material, Chemistry and Chemical Engineering, Key Laboratory of Organosilicon Chemistry and Material Technology of Ministry of Education, Hangzhou Normal University, Hangzhou, 311121, China.
| | - Pengfei Zhang
- College of Material, Chemistry and Chemical Engineering, Key Laboratory of Organosilicon Chemistry and Material Technology of Ministry of Education, Hangzhou Normal University, Hangzhou, 311121, China.
| | - Wanmei Li
- College of Material, Chemistry and Chemical Engineering, Key Laboratory of Organosilicon Chemistry and Material Technology of Ministry of Education, Hangzhou Normal University, Hangzhou, 311121, China.
| |
Collapse
|
5
|
Brooks B, Hiller N, May JA. Reaction rate differences between organotrifluoroborates and boronic acids in BINOL-catalyzed conjugate addition to enones. Tetrahedron Lett 2021. [DOI: 10.1016/j.tetlet.2021.153412] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
6
|
Martins B, Kaiser D, Bauer A, Tiefenbrunner I, Maulide N. Formal Enone α-Arylation via I(III)-Mediated Aryl Migration/Elimination. Org Lett 2021; 23:2094-2098. [PMID: 33635665 PMCID: PMC7985840 DOI: 10.1021/acs.orglett.1c00251] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2021] [Indexed: 12/02/2022]
Abstract
A formal enone α-arylation is described. This metal-free transformation relies on the I(III)-mediated skeletal reorganization of silyl enol ethers and features mild conditions, good yields, and high stereoselectivities for β-substituted enones.
Collapse
Affiliation(s)
| | | | - Adriano Bauer
- University of Vienna, Institute of Organic Chemistry, Währinger Strasse 38, 1090 Vienna, Austria
| | - Irmgard Tiefenbrunner
- University of Vienna, Institute of Organic Chemistry, Währinger Strasse 38, 1090 Vienna, Austria
| | - Nuno Maulide
- University of Vienna, Institute of Organic Chemistry, Währinger Strasse 38, 1090 Vienna, Austria
| |
Collapse
|
7
|
Baffour Pipim G, Tia R, Adei E. Computational exploration of the 1,3‐dipolar cycloaddition reaction of 7‐isopropylidenebenzonorbornadiene with nitrile oxide and cyclic nitrone derivatives. J PHYS ORG CHEM 2020. [DOI: 10.1002/poc.4174] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- George Baffour Pipim
- Theoretical and Computational Chemistry Laboratory, Department of Chemistry Kwame Nkrumah University of Science and Technology Kumasi Ghana
| | - Richard Tia
- Theoretical and Computational Chemistry Laboratory, Department of Chemistry Kwame Nkrumah University of Science and Technology Kumasi Ghana
| | - Evans Adei
- Theoretical and Computational Chemistry Laboratory, Department of Chemistry Kwame Nkrumah University of Science and Technology Kumasi Ghana
| |
Collapse
|
8
|
Aota Y, Doko Y, Kano T, Maruoka K. Brønsted Acid-Catalyzed Intramolecular α-Arylation of Ketones with Phenolic Nucleophiles via Oxy-Allyl Cation Intermediates. European J Org Chem 2020. [DOI: 10.1002/ejoc.202000169] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Yusuke Aota
- Department of Chemistry; Graduate School of Science; Kyoto University; Sakyo 606-8502 Kyoto Japan
| | - Yuki Doko
- Department of Chemistry; Graduate School of Science; Kyoto University; Sakyo 606-8502 Kyoto Japan
| | - Taichi Kano
- Department of Chemistry; Graduate School of Science; Kyoto University; Sakyo 606-8502 Kyoto Japan
| | - Keiji Maruoka
- Department of Chemistry; Graduate School of Science; Kyoto University; Sakyo 606-8502 Kyoto Japan
- Graduate School of Pharmaceutical Sciences; Kyoto University; Sakyo 606-8501 Kyoto Japan
- School of Chemical Engineering and Light Industry; Guangdong University of Technology; 510006 Guangzhou China
| |
Collapse
|
9
|
Huang WH, Huang GB, Zhu WR, Weng J, Lu G. Transition metal-free synthesis of α-aryl ketones via oxyallyl cation capture with arylboronic acids. Org Chem Front 2020. [DOI: 10.1039/d0qo00447b] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
α-Arylated ketones were accessed via oxyallyl cation capture with arylboronic acids in good yields with broad substrate tolerance.
Collapse
Affiliation(s)
- Wei-Hua Huang
- Guangdong Provincial Key Laboratory of Chiral Molecule and Drug Discovery
- School of Pharmaceutical Sciences
- Sun Yat-sen University
- Guangzhou 510006
- P. R. China
| | - Gong-Bin Huang
- Guangdong Provincial Key Laboratory of Chiral Molecule and Drug Discovery
- School of Pharmaceutical Sciences
- Sun Yat-sen University
- Guangzhou 510006
- P. R. China
| | - Wen-Run Zhu
- Guangdong Provincial Key Laboratory of Chiral Molecule and Drug Discovery
- School of Pharmaceutical Sciences
- Sun Yat-sen University
- Guangzhou 510006
- P. R. China
| | - Jiang Weng
- Guangdong Provincial Key Laboratory of Chiral Molecule and Drug Discovery
- School of Pharmaceutical Sciences
- Sun Yat-sen University
- Guangzhou 510006
- P. R. China
| | - Gui Lu
- Guangdong Provincial Key Laboratory of Chiral Molecule and Drug Discovery
- School of Pharmaceutical Sciences
- Sun Yat-sen University
- Guangzhou 510006
- P. R. China
| |
Collapse
|