1
|
Kozlov O, Lísa M, Riecan M, Kuda O. Chiral supercritical fluid chromatography-mass spectrometry with liquid chromatography fractionation for the characterization of enantiomeric composition of fatty acid esters of hydroxy fatty acids. Anal Chim Acta 2025; 1345:343735. [PMID: 40015777 DOI: 10.1016/j.aca.2025.343735] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2024] [Revised: 01/16/2025] [Accepted: 01/27/2025] [Indexed: 03/01/2025]
Abstract
BACKGROUND Fatty acid esters of hydroxy fatty acids (FAHFAs) are a recently discovered class of endogenous bioactive lipids with promising therapeutic potential for diabetes and inflammation. They represent complex mixtures of different isomers whose biological functions are the subject of investigation. Highly selective methods are required to characterize the composition of enantiomers in biological samples composed of many isobars and regioisomers. We aimed to develop a method for characterizing the enantiomeric composition of FAHFAs in biological samples using supercritical fluid chromatography-mass spectrometry (SFC-MS). RESULTS The influence of key chromatographic parameters, such as column chemistry, mobile phase composition, and gradient, on the separation efficiency of 21 commercially available FAHFA regioisomers without stated absolute configuration and 4 FAHFA enantiomers was assessed. The optimized SFC-MS method utilizes a chiral column based on a tris-(3-chloro-5-methylphenylcarbamate) derivative of amylose (Lux i-Amylose-3) and acetonitrile-methanol mobile phase modifier, enabling fast enantioseparation of most FAHFA racemic pairs in 5 min. However, the SFC separation of FAHFA regioisomers was less effective, limiting its applicability to complex biological samples. To address this, we propose an offline two-dimensional separation approach with reversed-phase liquid chromatography for isolating FAHFA regioisomers, followed by chiral SFC-MS analysis of fractions. The suitability of the method was demonstrated by characterizing the enantiomeric composition of FAHFA in white adipose tissue and rice samples. The chiral analysis revealed the presence of both R- and S-FAHFA isomers in the samples, with one enantiomer being predominant. SIGNIFICANCE The developed approach represents a proof of concept for the use of SFC-MS with LC prefractionation for the characterization of FAHFA enantiomeric composition in complex biological samples, providing a valuable tool for future research on the biological roles of bioactive lipids in health and disease.
Collapse
Affiliation(s)
- Oleksandr Kozlov
- Department of Chemistry, Faculty of Science, University of Hradec Králové, Rokitanského 62, 50003, Hradec Králové, Czech Republic
| | - Miroslav Lísa
- Department of Chemistry, Faculty of Science, University of Hradec Králové, Rokitanského 62, 50003, Hradec Králové, Czech Republic.
| | - Martin Riecan
- Institute of Physiology of the Czech Academy of Sciences, Videnska 1083, 14200, Prague, Czech Republic
| | - Ondrej Kuda
- Institute of Physiology of the Czech Academy of Sciences, Videnska 1083, 14200, Prague, Czech Republic
| |
Collapse
|
2
|
Zhu S, He Y, Lei JN, Liu YF, Xu YJ. The chemical and biological characteristics of fatty acid esters of hydroxyl fatty acids. Nutr Rev 2025; 83:e427-e442. [PMID: 38412339 DOI: 10.1093/nutrit/nuae005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/29/2024] Open
Abstract
With the continuous advancements in detection methods and the exploration of unknown substances, an increasing number of bioactive compounds are being discovered. Fatty acid esters of hydroxyl fatty acids (FAHFAs), a class of endogenous lipids found in 2014, exhibit various physiological activities, such as improving glucose tolerance and insulin sensitivity, stimulating insulin secretion, and demonstrating broad anti-inflammatory effects. Moreover, some FAHFAs are closely linked to intestinal health and can serve as potential biomarkers for gut health. Various FAHFAs have been observed in food, including palmitic acid esters of hydroxy stearic acids (PAHSA), oleic acid esters of hydroxy stearic acids (OAHSA), linoleic acid esters of hydroxy linoleic acid (LAHLA). As a type of lipid regularly consumed in the daily diet, it is highly important to ascertain the types and quantities of FAHFAs present in the diet. This article, based on existing research, provides a review of the analysis methods for FAHFAs, particularly focusing on the separation of chiral isomers. It also summarizes the sources and contents of dietary FAHFAs, emphasizing their bioavailability and impact on the gut. Understanding the beneficial effects of these lipids in the diet can serve as a valuable reference for the development of specific functional foods.
Collapse
Affiliation(s)
- Shuang Zhu
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, National Engineering Research Center for Functional Food, National Engineering Laboratory for Cereal Fermentation Technology, Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, Jiangnan University, Wuxi, Jiangsu, People's Republic of China
| | - Yuan He
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, National Engineering Research Center for Functional Food, National Engineering Laboratory for Cereal Fermentation Technology, Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, Jiangnan University, Wuxi, Jiangsu, People's Republic of China
| | - Jing-Nan Lei
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, National Engineering Research Center for Functional Food, National Engineering Laboratory for Cereal Fermentation Technology, Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, Jiangnan University, Wuxi, Jiangsu, People's Republic of China
| | - Yuan-Fa Liu
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, National Engineering Research Center for Functional Food, National Engineering Laboratory for Cereal Fermentation Technology, Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, Jiangnan University, Wuxi, Jiangsu, People's Republic of China
| | - Yong-Jiang Xu
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, National Engineering Research Center for Functional Food, National Engineering Laboratory for Cereal Fermentation Technology, Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, Jiangnan University, Wuxi, Jiangsu, People's Republic of China
| |
Collapse
|
3
|
Ertunc ME, Konduri S, Ma Z, Pinto AFM, Donaldson CJ, Momper J, Siegel D, Saghatelian A. Acute inflammation upregulates FAHFAs in adipose tissue and in co-cultured adipocytes. J Biol Chem 2024:107972. [PMID: 39510180 DOI: 10.1016/j.jbc.2024.107972] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Revised: 10/21/2024] [Accepted: 10/30/2024] [Indexed: 11/15/2024] Open
Abstract
Since the discovery of fatty acid hydroxy fatty acids (FAHFAs), significant progress has been made in understanding their regulation, biochemistry, and physiological activities. Here, we contribute to this understanding by revealing that inflammation induces the production of fatty acid hydroxy stearic acids (FAHSAs) and fatty acid hydroxyoctadecadienoic acids (FAHODEs) in white adipose tissue depots and in adipocytes co-cultured with macrophages. In LPS-induced co-culture systems, we confirm that adipose triglyceride lipase (ATGL) is required for inflammation-induced FAHFA generation and demonstrate that inflammation is necessary for producing hydroxy fatty acids. Chemically synthesized FAHODEs show anti-inflammatory activities in vivo, but only at supraphysiological concentrations. While endogenous FAHFAs are unlikely to be anti-inflammatory due to their low concentrations, conversion of pro-inflammatory hydroxy fatty acids into FAHFAs may modulate inflammation. We test this concept by showing the pro-inflammatory lipids-hydroxyeicosatetraenoic acids (HETEs) and leukotriene B4 (LTB4)-are converted into FAHFAs in cell culture, and that two LTB4-derived FAHFAs have are modestly anti- not pro-inflammatory. Further research is needed to establish whether these increased FAFHA levels have a role in inflammation or are simply markers of inflammation, but the discovery of significant increases in FAHFA upon acute inflammation advances our knowledge of FAHFAs.
Collapse
Affiliation(s)
- Meric Erikci Ertunc
- Clayton Foundation Laboratories for Peptide Biology, The Salk Institute for Biological Studies, 10010 North Torrey Pines Road, La Jolla, CA, USA.
| | - Srihari Konduri
- The Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California San Diego, La Jolla, CA
| | - Zhichen Ma
- The Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California San Diego, La Jolla, CA
| | - Antonio F M Pinto
- Clayton Foundation Laboratories for Peptide Biology, The Salk Institute for Biological Studies, 10010 North Torrey Pines Road, La Jolla, CA, USA
| | - Cynthia J Donaldson
- Clayton Foundation Laboratories for Peptide Biology, The Salk Institute for Biological Studies, 10010 North Torrey Pines Road, La Jolla, CA, USA
| | - Jeremiah Momper
- The Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California San Diego, La Jolla, CA
| | - Dionicio Siegel
- The Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California San Diego, La Jolla, CA.
| | - Alan Saghatelian
- Clayton Foundation Laboratories for Peptide Biology, The Salk Institute for Biological Studies, 10010 North Torrey Pines Road, La Jolla, CA, USA.
| |
Collapse
|
4
|
Chen Z, Ma Y, Gou L, Zhang S, Wang Z. Construction of caffeic acid modified porous starch as the dual-functional microcapsule for encapsulation and antioxidant property. Int J Biol Macromol 2023; 228:358-365. [PMID: 36581026 DOI: 10.1016/j.ijbiomac.2022.12.189] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Revised: 11/13/2022] [Accepted: 12/17/2022] [Indexed: 12/27/2022]
Abstract
A dual-functional food-grade microcapsule, which was constructed by caffeic acid and porous starch was obtained. Caffeic acid modified porous starch (CA-PS) was accordingly synthesized successfully by esterification. Carbonyl signal observed by 13C solid state NMR (170 ppm) and FT-IR (1745 cm-1), indicating the formation of ester bond. BET of CA-PS was determined as 44.8 m2/g by N2 adsorption analysis. The results proved CA-PS has both excellent adsorption and antioxidant activity. Furthermore, it has been applied for encapsulation of linoleic acid (LA) to prevent its degradation effectively, because LA adsorbed in porous adsorbents without antioxidant activity may still suffer serious oxidation. Besides, 1H NMR Integral of LA did not show a significant decay. This observation demonstrated CA-PS indeed has the better performance on protection of LA than PS. We expect this work will boost research on designing and employing multi-functional starchy materials for further applications.
Collapse
Affiliation(s)
- Zidi Chen
- College of Food Science and Engineering, Gansu Agricultural University, Lanzhou 730070, Gansu, China
| | - Yunxiang Ma
- College of Food Science and Engineering, Gansu Agricultural University, Lanzhou 730070, Gansu, China; State Key Laboratory of Arid Land Crop Science, Gansu Agricultural University, Lanzhou 730070, Gansu, China.
| | - Lina Gou
- College of Food Science and Engineering, Gansu Agricultural University, Lanzhou 730070, Gansu, China
| | - Shenggui Zhang
- College of Food Science and Engineering, Gansu Agricultural University, Lanzhou 730070, Gansu, China; State Key Laboratory of Arid Land Crop Science, Gansu Agricultural University, Lanzhou 730070, Gansu, China.
| | - Zhipeng Wang
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, Gansu, China
| |
Collapse
|
5
|
Olajide TM, Cao W. Exploring foods as natural sources of FAHFAs—A review of occurrence, extraction, analytical techniques and emerging bioactive potential. Trends Food Sci Technol 2022. [DOI: 10.1016/j.tifs.2022.11.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
6
|
Crauste C, Galano JM, Guy A, Lehoux J, Durand T, Balas L. Synthesis of fatty acid bioconjugates and related derivatives. European J Org Chem 2022. [DOI: 10.1002/ejoc.202101502] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Céline Crauste
- IBMM: Institut des Biomolecules Max Mousseron synthesis of bioactive lipids FRANCE
| | - jean-Marie Galano
- IBMM: Institut des Biomolecules Max Mousseron synthesis of bioactive lipids FRANCE
| | - Alexandre Guy
- IBMM: Institut des Biomolecules Max Mousseron synthesis of bioactive lipids FRANCE
| | - Jordan Lehoux
- IBMM: Institut des Biomolecules Max Mousseron synthesis of bioactive lipids FRANCE
| | - Thierry Durand
- IBMM: Institut des Biomolecules Max Mousseron synthesis of bioactive lipids FRANCE
| | - Laurence Balas
- UMR 5247: Institut des Biomolecules Max Mousseron Synthesis of bioactive lipids 1919 route de Mende 34293 Montpellier Cedex FRANCE
| |
Collapse
|
7
|
Riecan M, Paluchova V, Lopes M, Brejchova K, Kuda O. Branched and linear fatty acid esters of hydroxy fatty acids (FAHFA) relevant to human health. Pharmacol Ther 2021; 231:107972. [PMID: 34453998 DOI: 10.1016/j.pharmthera.2021.107972] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Revised: 07/23/2021] [Accepted: 07/27/2021] [Indexed: 12/13/2022]
Abstract
Fatty acid esters of hydroxy fatty acids (FAHFAs) represent a complex lipid class that contains both signaling mediators and structural components of lipid biofilms in humans. The majority of endogenous FAHFAs share a common chemical architecture, characterized by an estolide bond that links the hydroxy fatty acid (HFA) backbone and the fatty acid (FA). Two structurally and functionally distinct FAHFA superfamilies are recognized based on the position of the estolide bond: omega-FAHFAs and in-chain branched FAHFAs. The existing variety of possible HFAs and FAs combined with the position of the estolide bond generates a vast quantity of unique structures identified in FAHFA families. In this review, we discuss the anti-diabetic and anti-inflammatory effects of branched FAHFAs and the role of omega-FAHFA-derived lipids as surfactants in the tear film lipid layer and dry eye disease. To emphasize potential pharmacological targets, we recapitulate the biosynthesis of the HFA backbone within the superfamilies together with the degradation pathways and the FAHFA regioisomer distribution in human and mouse adipose tissue. We propose a theoretical involvement of cytochrome P450 enzymes in the generation and degradation of saturated HFA backbones and present an overview of small-molecule inhibitors used in FAHFA research. The FAHFA lipid class is huge and largely unexplored. Besides the unknown biological effects of individual FAHFAs, also the enigmatic enzymatic machinery behind their synthesis could provide new therapeutic approaches for inflammatory metabolic or eye diseases. Therefore, understanding the mechanisms of (FA)HFA synthesis at the molecular level should be the next step in FAHFA research.
Collapse
Affiliation(s)
- Martin Riecan
- Institute of Physiology, Czech Academy of Sciences, 14220 Prague 4, Czech Republic
| | - Veronika Paluchova
- Institute of Physiology, Czech Academy of Sciences, 14220 Prague 4, Czech Republic
| | - Magno Lopes
- Institute of Physiology, Czech Academy of Sciences, 14220 Prague 4, Czech Republic
| | - Kristyna Brejchova
- Institute of Physiology, Czech Academy of Sciences, 14220 Prague 4, Czech Republic
| | - Ondrej Kuda
- Institute of Physiology, Czech Academy of Sciences, 14220 Prague 4, Czech Republic.
| |
Collapse
|
8
|
Potential physio-pathological effects of branched fatty acid esters of hydroxy fatty acids. Biochimie 2021; 182:13-22. [PMID: 33412159 DOI: 10.1016/j.biochi.2020.12.020] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2020] [Revised: 12/14/2020] [Accepted: 12/28/2020] [Indexed: 12/31/2022]
Abstract
Branched Fatty Acid Esters of Hydroxy Fatty Acids (FAHFAs) are a new endogenous lipid class with recently uncovered interesting biological effects and which have been detected in food of plant and animal origins. Some FAHFAs can improve glucose tolerance and insulin sensitivity, stimulate insulin secretion, and exert anti-inflammatory effects. Other beneficial health effects have also been suggested, in particular against some cancers. FAHFAs could therefore be a potential therapeutic target for the treatment of numerous metabolic disorders such as type II diabetes, hepatic steatosis, cardiovascular diseases and various cancers. Their recent discovery has generated a great interest in the field of human health. This short review aims at bringing together the information available to date in the literature concerning their chemical synthesis, biosynthesis and degradation pathways as well as their potential physio-pathological beneficial effects.
Collapse
|
9
|
Brejchova K, Balas L, Paluchova V, Brezinova M, Durand T, Kuda O. Understanding FAHFAs: From structure to metabolic regulation. Prog Lipid Res 2020; 79:101053. [PMID: 32735891 DOI: 10.1016/j.plipres.2020.101053] [Citation(s) in RCA: 81] [Impact Index Per Article: 16.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2020] [Accepted: 07/19/2020] [Indexed: 01/01/2023]
Abstract
The discovery of branched fatty acid esters of hydroxy fatty acids (FAHFAs) in humans draw attention of many researches to their biological effects. Although FAHFAs were originally discovered in insects and plants, their introduction into the mammalian realm opened new horizons in bioactive lipid research. Hundreds of isomers from different families have been identified so far and their role in (patho) physiological processes is currently being explored. The family of palmitic acid esters of hydroxy stearic acids (PAHSAs), especially 5-PAHSA and 9-PAHSA regioisomers, stands out in the crowd of other FAHFAs for their anti-inflammatory and anti-diabetic effects. Beneficial effects of PAHSAs have been linked to metabolic disorders such as type 1 and type 2 diabetes, colitis, and chronic inflammation. Besides PAHSAs, a growing family of polyunsaturated FAHFAs exerts mainly immunomodulatory effects and biological roles of many other FAHFAs remain currently unknown. Therefore, FAHFAs represent unique lipid messengers capable of affecting many immunometabolic processes. The objective of this review is to summarize the knowledge concerning the diversity of FAHFAs, nomenclature, and their analysis and detection. Special attention is paid to the total syntheses of FAHFAs, optimal strategies, and to the formation of the stereocenter required for optically active molecules. Biosynthetic pathways of saturated and polyunsaturated FAHFAs in mammals and plants are reviewed together with their metabolism and degradation. Moreover, an overview of biological effects of branched FAHFAs is provided and many unanswered questions regarding FAHFAs are discussed.
Collapse
Affiliation(s)
- Kristyna Brejchova
- Institute of Physiology of the Czech Academy of Sciences, Videnska 1083, 14220 Prague, Czech Republic
| | - Laurence Balas
- Institut des Biomolécules Max Mousseron, UMR 5247, CNRS, Université Montpellier, ENSCM, Faculté de Pharmacie, Montpellier, France
| | - Veronika Paluchova
- Institute of Physiology of the Czech Academy of Sciences, Videnska 1083, 14220 Prague, Czech Republic
| | - Marie Brezinova
- Institute of Physiology of the Czech Academy of Sciences, Videnska 1083, 14220 Prague, Czech Republic
| | - Thierry Durand
- Institut des Biomolécules Max Mousseron, UMR 5247, CNRS, Université Montpellier, ENSCM, Faculté de Pharmacie, Montpellier, France
| | - Ondrej Kuda
- Institute of Physiology of the Czech Academy of Sciences, Videnska 1083, 14220 Prague, Czech Republic.
| |
Collapse
|