1
|
Luo Y, Zhang Y, Liu M, Wang X, Wan Y, Cao S. Photoredox/Copper-Cocatalyzed Domino Annulation of Oxime Esters and NH 4SCN: Access to Fully Substituted 2-Aminothiazoles. J Org Chem 2024; 89:15187-15196. [PMID: 39370928 DOI: 10.1021/acs.joc.4c01951] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/08/2024]
Abstract
Domino cyclization of oxime esters and NH4SCN facilitated by photoredox and copper cocatalysis has been established. Various structurally diverse fully substituted 2-aminothiazoles have been obtained in good yields at room temperature. It is featured by mild conditions, favorable functional group tolerance, and wide substrate scope. The present reaction is amenable to gram-scale synthesis, which is expected to find potential applications in organic synthesis and drug discovery. A plausible reaction mechanism is proposed.
Collapse
Affiliation(s)
- Yongyan Luo
- Key Laboratory of Theoretical Organic Chemistry and Functional Molecule, Ministry of Education, School of Chemistry and Chemical Engineering, Hunan University of Science and Technology, Xiangtan 411201, China
| | - Yanyan Zhang
- Key Laboratory of Theoretical Organic Chemistry and Functional Molecule, Ministry of Education, School of Chemistry and Chemical Engineering, Hunan University of Science and Technology, Xiangtan 411201, China
| | - Mengting Liu
- Key Laboratory of Theoretical Organic Chemistry and Functional Molecule, Ministry of Education, School of Chemistry and Chemical Engineering, Hunan University of Science and Technology, Xiangtan 411201, China
| | - Xiaozhen Wang
- Key Laboratory of Theoretical Organic Chemistry and Functional Molecule, Ministry of Education, School of Chemistry and Chemical Engineering, Hunan University of Science and Technology, Xiangtan 411201, China
| | - Yichao Wan
- Key Laboratory of Theoretical Organic Chemistry and Functional Molecule, Ministry of Education, School of Chemistry and Chemical Engineering, Hunan University of Science and Technology, Xiangtan 411201, China
| | - Shujun Cao
- Key Laboratory of Theoretical Organic Chemistry and Functional Molecule, Ministry of Education, School of Chemistry and Chemical Engineering, Hunan University of Science and Technology, Xiangtan 411201, China
| |
Collapse
|
2
|
Zhang M, Lin J, Song K, Chang K, Dai X, Zang Y, Zhu D. Iminyl-Radical-Mediated Formation of Covalent Au-N Bonds for Molecular Junctions. J Am Chem Soc 2023; 145:6480-6485. [PMID: 36882381 DOI: 10.1021/jacs.3c00453] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/09/2023]
Abstract
The interaction between organic radicals and transition metals plays a crucial role in radical-mediated chemical reactions, functional devices, and biocatalysis. Characterizing such interactions, however, remains a long-standing challenge due to the inherently high reactivity of radical species. Here, using a scanning tunneling microscope breaking junction (STM-BJ) technique, we are able to detect the interaction mode between iminyl radicals and the gold surface at a single molecule level. We show that the free iminyl radicals generated through photochemical N-O bond homolysis of oxime esters react toward the gold electrode surface and produce covalent Au-N bonds. Intriguingly, we find that the Au-N bonding reactions lead to the formation of robust and highly conductive single-molecule junctions. These findings provide not only insights into the mechanism of iminyl-radical-involved reactions but also a facile photolysis method to create a new type of covalent electrode-molecule bonding contact for molecular devices.
Collapse
Affiliation(s)
- Mingliang Zhang
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Organic Solids, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Junfeng Lin
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Organic Solids, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Kai Song
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Organic Solids, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
| | - Kaili Chang
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Organic Solids, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xiaojuan Dai
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Organic Solids, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
| | - Yaping Zang
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Organic Solids, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Daoben Zhu
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Organic Solids, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
| |
Collapse
|
3
|
Cao S, Yuan W, Li Y, Teng X, Si H, Chen R, Zhu Y. Photoredox/copper cocatalyzed domino cyclization of oxime esters with TMSCN: access to antifungal active tetrasubstituted pyrazines. Chem Commun (Camb) 2022; 58:7200-7203. [PMID: 35671164 DOI: 10.1039/d2cc02480b] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
A photoredox/copper cocatalyzed domino cyclization of oxime esters with TMSCN has been developed. A range of structurally novel tetrasubstituted pyrazines have been obtained. This method features high bond-forming efficiency, high step economy, broad substrate scope, and gram-scale synthesis. Moreover, preliminary bioactivity evaluation of pyrazine products shows their promising antifungal activities.
Collapse
Affiliation(s)
- Shujun Cao
- Jiangsu Key Laboratory of Pesticide Science and Department of Chemistry, College of Sciences, Nanjing Agricultural University, Nanjing 210095, P. R. China.
| | - Weidong Yuan
- Jiangsu Key Laboratory of Pesticide Science and Department of Chemistry, College of Sciences, Nanjing Agricultural University, Nanjing 210095, P. R. China.
| | - Yun Li
- Jiangsu Key Laboratory of Pesticide Science and Department of Chemistry, College of Sciences, Nanjing Agricultural University, Nanjing 210095, P. R. China.
| | - Xinjie Teng
- Jiangsu Key Laboratory of Pesticide Science and Department of Chemistry, College of Sciences, Nanjing Agricultural University, Nanjing 210095, P. R. China.
| | - Huaxing Si
- Jiangsu Key Laboratory of Pesticide Science and Department of Chemistry, College of Sciences, Nanjing Agricultural University, Nanjing 210095, P. R. China.
| | - Rongshun Chen
- Jiangsu Key Laboratory of Pesticide Science and Department of Chemistry, College of Sciences, Nanjing Agricultural University, Nanjing 210095, P. R. China.
| | - Yingguang Zhu
- Jiangsu Key Laboratory of Pesticide Science and Department of Chemistry, College of Sciences, Nanjing Agricultural University, Nanjing 210095, P. R. China.
| |
Collapse
|
4
|
Yan H, Xu G, Gu M, Zhang S, Wu Q, Meng J, Zhu N, Fang Z, Duan J, Guo K. Copper-catalyzed [4+2] oxidative annulation of α,β-unsaturated ketoxime acetates with ethyl trifluoropyruvate. Chem Commun (Camb) 2022; 58:6757-6760. [PMID: 35611963 DOI: 10.1039/d2cc01573k] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
A novel route for tandem C-N/C-O formation via copper-catalyzed [4+2] oxidative annulation of α,β-unsaturated ketoxime acetates with ethyl trifluoropyruvate to synthesize valuable trifluoromethyl-containing 2H-1,3-oxazines in moderate to good yields is developed. This procedure represents the first [4+2] oxidative annulation of oxime derivatives with activated CO bonds and provides an alternative route towards functionalized 2H-1,3-oxazines.
Collapse
Affiliation(s)
- Huan Yan
- College of Biotechnology and Pharmaceutical Engineering, State Key Laboratory of Materials-Oriented Chemical Engineering, Nanjing Tech University, 30 Puzhu Rd S, Nanjing, 211816, China.
| | - Gaochen Xu
- College of Biotechnology and Pharmaceutical Engineering, State Key Laboratory of Materials-Oriented Chemical Engineering, Nanjing Tech University, 30 Puzhu Rd S, Nanjing, 211816, China.
| | - Meng Gu
- College of Biotechnology and Pharmaceutical Engineering, State Key Laboratory of Materials-Oriented Chemical Engineering, Nanjing Tech University, 30 Puzhu Rd S, Nanjing, 211816, China.
| | - Sai Zhang
- College of Biotechnology and Pharmaceutical Engineering, State Key Laboratory of Materials-Oriented Chemical Engineering, Nanjing Tech University, 30 Puzhu Rd S, Nanjing, 211816, China.
| | - Qinghuan Wu
- College of Biotechnology and Pharmaceutical Engineering, State Key Laboratory of Materials-Oriented Chemical Engineering, Nanjing Tech University, 30 Puzhu Rd S, Nanjing, 211816, China.
| | - Jingjing Meng
- College of Biotechnology and Pharmaceutical Engineering, State Key Laboratory of Materials-Oriented Chemical Engineering, Nanjing Tech University, 30 Puzhu Rd S, Nanjing, 211816, China.
| | - Ning Zhu
- College of Biotechnology and Pharmaceutical Engineering, State Key Laboratory of Materials-Oriented Chemical Engineering, Nanjing Tech University, 30 Puzhu Rd S, Nanjing, 211816, China.
| | - Zheng Fang
- College of Biotechnology and Pharmaceutical Engineering, State Key Laboratory of Materials-Oriented Chemical Engineering, Nanjing Tech University, 30 Puzhu Rd S, Nanjing, 211816, China.
| | - Jindian Duan
- College of Biotechnology and Pharmaceutical Engineering, State Key Laboratory of Materials-Oriented Chemical Engineering, Nanjing Tech University, 30 Puzhu Rd S, Nanjing, 211816, China.
| | - Kai Guo
- College of Biotechnology and Pharmaceutical Engineering, State Key Laboratory of Materials-Oriented Chemical Engineering, Nanjing Tech University, 30 Puzhu Rd S, Nanjing, 211816, China.
| |
Collapse
|
5
|
Ma QQ, Li CJ, Liao WW. Selective synthesis of functionalized α,β-multi-substituted α-amino cyclopentanones via an α-iminol rearrangement enabled by Pd-catalyzed addition of arylboronic acids to nitriles. Org Chem Front 2022. [DOI: 10.1039/d2qo01488b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
An efficient approach to construct α, β-multi-substituted α-amino cyclopentanones is described through an α-iminol rearrangement enabled by Pd-catalyzed addition of arylboronic acids to nitriles.
Collapse
Affiliation(s)
- Qian-Qian Ma
- Department of Organic Chemistry, College of Chemistry, Jilin University, Changchun 130012, P. R. China
| | - Cheng-Jing Li
- Department of Organic Chemistry, College of Chemistry, Jilin University, Changchun 130012, P. R. China
| | - Wei-Wei Liao
- Department of Organic Chemistry, College of Chemistry, Jilin University, Changchun 130012, P. R. China
- State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai 200032, P R China
| |
Collapse
|
6
|
Sun B, Shi R, Zhang K, Tang X, Shi X, Xu J, Yang J, Jin C. Photoinduced homolytic decarboxylative acylation/cyclization of unactivated alkenes with α-keto acid under external oxidant and photocatalyst free conditions: access to quinazolinone derivatives. Chem Commun (Camb) 2021; 57:6050-6053. [PMID: 34036995 DOI: 10.1039/d1cc02415a] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
A novel and green strategy for the synthesis of acylated quinazolinone derivatives via photo-induced decarboxylative cascade radical acylation/cyclization of quinazolinone bearing unactivated alkenes has been developed. The protocol provides a novel route to access acyl radicals from α-keto acids through a self-catalyzed energy transfer process. Most importantly, the reaction proceeded smoothly without any external photocatalyst, additive or oxidant, and could be easily scaled-up in flow conditions with sunlight irradiation.
Collapse
Affiliation(s)
- Bin Sun
- Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals, Zhejiang University of Technology, Hangzhou, P. R. China.
| | - Rongcheng Shi
- College of Pharmaceutical Sciences, Zhejiang University of Technology, Hangzhou, P. R. China
| | - Kesheng Zhang
- College of Pharmaceutical Sciences, Zhejiang University of Technology, Hangzhou, P. R. China
| | - Xiaoli Tang
- College of Pharmaceutical Sciences, Zhejiang University of Technology, Hangzhou, P. R. China
| | - Xiayue Shi
- College of Pharmaceutical Sciences, Zhejiang University of Technology, Hangzhou, P. R. China
| | - Jiayun Xu
- Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals, Zhejiang University of Technology, Hangzhou, P. R. China.
| | - Jin Yang
- College of Pharmaceutical Sciences, Zhejiang University of Technology, Hangzhou, P. R. China
| | - Can Jin
- Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals, Zhejiang University of Technology, Hangzhou, P. R. China. and College of Pharmaceutical Sciences, Zhejiang University of Technology, Hangzhou, P. R. China
| |
Collapse
|
7
|
|
8
|
Krylov IB, Segida OO, Budnikov AS, Terent'ev AO. Oxime‐Derived Iminyl Radicals in Selective Processes of Hydrogen Atom Transfer and Addition to Carbon‐Carbon π‐Bonds. Adv Synth Catal 2021. [DOI: 10.1002/adsc.202100058] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Igor B. Krylov
- N. D. Zelinsky Institute of Organic Chemistry Russian Academy of Sciences Leninsky Prospekt 47 119991 Moscow Russian Federation
| | - Oleg O. Segida
- N. D. Zelinsky Institute of Organic Chemistry Russian Academy of Sciences Leninsky Prospekt 47 119991 Moscow Russian Federation
| | - Alexander S. Budnikov
- N. D. Zelinsky Institute of Organic Chemistry Russian Academy of Sciences Leninsky Prospekt 47 119991 Moscow Russian Federation
| | - Alexander O. Terent'ev
- N. D. Zelinsky Institute of Organic Chemistry Russian Academy of Sciences Leninsky Prospekt 47 119991 Moscow Russian Federation
| |
Collapse
|
9
|
Cheng N, Cui SQ, Ma QQ, Wei ZL, Liao WW. α-Iminol Rearrangement Triggered by Pd-Catalyzed C-H Addition to Nitriles Sequences: Synthesis of Functionalized α-Amino Cyclopentanones. Org Lett 2021; 23:1021-1025. [PMID: 33496596 DOI: 10.1021/acs.orglett.0c04214] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
A α-iminol rearrangement triggered by Pd-catalyzed C-H addition of electronic-rich heteroarenes to cyclobutanone-derived O-acyl cyanohydrins was described, which provided a practical and efficient protocol for the preparation of functionalized α-amino cyclopentanones in an atom- and step-economic fashion. In addition, further synthetic transformations of products have also been demonstrated.
Collapse
Affiliation(s)
- Na Cheng
- Department of Organic Chemistry, College of Chemistry, Jilin University, 2699 Qianjin Street, Changchun 130012, P.R. China
| | - Shu-Qiang Cui
- Department of Organic Chemistry, College of Chemistry, Jilin University, 2699 Qianjin Street, Changchun 130012, P.R. China
| | - Qian-Qian Ma
- Department of Organic Chemistry, College of Chemistry, Jilin University, 2699 Qianjin Street, Changchun 130012, P.R. China
| | - Zhong-Lin Wei
- Department of Organic Chemistry, College of Chemistry, Jilin University, 2699 Qianjin Street, Changchun 130012, P.R. China
| | - Wei-Wei Liao
- Department of Organic Chemistry, College of Chemistry, Jilin University, 2699 Qianjin Street, Changchun 130012, P.R. China.,State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai 200032, P.R. China
| |
Collapse
|
10
|
He FS, Zhang M, Zhang M, Luo X, Wu J. Iminyl radical initiated sulfonylation of alkenes with rongalite under photoredox conditions. Org Chem Front 2021. [DOI: 10.1039/d1qo00556a] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
A photoredox-catalyzed reaction of oximes, rongalite and electrophiles is accomplished, affording pyrrole-substituted aliphatic sulfones or sulfonamides in moderate to good yields.
Collapse
Affiliation(s)
- Fu-Sheng He
- School of Pharmaceutical and Materials Engineering & Institute for Advanced Studies
- Taizhou University
- Taizhou 318000
- China
| | - Man Zhang
- School of Pharmaceutical and Materials Engineering & Institute for Advanced Studies
- Taizhou University
- Taizhou 318000
- China
| | - Mengke Zhang
- School of Pharmaceutical and Materials Engineering & Institute for Advanced Studies
- Taizhou University
- Taizhou 318000
- China
| | - Xiangxiang Luo
- School of Pharmaceutical and Materials Engineering & Institute for Advanced Studies
- Taizhou University
- Taizhou 318000
- China
| | - Jie Wu
- School of Pharmaceutical and Materials Engineering & Institute for Advanced Studies
- Taizhou University
- Taizhou 318000
- China
- State Key Laboratory of Organometallic Chemistry
| |
Collapse
|
11
|
Duan J, Mao Y, Xian A, Rong B, Xu G, Li Z, Zhao L, Zhu N, Guo K. Copper-catalyzed regioselective [3+2] annulation of malonate-tethered acyl oximes with isatins. Chem Commun (Camb) 2021; 57:3379-3382. [DOI: 10.1039/d0cc07995b] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
A copper-catalyzed regioselective [3+2] annulation of malonate-tethered acyl oximes with isatins was developed, affording valuable 2,3-dihydrooxazole-spirooxindoles in moderate to good yields with excellent diastereoselectivity.
Collapse
Affiliation(s)
- Jindian Duan
- College of Biotechnology and Pharmaceutical Engineering
- State Key Laboratory of Materials-Oriented Chemical Engineering
- Nanjing Tech University
- Nanjing
- China
| | - Yiyang Mao
- College of Biotechnology and Pharmaceutical Engineering
- State Key Laboratory of Materials-Oriented Chemical Engineering
- Nanjing Tech University
- Nanjing
- China
| | - Anmei Xian
- Institute of Advanced Synthesis
- School of Chemistry and Molecular Engineering
- Nanjing Tech University
- Nanjing
- China
| | - Binsen Rong
- College of Biotechnology and Pharmaceutical Engineering
- State Key Laboratory of Materials-Oriented Chemical Engineering
- Nanjing Tech University
- Nanjing
- China
| | - Gaochen Xu
- College of Biotechnology and Pharmaceutical Engineering
- State Key Laboratory of Materials-Oriented Chemical Engineering
- Nanjing Tech University
- Nanjing
- China
| | - Zhenjiang Li
- College of Biotechnology and Pharmaceutical Engineering
- State Key Laboratory of Materials-Oriented Chemical Engineering
- Nanjing Tech University
- Nanjing
- China
| | - Lili Zhao
- Institute of Advanced Synthesis
- School of Chemistry and Molecular Engineering
- Nanjing Tech University
- Nanjing
- China
| | - Ning Zhu
- College of Biotechnology and Pharmaceutical Engineering
- State Key Laboratory of Materials-Oriented Chemical Engineering
- Nanjing Tech University
- Nanjing
- China
| | - Kai Guo
- College of Biotechnology and Pharmaceutical Engineering
- State Key Laboratory of Materials-Oriented Chemical Engineering
- Nanjing Tech University
- Nanjing
- China
| |
Collapse
|
12
|
Peng Q, Guo D, Zhang B, Liu L, Wang J. Benzotetramisole catalyzed kinetic resolution of 2H-azirines. Chem Commun (Camb) 2020; 56:12427-12430. [PMID: 32939521 DOI: 10.1039/d0cc05379a] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
An unprecedented benzotetramisole (BTM)-catalyzed kinetic resolution for the efficient synthesis of chiral 2H-azirines is described. This protocol provides two chiral isomers in one step with broad scope, good yield and high enantioselectivity. In addition, the optically pure 2H-azirine products have proven to be useful building blocks for further synthetic transformations.
Collapse
Affiliation(s)
- Qiupeng Peng
- School of Pharmaceutical Sciences, Key Laboratory of Bioorganic Phosphorous Chemistry & Chemical Biology (Ministry of Education), Tsinghua University, Beijing, 100084, China.
| | | | | | | | | |
Collapse
|
13
|
Feng L, Guo L, Yang C, Zhou J, Xia W. Visible-Light-Induced Palladium-Catalyzed Intermolecular Narasaka–Heck Reaction at Room Temperature. Org Lett 2020; 22:3964-3968. [DOI: 10.1021/acs.orglett.0c01267] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Affiliation(s)
- Liyan Feng
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology (Shenzhen), Shenzhen 518055, China
| | - Lin Guo
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology (Shenzhen), Shenzhen 518055, China
| | - Chao Yang
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology (Shenzhen), Shenzhen 518055, China
| | - Jia Zhou
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology (Shenzhen), Shenzhen 518055, China
| | - Wujiong Xia
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology (Shenzhen), Shenzhen 518055, China
| |
Collapse
|