1
|
Shi X, Zhu L, Zhang L, Yang Z, Pu M, Lei M. The Origin of Enantioselectivity of Aryl Terminal Alkenes Hydroboration Catalyzed by Cobalt Complex: A Density Functional Theory (DFT) Study. Org Lett 2025; 27:3930-3935. [PMID: 40197047 DOI: 10.1021/acs.orglett.5c00809] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/09/2025]
Abstract
Density functional theory (DFT) studies reveal the origin of the regioselectivity and stereoselectivity in Co-IPO-catalyzed hydroboration of aryl alkenes. Four insertion pathways dictate selectivity, with anti-Markovnikov S-product formation (Path A) being energetically favored. The alkene insertion step and σ-bond metathesis step jointly determine the selectivity of the reaction. In addition, the steric hindrance from the -NPhiPr2 moiety of the IPO ligand critically controls selectivity. Interestingly, substituting -NPhiPr2 with -NCH3 shifts selectivity toward Markovnikov products.
Collapse
Affiliation(s)
- Xiaofan Shi
- State Key Laboratory of Chemical Resource Engineering, Institute of Computational Chemistry, College of Chemistry, Beijing University of Chemical Technology, Beijing 100029, China
| | - Ling Zhu
- Hefei National Laboratory for Physical Sciences at the Microscale and Department of Chemistry, University of Science and Technology of China, Hefei 230026, China
| | - Lin Zhang
- State Key Laboratory of Physical Chemistry of Solid Surfaces and Fujian Provincial Key Laboratory of Theoretical and Computational Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 360015, China
| | - Zuoyin Yang
- State Key Laboratory of Chemical Resource Engineering, Institute of Computational Chemistry, College of Chemistry, Beijing University of Chemical Technology, Beijing 100029, China
| | - Min Pu
- State Key Laboratory of Chemical Resource Engineering, Institute of Computational Chemistry, College of Chemistry, Beijing University of Chemical Technology, Beijing 100029, China
| | - Ming Lei
- State Key Laboratory of Chemical Resource Engineering, Institute of Computational Chemistry, College of Chemistry, Beijing University of Chemical Technology, Beijing 100029, China
| |
Collapse
|
2
|
Duan M, Wang Y, Zhu S. Nickel-catalyzed asymmetric 1,2-alkynylboration of vinylarenes. Tetrahedron Lett 2022. [DOI: 10.1016/j.tetlet.2022.154247] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
3
|
Wu Y, Wu L, Zhang ZM, Xu B, Liu Y, Zhang J. Enantioselective difunctionalization of alkenes by a palladium-catalyzed Heck/borylation sequence. Chem Sci 2022; 13:2021-2025. [PMID: 35308863 PMCID: PMC8848999 DOI: 10.1039/d1sc06229h] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2021] [Accepted: 01/20/2022] [Indexed: 01/26/2023] Open
Abstract
A palladium catalyzed enantioselective Heck/borylation reaction of alkene-tethered aryl iodides was realized, delivering a variety of 2,3-dihydrobenzofuranyl boronic esters in high yield with excellent enantioselectivity. Asymmetric synthesis of chromane boronic ester, indane boronic ester and indoline boronic ester was also accomplished. The protocol offers an efficient access to the corresponding chiral benzocyclic boronic esters, which are notably important chemical motifs in synthetic transformations. A palladium catalyzed enantioselective Heck/borylation reaction of alkene-tethered aryl iodides was realized, delivering a variety of 2,3-dihydrobenzofuranyl boronic esters in high yield with excellent enantioselectivity.![]()
Collapse
Affiliation(s)
- Yuanqi Wu
- Jilin Provincial Key Laboratory of Carbon Fiber Development and Application, College of Chemistry and Life Science, Advanced Institute of Materials Science, Changchun University of Technology Changchun 130012 P. R. China
| | - Lizuo Wu
- Jilin Provincial Key Laboratory of Carbon Fiber Development and Application, College of Chemistry and Life Science, Advanced Institute of Materials Science, Changchun University of Technology Changchun 130012 P. R. China
| | - Zhan-Ming Zhang
- Department of Chemistry, Fudan University 2005 Songhu Road Shanghai 200438 P. R. China
| | - Bing Xu
- Department of Chemistry, Fudan University 2005 Songhu Road Shanghai 200438 P. R. China
| | - Yu Liu
- Jilin Provincial Key Laboratory of Carbon Fiber Development and Application, College of Chemistry and Life Science, Advanced Institute of Materials Science, Changchun University of Technology Changchun 130012 P. R. China
| | - Junliang Zhang
- Department of Chemistry, Fudan University 2005 Songhu Road Shanghai 200438 P. R. China
| |
Collapse
|
4
|
Grygorenko OO, Moskvina VS, Kleban I, Hryshchyk OV. Synthesis of saturated and partially saturated heterocyclic boronic derivatives. Tetrahedron 2022. [DOI: 10.1016/j.tet.2021.132605] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
5
|
Volochnyuk DM, Gorlova AO, Grygorenko OO. Saturated Boronic Acids, Boronates, and Trifluoroborates: An Update on Their Synthetic and Medicinal Chemistry. Chemistry 2021; 27:15277-15326. [PMID: 34499378 DOI: 10.1002/chem.202102108] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2021] [Indexed: 12/13/2022]
Abstract
This review discusses recent advances in the chemistry of saturated boronic acids, boronates, and trifluoroborates. Applications of the title compounds in the design of boron-containing drugs are surveyed, with special emphasis on α-amino boronic derivatives. A general overview of saturated boronic compounds as modern tools to construct C(sp3 )-C and C(sp3 )-heteroatom bonds is given, including recent developments in the Suzuki-Miyaura and Chan-Lam cross-couplings, single-electron-transfer processes including metallo- and organocatalytic photoredox reactions, and transformations of boron "ate" complexes. Finally, an attempt to summarize the current state of the art in the synthesis of saturated boronic acids, boronates, and trifluoroborates is made, with a brief mention of the "classical" methods (transmetallation of organolithium/magnesium reagents with boron species, anti-Markovnikov hydroboration of alkenes, and the modification of alkenyl boron compounds) and a special focus on recent methodologies (boronation of alkyl (pseudo)halides, derivatives of carboxylic acids, alcohols, and primary amines, boronative C-H activation, novel approaches to alkene hydroboration, and 1,2-metallate-type rearrangements).
Collapse
Affiliation(s)
- Dmitriy M Volochnyuk
- Enamine Ltd. (www.enamine.net), Chervonotkatska 78, Kyiv, 02094, Ukraine.,Taras Shevchenko National University of Kyiv, Volodymyrska Street 60, Kyiv, 01601, Ukraine.,Institute of Organic Chemistry, National Academy of Sciences of Ukraine, Murmanska Street 5, Kyiv, 02094, Ukraine
| | - Alina O Gorlova
- Institute of Organic Chemistry, National Academy of Sciences of Ukraine, Murmanska Street 5, Kyiv, 02094, Ukraine
| | - Oleksandr O Grygorenko
- Enamine Ltd. (www.enamine.net), Chervonotkatska 78, Kyiv, 02094, Ukraine.,Taras Shevchenko National University of Kyiv, Volodymyrska Street 60, Kyiv, 01601, Ukraine
| |
Collapse
|
6
|
Hu J, Ferger M, Shi Z, Marder TB. Recent advances in asymmetric borylation by transition metal catalysis. Chem Soc Rev 2021; 50:13129-13188. [PMID: 34709239 DOI: 10.1039/d0cs00843e] [Citation(s) in RCA: 104] [Impact Index Per Article: 26.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Chiral organoboronates have played a critical role in organic chemistry and in the development of materials science and pharmaceuticals. Much effort has been devoted to exploring synthetic methodologies for the preparation of these compounds during the past few decades. Among the known methods, asymmetric catalysis has emerged as a practical and highly efficient strategy for their straightforward preparation, and recent years have witnessed remarkable advances in this respect. Approaches such as asymmetric borylative addition, asymmetric allylic borylation and stereospecific cross-coupling borylation, have been extensively explored and well established employing transition-metal catalysis with a chiral ligand. This review provides a comprehensive overview of transition metal-catalysed asymmetric borylation processes to construct carbon-boron, carbon-carbon, and other carbon-heteroatom bonds. It summarises a range of recent achievements in this area of research, with considerable attention devoted to the reaction modes and the mechanisms involved.
Collapse
Affiliation(s)
- Jiefeng Hu
- Institute of Inorganic Chemistry, and Institute for Sustainable Chemistry & Catalysis with Boron, Julius-Maximilians-Universität Würzburg, Am Hubland, 97074 Würzburg, Germany. .,Institute of Advanced Synthesis, School of Chemistry and Molecular Engineering, Nanjing Tech University, 211816 Nanjing, China
| | - Matthias Ferger
- Institute of Inorganic Chemistry, and Institute for Sustainable Chemistry & Catalysis with Boron, Julius-Maximilians-Universität Würzburg, Am Hubland, 97074 Würzburg, Germany.
| | - Zhuangzhi Shi
- State Key Laboratory of Coordination Chemistry, Chemistry and Biomedicine Innovation Center (ChemBIC), School of Chemistry and Chemical Engineering, Nanjing University, 210093 Nanjing, China.
| | - Todd B Marder
- Institute of Inorganic Chemistry, and Institute for Sustainable Chemistry & Catalysis with Boron, Julius-Maximilians-Universität Würzburg, Am Hubland, 97074 Würzburg, Germany.
| |
Collapse
|
7
|
Xing M, Cui H, Zhang C. Nickel-Catalyzed Reductive Cross-Coupling of Alkyl Bromides and Chlorosilanes. Org Lett 2021; 23:7645-7649. [PMID: 34551258 DOI: 10.1021/acs.orglett.1c02887] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
A novel nickel-catalyzed highly selective reductive cross-coupling of alkyl bromides and chlorosilanes to construct the C-Si bond has been developed. Under benign reaction conditions, a series of structurally interesting organosilanes can be accessed without Ni-catalyzed isomerization. The utility of this chemistry is illustrated by further transformations of the product. Moreover, the radical mechanism of the reaction is illustrated by control experiments.
Collapse
Affiliation(s)
- Mimi Xing
- Institute of Molecular Plus, Tianjin Key Laboratory of Molecular Optoelectronic Science, Department of Chemistry, School of Science, Tianjin University, Weijin Road 92, Tianjin 300072, China
| | - Huanhuan Cui
- Institute of Molecular Plus, Tianjin Key Laboratory of Molecular Optoelectronic Science, Department of Chemistry, School of Science, Tianjin University, Weijin Road 92, Tianjin 300072, China
| | - Chun Zhang
- Institute of Molecular Plus, Tianjin Key Laboratory of Molecular Optoelectronic Science, Department of Chemistry, School of Science, Tianjin University, Weijin Road 92, Tianjin 300072, China.,Zhejiang Institute of Tianjin University, Ningbo, Zhejiang 315201, China
| |
Collapse
|
8
|
Wu J, Wu H, Li X, Liu X, Zhao Q, Huang G, Zhang C. Copper-Catalyzed Highly Selective Protoboration of CF 3 -Containing 1,3-Dienes. Angew Chem Int Ed Engl 2021; 60:20376-20382. [PMID: 34146388 DOI: 10.1002/anie.202105896] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Revised: 06/02/2021] [Indexed: 12/15/2022]
Abstract
The copper-catalyzed highly selective protoboration of CF3 -containing conjugated diene with proton source and B2 Pin2 has been developed. This chemistry could suppress the well-known defluorination and provide borated reagents with an intact CF3 -group. Further studies indicated that the functional group tolerance of this chemistry is very well, and the products could be used as versatile precursors for different types of transformations. Importantly, using chiral diphosphine ligand, we have developed the first example for using such starting material to synthesis allylic boron-reagents which bearing a CF3 -containing chiral center. Notably, the reaction mechanism was intensively studied by DFT calculations, which could reveal the reason that defluorination was inhibited.
Collapse
Affiliation(s)
- Juanjuan Wu
- Institute of Molecular Plus, Tianjin Key Laboratory of Molecular Optoelectronic Science, Department of Chemistry, School of Science, Tianjin University, Tianjin, 300072, China
| | - Hongli Wu
- Institute of Molecular Plus, Tianjin Key Laboratory of Molecular Optoelectronic Science, Department of Chemistry, School of Science, Tianjin University, Tianjin, 300072, China
| | - Xinzhi Li
- Institute of Molecular Plus, Tianjin Key Laboratory of Molecular Optoelectronic Science, Department of Chemistry, School of Science, Tianjin University, Tianjin, 300072, China
| | - Xinyu Liu
- Institute of Molecular Plus, Tianjin Key Laboratory of Molecular Optoelectronic Science, Department of Chemistry, School of Science, Tianjin University, Tianjin, 300072, China
| | - Qian Zhao
- Institute of Molecular Plus, Tianjin Key Laboratory of Molecular Optoelectronic Science, Department of Chemistry, School of Science, Tianjin University, Tianjin, 300072, China
| | - Genping Huang
- Institute of Molecular Plus, Tianjin Key Laboratory of Molecular Optoelectronic Science, Department of Chemistry, School of Science, Tianjin University, Tianjin, 300072, China
| | - Chun Zhang
- Institute of Molecular Plus, Tianjin Key Laboratory of Molecular Optoelectronic Science, Department of Chemistry, School of Science, Tianjin University, Tianjin, 300072, China
| |
Collapse
|
9
|
Wu J, Wu H, Li X, Liu X, Zhao Q, Huang G, Zhang C. Copper‐Catalyzed Highly Selective Protoboration of CF
3
‐Containing 1,3‐Dienes. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202105896] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Juanjuan Wu
- Institute of Molecular Plus Tianjin Key Laboratory of Molecular Optoelectronic Science Department of Chemistry School of Science Tianjin University Tianjin 300072 China
| | - Hongli Wu
- Institute of Molecular Plus Tianjin Key Laboratory of Molecular Optoelectronic Science Department of Chemistry School of Science Tianjin University Tianjin 300072 China
| | - Xinzhi Li
- Institute of Molecular Plus Tianjin Key Laboratory of Molecular Optoelectronic Science Department of Chemistry School of Science Tianjin University Tianjin 300072 China
| | - Xinyu Liu
- Institute of Molecular Plus Tianjin Key Laboratory of Molecular Optoelectronic Science Department of Chemistry School of Science Tianjin University Tianjin 300072 China
| | - Qian Zhao
- Institute of Molecular Plus Tianjin Key Laboratory of Molecular Optoelectronic Science Department of Chemistry School of Science Tianjin University Tianjin 300072 China
| | - Genping Huang
- Institute of Molecular Plus Tianjin Key Laboratory of Molecular Optoelectronic Science Department of Chemistry School of Science Tianjin University Tianjin 300072 China
| | - Chun Zhang
- Institute of Molecular Plus Tianjin Key Laboratory of Molecular Optoelectronic Science Department of Chemistry School of Science Tianjin University Tianjin 300072 China
| |
Collapse
|
10
|
Mo F, Qiu D, Zhang L, Wang J. Recent Development of Aryl Diazonium Chemistry for the Derivatization of Aromatic Compounds. Chem Rev 2021; 121:5741-5829. [DOI: 10.1021/acs.chemrev.0c01030] [Citation(s) in RCA: 69] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Affiliation(s)
- Fanyang Mo
- Department of Energy and Resources Engineering, College of Engineering, Peking University, Beijing 100871, China
- School of Materials Science and Engineering, Peking University, Beijing 100871, China
| | - Di Qiu
- Tianjin Key Laboratory of Structure and Performance for Functional Molecules, College of Chemistry, Tianjin Normal University, Tianjin 300387, China
| | - Lei Zhang
- Department of Energy and Resources Engineering, College of Engineering, Peking University, Beijing 100871, China
| | - Jianbo Wang
- Beijing National Laboratory of Molecular Sciences (BNLMS), Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education, College of Chemistry, Peking University, Beijing 100871, China
| |
Collapse
|
11
|
Zhang P, Zou C, Zhao Q, Zhang C. Nickel-catalyzed alkenylboration of alkenylarenes to access homoallylic boronic esters. Org Chem Front 2021. [DOI: 10.1039/d1qo00100k] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
A practical nickel-catalyzed alkenylboration of alkenylarenes with excellent chemo- and regio-selectivity has been developed.
Collapse
Affiliation(s)
- Penglin Zhang
- Institute of Molecular Plus
- Tianjin Key Laboratory of Molecular Optoelectronic Science
- Department of Chemistry
- School of Sciences
- Tianjin University
| | - Chenchen Zou
- Institute of Molecular Plus
- Tianjin Key Laboratory of Molecular Optoelectronic Science
- Department of Chemistry
- School of Sciences
- Tianjin University
| | - Qian Zhao
- Institute of Molecular Plus
- Tianjin Key Laboratory of Molecular Optoelectronic Science
- Department of Chemistry
- School of Sciences
- Tianjin University
| | - Chun Zhang
- Institute of Molecular Plus
- Tianjin Key Laboratory of Molecular Optoelectronic Science
- Department of Chemistry
- School of Sciences
- Tianjin University
| |
Collapse
|
12
|
Zhang P, Zhang M, Ji Y, Xing M, Zhao Q, Zhang C. Nickel-Catalyzed Highly Selective Hydroalkenylation of Alkenyl Boronic Esters to Access Allyl Boron. Org Lett 2020; 22:8285-8290. [PMID: 33089688 DOI: 10.1021/acs.orglett.0c02923] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Allyl boron derivatives are valuable building blocks in the synthesis of natural products and bioactive molecules. Herein, a practical strategy of nickel-catalyzed highly selective hydroalkenylation of alkenyl boronic esters was developed. Under the mild reaction conditions, a variety of allyl boronic esters were accessed with excellent chemo- and regioselectivity. The mechanism of this transformation was illustrated by control experiments and kinetic studies.
Collapse
Affiliation(s)
- Penglin Zhang
- Institute of Molecular Plus, Tianjin Key Laboratory of Molecular Optoelectronic Science, Department of Chemistry, School of Science, Tianjin University, Weijin Road 92, Tianjin 300072, China
| | - Min Zhang
- Institute of Molecular Plus, Tianjin Key Laboratory of Molecular Optoelectronic Science, Department of Chemistry, School of Science, Tianjin University, Weijin Road 92, Tianjin 300072, China
| | - Yuqi Ji
- Institute of Molecular Plus, Tianjin Key Laboratory of Molecular Optoelectronic Science, Department of Chemistry, School of Science, Tianjin University, Weijin Road 92, Tianjin 300072, China
| | - Mimi Xing
- Institute of Molecular Plus, Tianjin Key Laboratory of Molecular Optoelectronic Science, Department of Chemistry, School of Science, Tianjin University, Weijin Road 92, Tianjin 300072, China
| | - Qian Zhao
- Institute of Molecular Plus, Tianjin Key Laboratory of Molecular Optoelectronic Science, Department of Chemistry, School of Science, Tianjin University, Weijin Road 92, Tianjin 300072, China
| | - Chun Zhang
- Institute of Molecular Plus, Tianjin Key Laboratory of Molecular Optoelectronic Science, Department of Chemistry, School of Science, Tianjin University, Weijin Road 92, Tianjin 300072, China
| |
Collapse
|
13
|
Zhang R, Li Q, Zhang M, Chai S, Duan Y, Su J, Zhao Q, Zhang C. Copper and palladium co-catalyzed highly regio-selective 1,2-hydroarylation of terminal 1,3-dienes. Chem Commun (Camb) 2020; 56:13551-13554. [PMID: 33048065 DOI: 10.1039/d0cc06007k] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
A practical copper and palladium co-catalyzed highly regio-selective hydroarylation of terminal 1,3-dienes has been developed. This chemistry afforded the terminal alkenyl group containing products, which are a kind of versatile precursor for organic synthesis, from 1,3-dienes by a practical one-step reaction. With good functional group tolerance, this protocol could be used to make a series of bio-active compounds using readily accessible starting materials. The mechanism of this reaction was explored by control experiments and kinetics studies.
Collapse
Affiliation(s)
- Rumeng Zhang
- Institute of Molecular Plus, Tianjin Key Laboratory of Molecular Optoelectronic Science, Department of Chemistry, School of Sciences, Tianjin University, Weijin Rd. 92, Tianjin 300072, China.
| | | | | | | | | | | | | | | |
Collapse
|