1
|
Shen J, Li J, Chen M, Yue X, Shi X. Photoinduced Radical Desulfurative C(sp 3)-C(sp 2) Coupling via Electron Donor-Acceptor Complexes. Org Lett 2024; 26:1495-1500. [PMID: 38334317 DOI: 10.1021/acs.orglett.4c00162] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/10/2024]
Abstract
Herein, we disclose a radical desulfurative C-C coupling protocol for the synthesis of 4-alkylpyridines. A variety of substituents on both benzyl thiols and 4-cyanopyridines are tolerated. The reaction is carried out under mild and photocatalyst- and transition-metal-free conditions. Preliminary mechanistic studies show that an electron donor-acceptor complex is formed between benzyl thiols and 4-cyanopyridines under alkaline conditions. Then, a variety of 1°, 2°, and 3° C(sp3)-centered radicals was formed by cleavage of the C-S bond, and the 4-alkylpyridines were achieved through a radical-radical coupling with the pyridyl radical anion.
Collapse
Affiliation(s)
- Jiaxuan Shen
- Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals, State Key Laboratory of Antiviral Drugs, Henan Normal University School of Chemistry and Chemical Engineering, Xinxiang, Henan 453007, China
| | - Jincan Li
- Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals, State Key Laboratory of Antiviral Drugs, Henan Normal University School of Chemistry and Chemical Engineering, Xinxiang, Henan 453007, China
| | - Meijun Chen
- Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals, State Key Laboratory of Antiviral Drugs, Henan Normal University School of Chemistry and Chemical Engineering, Xinxiang, Henan 453007, China
| | - Xuerong Yue
- Chongqing Ensky Chemical CO., LTD., North New Zone, Chongqing 401121, China
| | - Xin Shi
- Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals, State Key Laboratory of Antiviral Drugs, Henan Normal University School of Chemistry and Chemical Engineering, Xinxiang, Henan 453007, China
| |
Collapse
|
2
|
Ma Y, Deng J, Gu J, Jiang D, Lv K, Ye X, Yao Q. Recent progress in photoinduced direct desulfurization of thiols. Org Biomol Chem 2023; 21:7873-7879. [PMID: 37750040 DOI: 10.1039/d3ob01274c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/27/2023]
Abstract
The reduction of mercaptans plays an important role in diverse areas such as protein synthesis, polymer science, environmental study, and pharmaceutical chemistry. Despite significant advancements in this area, particularly in light-induced transformations, review articles have rarely been reported on this topic. Thus, this review article emphasizes the direct photoinduced desulfurization and functionalization of thiols to alkanes or coupling products, with a focus on significant advancements made in the last decade. The progress is discussed according to the types of bonds formed from the cleavage of Csp3-SH bonds.
Collapse
Affiliation(s)
- Yuhong Ma
- Key Laboratory of Biocatalysis & Chiral Drug Synthesis of Guizhou Province, Generic Drug Research Center of Guizhou Province, Department of Pharmacy, Zunyi Medical University, 6 Xuefu Road West, Zunyi, 563000, China.
| | - Jinfei Deng
- Key Laboratory of Biocatalysis & Chiral Drug Synthesis of Guizhou Province, Generic Drug Research Center of Guizhou Province, Department of Pharmacy, Zunyi Medical University, 6 Xuefu Road West, Zunyi, 563000, China.
| | - Jianyu Gu
- Key Laboratory of Biocatalysis & Chiral Drug Synthesis of Guizhou Province, Generic Drug Research Center of Guizhou Province, Department of Pharmacy, Zunyi Medical University, 6 Xuefu Road West, Zunyi, 563000, China.
| | - Dengbo Jiang
- Key Laboratory of Biocatalysis & Chiral Drug Synthesis of Guizhou Province, Generic Drug Research Center of Guizhou Province, Department of Pharmacy, Zunyi Medical University, 6 Xuefu Road West, Zunyi, 563000, China.
| | - Kaizhuo Lv
- Key Laboratory of Biocatalysis & Chiral Drug Synthesis of Guizhou Province, Generic Drug Research Center of Guizhou Province, Department of Pharmacy, Zunyi Medical University, 6 Xuefu Road West, Zunyi, 563000, China.
| | - Xiushen Ye
- Key Laboratory of Comprehensive and Highly Efficient Utilization of Salt Lake Resources, Qinghai Institute of Salt Lakes, Chinese Academy of Sciences, Xining, 810008, China
| | - Qiuli Yao
- Key Laboratory of Biocatalysis & Chiral Drug Synthesis of Guizhou Province, Generic Drug Research Center of Guizhou Province, Department of Pharmacy, Zunyi Medical University, 6 Xuefu Road West, Zunyi, 563000, China.
- Key Laboratory of Comprehensive and Highly Efficient Utilization of Salt Lake Resources, Qinghai Institute of Salt Lakes, Chinese Academy of Sciences, Xining, 810008, China
| |
Collapse
|
3
|
Morsy RMI, Samala G, Jalan A, Kopach ME, Venneti NM, Stockdill JL. Metal-free reductive desulfurization of C-sp 3-substituted thiols using phosphite catalysis. Chem Sci 2023; 14:9016-9023. [PMID: 37655042 PMCID: PMC10466286 DOI: 10.1039/d3sc00045a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2023] [Accepted: 07/03/2023] [Indexed: 09/02/2023] Open
Abstract
Phosphines and phosphites are critical tools for non-metal desulfurative methodologies due to the strength of the P[double bond, length as m-dash]S bond. An overarching premise in these methods has been that stoichiometric (or excess) P(iii) reagent is required for reactivity. Despite decades of research, a desulfurative process that is catalytic in phosphine/phosphite has not been reported. Here, we report the successful merging of two thermal radical processes: the desulfurization of unactivated and activated alkyl thiols and the reduction of P(v) = S to P(iii) by reaction with a silyl radical species. We employ catalytic trimethyl phosphite, catalytic azo-bis(cyclohexyl)nitrile, and two equivalents of tris(trimethylsilyl)silane as the stoichiometric reductant and sulfur atom scavenger. This method is tolerant of common organic functional groups and affords products in good to excellent yields.
Collapse
Affiliation(s)
- Rana M I Morsy
- Department of Chemistry, Wayne State University Detroit MI 48202 USA
| | - Ganesh Samala
- Department of Chemistry, Wayne State University Detroit MI 48202 USA
| | - Ankur Jalan
- Eli Lilly and Company Indianapolis IN 46285 USA
| | | | - Naresh M Venneti
- Department of Chemistry, Wayne State University Detroit MI 48202 USA
| | | |
Collapse
|
4
|
Lynch DM, Nolan MD, Williams C, Van Dalsen L, Calvert SH, Dénès F, Trujillo C, Scanlan EM. Traceless Thioacid-Mediated Radical Cyclization of 1,6-Dienes. J Org Chem 2023. [PMID: 37418624 PMCID: PMC10367065 DOI: 10.1021/acs.joc.3c00824] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/09/2023]
Abstract
Five-membered ring systems are ubiquitous throughout natural products and synthetic therapeutics, and thus, efficient methods to access this essential scaffold are required. Herein, we report the thioacid-mediated, 5-exo-trig cyclization of various 1,6-dienes, with high yields of up to 98%. The labile thioester functionality can be exploited to generate a free thiol residue which can be used as a functional handle or removed entirely to provide the traceless cyclized product.
Collapse
Affiliation(s)
- Dylan M Lynch
- Trinity Biomedical Sciences Institute, Trinity College Dublin, 152-160 Pearse Street, Dublin 2, Ireland
| | - Mark D Nolan
- Trinity Biomedical Sciences Institute, Trinity College Dublin, 152-160 Pearse Street, Dublin 2, Ireland
| | - Conor Williams
- Trinity Biomedical Sciences Institute, Trinity College Dublin, 152-160 Pearse Street, Dublin 2, Ireland
| | - Leendert Van Dalsen
- Trinity Biomedical Sciences Institute, Trinity College Dublin, 152-160 Pearse Street, Dublin 2, Ireland
| | - Susannah H Calvert
- Trinity Biomedical Sciences Institute, Trinity College Dublin, 152-160 Pearse Street, Dublin 2, Ireland
| | - Fabrice Dénès
- Université de Nantes, CEISAM UMR CNRS 6230 UFR des Sciences et des Techniques, 2 rue de la Houssinière BP, 92208 - 44322 Cedex 3 Nantes, France
| | - Cristina Trujillo
- Trinity Biomedical Sciences Institute, Trinity College Dublin, 152-160 Pearse Street, Dublin 2, Ireland
| | - Eoin M Scanlan
- Trinity Biomedical Sciences Institute, Trinity College Dublin, 152-160 Pearse Street, Dublin 2, Ireland
| |
Collapse
|
5
|
Recent Progress of Non-Isocyanate Polyurethane Foam and Their Challenges. Polymers (Basel) 2023; 15:polym15020254. [PMID: 36679134 PMCID: PMC9866265 DOI: 10.3390/polym15020254] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Revised: 12/28/2022] [Accepted: 12/30/2022] [Indexed: 01/06/2023] Open
Abstract
Polyurethane foams (PUFs) are a significant group of polymeric foam materials. Thanks to their outstanding mechanical, chemical, and physical properties, they are implemented successfully in a wide range of applications. Conventionally, PUFs are obtained in polyaddition reactions between polyols, diisoycyanate, and water to get a CO2 foaming agent. The toxicity of isocyanate has attracted considerable attention from both scientists and industry professionals to explore cleaner synthesis routes for polyurethanes excluding the use of isocyanate. The polyaddition of cyclic carbonates (CCs) and polyfunctional amines in the presence of an external blowing agent or by self-blowing appears to be the most promising route to substitute the conventional PUFs process and to produce isocyanate-free polyurethane foams (NIPUFs). Especially for polyhydroxyurethane foams (PHUFs), the use of a blowing agent is essential to regenerate the gas responsible for the creation of the cells that are the basis of the foam. In this review, we report on the use of different blowing agents, such as Poly(methylhydrogensiloxane) (PHMS) and liquid fluorohydrocarbons for the preparation of NIPUFs. Furthermore, the preparation of NIPUFs using the self-blowing technique to produce gas without external blowing agents is assessed. Finally, various biologically derived NIPUFs are presented, including self-blown NIPUFs and NIPUFs with an external blowing agent.
Collapse
|
6
|
Tan CY, Kim M, Park I, Kim Y, Hong S. Site-Selective Pyridine C-H Alkylation with Alcohols and Thiols via Single-Electron Transfer of Frustrated Lewis Pairs. Angew Chem Int Ed Engl 2022; 61:e202213857. [PMID: 36314414 DOI: 10.1002/anie.202213857] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Indexed: 11/07/2022]
Abstract
A unified strategy for the deoxygenative or desulfurative pyridylation of various alcohols and thiols has been developed through a single-electron transfer (SET) process of frustrated Lewis pairs (FLPs) derived from pyridinium salts and PtBu3 . Mechanistic studies revealed that N-amidopyridinium salts serve as effective Lewis acids for the formation of FLPs with PtBu3 , and the generated phosphine radical cation ionically couples with the in situ generated xanthate, eventually affording the alkyl radical through facile β-scission under photocatalyst-free conditions. The reaction efficiency was further accelerated by visible-light irradiation. This method is conceptually appealing by using encounter complexes in FLP chemistry to promote SET, which provides a previously unrecognized opportunity for the selective heteroarylation of a diverse range of alcohols and thiols with various functional groups, even in complex settings under mild reaction conditions.
Collapse
Affiliation(s)
- Chang-Yin Tan
- Department of Chemistry, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 34141, Republic of Korea.,Center for Catalytic Hydrocarbon Functionalizations, Institute for Basic Science (IBS), Daejeon, 34141, Republic of Korea
| | - Myojeong Kim
- Department of Chemistry, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 34141, Republic of Korea.,Center for Catalytic Hydrocarbon Functionalizations, Institute for Basic Science (IBS), Daejeon, 34141, Republic of Korea
| | - Inyoung Park
- Department of Chemistry, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 34141, Republic of Korea.,Center for Catalytic Hydrocarbon Functionalizations, Institute for Basic Science (IBS), Daejeon, 34141, Republic of Korea
| | - Yuhyun Kim
- Department of Chemistry, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 34141, Republic of Korea.,Center for Catalytic Hydrocarbon Functionalizations, Institute for Basic Science (IBS), Daejeon, 34141, Republic of Korea
| | - Sungwoo Hong
- Department of Chemistry, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 34141, Republic of Korea.,Center for Catalytic Hydrocarbon Functionalizations, Institute for Basic Science (IBS), Daejeon, 34141, Republic of Korea
| |
Collapse
|
7
|
Zhang Y, Han Y, Zhu S, Qing F, Xue X, Chu L. Light‐Induced Divergent Cyanation of Alkynes Enabled by Phosphorus Radicals. Angew Chem Int Ed Engl 2022; 61:e202210838. [DOI: 10.1002/anie.202210838] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2022] [Indexed: 11/16/2022]
Affiliation(s)
- Yanyan Zhang
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials Center for Advanced Low-Dimension Materials Donghua University College of Chemistry Chemical Engineering and Biotechnology Shanghai 201620 China
| | - Yunhong Han
- Key Laboratory of Organofluorine Chemistry Shanghai Institute of Organic Chemistry University of Chinese Academy of Sciences Chinese Academy of Sciences 345 Lingling Road Shanghai 200032 China
| | - Shengqing Zhu
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials Center for Advanced Low-Dimension Materials Donghua University College of Chemistry Chemical Engineering and Biotechnology Shanghai 201620 China
| | - Feng‐Ling Qing
- Key Laboratory of Organofluorine Chemistry Shanghai Institute of Organic Chemistry University of Chinese Academy of Sciences Chinese Academy of Sciences 345 Lingling Road Shanghai 200032 China
| | - Xiao‐Song Xue
- Key Laboratory of Organofluorine Chemistry Shanghai Institute of Organic Chemistry University of Chinese Academy of Sciences Chinese Academy of Sciences 345 Lingling Road Shanghai 200032 China
- School of Chemistry and Materials Science Hangzhou Institute for Advanced Study University of Chinese Academy of Sciences 1 Sub-lane Xiangshan Hangzhou 310024 P. R. China
| | - Lingling Chu
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials Center for Advanced Low-Dimension Materials Donghua University College of Chemistry Chemical Engineering and Biotechnology Shanghai 201620 China
| |
Collapse
|
8
|
Rahaman R, Nair AM, Volla CMR. Visible-Light Mediated Arbuzov-Like Reaction with Thiophenols. Chemistry 2022; 28:e202201290. [PMID: 35670550 DOI: 10.1002/chem.202201290] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Indexed: 11/10/2022]
Abstract
We hereby disclose, a visible light mediated addition of sulfenyl radicals to trialkyl phosphites to access functionalized phosphorothioates. The use of cheap and readily available Eosin Y as a photocatalyst under mild energy efficient conditions bypassing the use of external oxidants forms the chief highlight of the work. The protocol is scalable and mechanistic studies indicate that the reaction proceeds through an ionic-Arbuzov like pathway from phosphoranyl radicals.
Collapse
Affiliation(s)
- Rajjakfur Rahaman
- Department of Chemistry, Indian Institute of Technology Bombay, Powai, Mumbai, 400076, India
| | - Akshay M Nair
- Department of Chemistry, Indian Institute of Technology Bombay, Powai, Mumbai, 400076, India
| | - Chandra M R Volla
- Department of Chemistry, Indian Institute of Technology Bombay, Powai, Mumbai, 400076, India
| |
Collapse
|
9
|
Ganie MA, Bhat MUS, Rizvi MA, Raheem S, Shah BA. Synthesis of 1,2-oxazetidines with a free -NH group via photoredox catalysis. Chem Commun (Camb) 2022; 58:8508-8511. [PMID: 35801422 DOI: 10.1039/d2cc02892a] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
A photoredox approach enabling one-step synthesis of oxazetidines with a free -NH group via the combined use of alkyne, thiophenol, and azide has been reported. The synthesized oxazetidine with the free -NH group was stable enough for various late-stage transformations such as methylation, acetylation, tosylation, and ring-opening reaction to afford synthetically useful α-aminoketones.
Collapse
Affiliation(s)
- Majid Ahmad Ganie
- Academy of Scientific and Industrial Research (AcSIR), Ghaziabad-201002, India.,Natural Product & Medicinal Chemistry, CSIR-Indian Institute of Integrative Medicine, Jammu-180001, India.
| | - Muneer-Ul-Shafi Bhat
- Academy of Scientific and Industrial Research (AcSIR), Ghaziabad-201002, India.,Natural Product & Medicinal Chemistry, CSIR-Indian Institute of Integrative Medicine, Jammu-180001, India.
| | | | - Shabnam Raheem
- Department of Chemistry, University of Kashmir, Srinagar, 190006, India
| | - Bhahwal Ali Shah
- Academy of Scientific and Industrial Research (AcSIR), Ghaziabad-201002, India.,Natural Product & Medicinal Chemistry, CSIR-Indian Institute of Integrative Medicine, Jammu-180001, India.
| |
Collapse
|
10
|
Hu L, Li R, Deng W, Sun Z. Visible-light induced green synthesis of γ-deuterated carbonyl compounds. Tetrahedron Lett 2022. [DOI: 10.1016/j.tetlet.2022.153914] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
11
|
Guo HM, He BQ, Wu X. Direct Photoexcitation of Xanthate Anions for Deoxygenative Alkenylation of Alcohols. Org Lett 2022; 24:3199-3204. [PMID: 35467887 DOI: 10.1021/acs.orglett.2c00889] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
In this report, we identify xanthate salts as a unique class of visible-light-excitable alkyl radical precursors that act simultaneously as strong photoreductants and alkyl radical sources. Upon direct photoexcitation of xanthate anions, efficient deoxygenative alkenylation and alkylation of a wide range of primary, secondary, and tertiary alcohols have been achieved via a one-pot protocol, avoiding any photocatalysts. This method exhibits a broad substrate scope and good functional group tolerance, enabling late-stage functionalization of complex molecules.
Collapse
Affiliation(s)
- Hong-Mei Guo
- Hubei Key Laboratory of Bioinorganic Chemistry & Materia Medica, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Bin-Qing He
- Hubei Key Laboratory of Bioinorganic Chemistry & Materia Medica, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Xuesong Wu
- Hubei Key Laboratory of Bioinorganic Chemistry & Materia Medica, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan 430074, China
| |
Collapse
|
12
|
Zhang Q, Hou J, Huang Y, Zhan LW, Li BD. Visible light-promoted synthesis of ureas and formamides from amines and CO 2. Chem Commun (Camb) 2022; 58:4599-4602. [PMID: 35311867 DOI: 10.1039/d2cc00572g] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
A divergent visible-light-induced Ph3P-promoted method for the synthesis of ureas and formamides from amines and CO2 is reported. Without external additions, a range of ureas could be directly accessed under ambient temperature and pressure. Using triisopropylsilanethiol as the hydrogen source, formamides could be produced.
Collapse
Affiliation(s)
- Qian Zhang
- College of Chemical Engineering, Nanjing University of Science and Technology, Nanjing 210094, China.
| | - Jing Hou
- College of Chemical Engineering, Nanjing University of Science and Technology, Nanjing 210094, China.
| | - Yan Huang
- College of Chemical Engineering, Nanjing University of Science and Technology, Nanjing 210094, China.
| | - Le-Wu Zhan
- College of Chemical Engineering, Nanjing University of Science and Technology, Nanjing 210094, China.
| | - Bin-Dong Li
- College of Chemical Engineering, Nanjing University of Science and Technology, Nanjing 210094, China.
| |
Collapse
|
13
|
Yang YF, Lin JH, Xiao JC. Starting from Styrene: A Unified Protocol for Hydrotrifluoromethylation of Diversified Alkenes. Org Lett 2021; 23:9277-9282. [PMID: 34797075 DOI: 10.1021/acs.orglett.1c03630] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
In contrast with unactivated alkenes, the corresponding hydrotrifluoromethylation of styrene has remained challenging due to the strong propensity of styrene for oligomerization and polymerization. On the basis of our newly developed trifluoromethylation reagent, TFSP, herein we present a general method for the hydrotrifluoromethylation of styrene under photoredox catalysis. The substrate scope was further extended to unactivated alkenes, acrylates, acrylamides, and vinyl-heteroatom-substituted alkenes. The tunability of this method was showcased via the relevant deprotonative trifluoromethylation and trifluoromethyltrifluoroethoxylation reactions.
Collapse
Affiliation(s)
- Yi-Fei Yang
- Key Laboratory of Organofluorine Chemistry, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Science, Chinese Academy of Science, 345 Lingling Road, Shanghai 200032, China
| | - Jin-Hong Lin
- Key Laboratory of Organofluorine Chemistry, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Science, Chinese Academy of Science, 345 Lingling Road, Shanghai 200032, China.,Department of Chemistry, Innovative Drug Research Center, Shanghai University, Shanghai 200444, China
| | - Ji-Chang Xiao
- Key Laboratory of Organofluorine Chemistry, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Science, Chinese Academy of Science, 345 Lingling Road, Shanghai 200032, China
| |
Collapse
|
14
|
Chalotra N, Shah IH, Raheem S, Rizvi MA, Shah BA. Visible-Light-Promoted Oxidative Annulation of Naphthols and Alkynes: Synthesis of Functionalized Naphthofurans. J Org Chem 2021; 86:16770-16784. [PMID: 34726928 DOI: 10.1021/acs.joc.1c01992] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
A visible-light-mediated site-selective oxidative annulation of naphthols with alkynes for the synthesis of functionalized naphthofurans has been developed. The reaction relies on the in situ formation of an electron donor acceptor pair between phenylacetylene and thiophenol as the light-absorbing system to obviate the requirement of an added photocatalyst. The protocol facilitates the transformation of 1-naphthol and 2-naphthol as well as 1,4-naphthoquinone into a wide variety of highly functionalized naphthofurans.
Collapse
Affiliation(s)
- Neha Chalotra
- Academy of Scientific and Industrial Research (AcSIR), Ghaziabad 201002, India.,Natural Product & Medicinal Chemistry, CSIR-Indian Institute of Integrative Medicine, Jammu 180001, India
| | - Iftkhar Hussain Shah
- Academy of Scientific and Industrial Research (AcSIR), Ghaziabad 201002, India.,Natural Product & Medicinal Chemistry, CSIR-Indian Institute of Integrative Medicine, Jammu 180001, India
| | - Shabnam Raheem
- Department of Chemistry, University of Kashmir, Srinagar 190006, India
| | | | - Bhahwal Ali Shah
- Academy of Scientific and Industrial Research (AcSIR), Ghaziabad 201002, India.,Natural Product & Medicinal Chemistry, CSIR-Indian Institute of Integrative Medicine, Jammu 180001, India
| |
Collapse
|
15
|
Silva TS, Coelho F. Methodologies for the synthesis of quaternary carbon centers via hydroalkylation of unactivated olefins: twenty years of advances. Beilstein J Org Chem 2021; 17:1565-1590. [PMID: 34290837 PMCID: PMC8275869 DOI: 10.3762/bjoc.17.112] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2021] [Accepted: 06/21/2021] [Indexed: 01/01/2023] Open
Abstract
Olefin double-bond functionalization has been established as an excellent strategy for the construction of elaborate molecules. In particular, the hydroalkylation of olefins represents a straightforward strategy for the synthesis of new C(sp3)–C(sp3) bonds, with concomitant formation of challenging quaternary carbon centers. In the last 20 years, numerous hydroalkylation methodologies have emerged that have explored the diverse reactivity patterns of the olefin double bond. This review presents examples of olefins acting as electrophilic partners when coordinated with electrophilic transition-metal complexes or, in more recent approaches, when used as precursors of nucleophilic radical species in metal hydride hydrogen atom transfer reactions. This unique reactivity, combined with the wide availability of olefins as starting materials and the success reported in the construction of all-carbon C(sp3) quaternary centers, makes hydroalkylation reactions an ideal platform for the synthesis of molecules with increased molecular complexity.
Collapse
Affiliation(s)
- Thiago S Silva
- Laboratory of Synthesis of Natural Products and Drugs, Department of Organic Chemistry, Chemistry Institute, University of Campinas, PO Box 6154 - 13083-970, Campinas - SP, Brazil
| | - Fernando Coelho
- Laboratory of Synthesis of Natural Products and Drugs, Department of Organic Chemistry, Chemistry Institute, University of Campinas, PO Box 6154 - 13083-970, Campinas - SP, Brazil
| |
Collapse
|
16
|
Supranovich VI, Levin VV, Kokorekin VA, Dilman AD. Generation of Alkyl Radicals from Thiols via Zinc Thiolates: Application for the Synthesis of
gem
‐Difluorostyrenes. Adv Synth Catal 2021. [DOI: 10.1002/adsc.202100088] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
| | - Vitalij V. Levin
- N. D. Zelinsky Institute of Organic Chemistry 119991 Moscow Leninsky prosp. 47 Russian Federation
| | - Vladimir A. Kokorekin
- N. D. Zelinsky Institute of Organic Chemistry 119991 Moscow Leninsky prosp. 47 Russian Federation
| | - Alexander D. Dilman
- N. D. Zelinsky Institute of Organic Chemistry 119991 Moscow Leninsky prosp. 47 Russian Federation
| |
Collapse
|
17
|
Wang Y, Deng L, Zhang X, Mou Z, Niu D. A Radical Approach to Making Unnatural Amino Acids: Conversion of C−S Bonds in Cysteine Derivatives into C−C Bonds. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.202012503] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Affiliation(s)
- Yingwei Wang
- Department of Emergency State Key Laboratory of Biotherapy West China Hospital, and School of Chemical Engineering Sichuan University No. 17 Renmin Nan Road Chengdu 610041 China
| | - Li‐Fan Deng
- Department of Emergency State Key Laboratory of Biotherapy West China Hospital, and School of Chemical Engineering Sichuan University No. 17 Renmin Nan Road Chengdu 610041 China
| | - Xia Zhang
- Department of Emergency State Key Laboratory of Biotherapy West China Hospital, and School of Chemical Engineering Sichuan University No. 17 Renmin Nan Road Chengdu 610041 China
| | - Ze‐Dong Mou
- Department of Emergency State Key Laboratory of Biotherapy West China Hospital, and School of Chemical Engineering Sichuan University No. 17 Renmin Nan Road Chengdu 610041 China
| | - Dawen Niu
- Department of Emergency State Key Laboratory of Biotherapy West China Hospital, and School of Chemical Engineering Sichuan University No. 17 Renmin Nan Road Chengdu 610041 China
| |
Collapse
|
18
|
Wang Y, Deng LF, Zhang X, Mou ZD, Niu D. A Radical Approach to Making Unnatural Amino Acids: Conversion of C−S Bonds in Cysteine Derivatives into C−C Bonds. Angew Chem Int Ed Engl 2020; 60:2155-2159. [PMID: 33022829 DOI: 10.1002/anie.202012503] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2020] [Revised: 10/02/2020] [Indexed: 02/05/2023]
Affiliation(s)
- Yingwei Wang
- Department of Emergency, State Key Laboratory of Biotherapy, West China Hospital, and School of Chemical Engineering, Sichuan University, No. 17 Renmin Nan Road, Chengdu, 610041, China
| | - Li-Fan Deng
- Department of Emergency, State Key Laboratory of Biotherapy, West China Hospital, and School of Chemical Engineering, Sichuan University, No. 17 Renmin Nan Road, Chengdu, 610041, China
| | - Xia Zhang
- Department of Emergency, State Key Laboratory of Biotherapy, West China Hospital, and School of Chemical Engineering, Sichuan University, No. 17 Renmin Nan Road, Chengdu, 610041, China
| | - Ze-Dong Mou
- Department of Emergency, State Key Laboratory of Biotherapy, West China Hospital, and School of Chemical Engineering, Sichuan University, No. 17 Renmin Nan Road, Chengdu, 610041, China
| | - Dawen Niu
- Department of Emergency, State Key Laboratory of Biotherapy, West China Hospital, and School of Chemical Engineering, Sichuan University, No. 17 Renmin Nan Road, Chengdu, 610041, China
| |
Collapse
|
19
|
Kumar J, Ahmad A, Rizvi MA, Ganie MA, Khajuria C, Shah BA. Photoredox-Mediated Synthesis of Functionalized Sulfoxides from Terminal Alkynes. Org Lett 2020; 22:5661-5665. [PMID: 32602720 DOI: 10.1021/acs.orglett.0c02055] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
A photoredox-mediated protocol for the synthesis of α-alkoxy-β-ketosulfoxides and α,β-dialkoxysulfoxides using alkynes, thiol, and alcohols is reported. This work presents a rare single-step synthesis of α-substituted sulfoxides, involving tandem introduction of a thiol and alcohol as a key enabling advancement. Furthermore, the method can be easily employed to access vinyl sulfoxides and β-ketosulfoxides.
Collapse
Affiliation(s)
- Jaswant Kumar
- AcSIR and Natural Product Microbes, CSIR-Indian Institute of Integrative Medicine, Jammu 180001, Jammu and Kashmir
| | - Ajaz Ahmad
- AcSIR and Natural Product Microbes, CSIR-Indian Institute of Integrative Medicine, Jammu 180001, Jammu and Kashmir
| | - Masood Ahmad Rizvi
- Department of Chemistry, University of Kashmir, Srinagar 190006, Jammu and Kashmir
| | - Majid Ahmed Ganie
- AcSIR and Natural Product Microbes, CSIR-Indian Institute of Integrative Medicine, Jammu 180001, Jammu and Kashmir
| | - Chhavi Khajuria
- AcSIR and Natural Product Microbes, CSIR-Indian Institute of Integrative Medicine, Jammu 180001, Jammu and Kashmir.,Department of Chemistry, Guru Nanak Dev University, Amritsar, India
| | - Bhahwal Ali Shah
- AcSIR and Natural Product Microbes, CSIR-Indian Institute of Integrative Medicine, Jammu 180001, Jammu and Kashmir
| |
Collapse
|
20
|
Rossi-Ashton JA, Clarke AK, Unsworth WP, Taylor RJK. Phosphoranyl Radical Fragmentation Reactions Driven by Photoredox Catalysis. ACS Catal 2020; 10:7250-7261. [PMID: 32905246 PMCID: PMC7469205 DOI: 10.1021/acscatal.0c01923] [Citation(s) in RCA: 99] [Impact Index Per Article: 19.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2020] [Revised: 06/04/2020] [Indexed: 12/17/2022]
Abstract
Photocatalytic generation of phosphoranyl radicals is fast emerging as an essential method for the generation of diverse and valuable radicals, typically via deoxygenation or desulfurization processes. This Perspective is a comprehensive evaluation of all studies using phosphoranyl radicals as tunable mediators in photoredox catalysis, highlighting how two distinct methods for phosphoranyl radical formation (radical addition and nucleophilic addition) can be used to generate versatile radical intermediates with diverse reactivity profiles.
Collapse
Affiliation(s)
| | - Aimee K. Clarke
- Department of Chemistry, University of York, Heslington,
York YO10 5DD, U.K.
| | - William P. Unsworth
- Department of Chemistry, University of York, Heslington,
York YO10 5DD, U.K.
| | | |
Collapse
|