1
|
Van Ham R, Lehuédé V, La Torre M, Matcha K. A Practical Synthetic Route to Cinnolines: Application to the Design and Synthesis of RSV NNI Inhibitor JNJ-8003 Analogues. Chemistry 2025; 31:e202404479. [PMID: 39831745 DOI: 10.1002/chem.202404479] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2024] [Revised: 12/18/2024] [Accepted: 01/20/2025] [Indexed: 01/22/2025]
Abstract
The manuscript describes the development of an efficient synthetic route to cinnolines, facilitating faster access to JNJ-8003 related Respiratory Syncytial Virus (RSV) non-nucleoside (NNI) inhibitors. Starting from correctly functionalized aryl halides, a Sonogashira reaction followed by SNAr reaction with hydrazine 1,2-dicabroxylate reagents provided dihydrocinnolines directly via in situ 6-endo-dig cyclization. The dihydrocinnolines were conveniently transformed to corresponding cinnolines in one step. Notably, this three-step route to cinnolines is more practical and safer than traditional methods that involve hazardous diazo intermediates. The methodology demonstrated a broad substrate scope. Strategic selection of a readily available aryl halide enabled the synthesis of diverse cinnolines that served as JNJ-8003 analogues through late-stage functionalization. Furthermore, by capitalizing the inherent reactivity of aryl halides toward SNAr reactions, we explored the synthesis of various heteroaromatic cinnolines. Given the extensive biological properties exhibited by cinnolines, our approach is poised to inspire further investigations in this field.
Collapse
Affiliation(s)
- Rick Van Ham
- Chemical Process Research and Development, Janssen Pharmaceutica N.V., Turnhoutseweg 30, 2340, Beerse, Belgium
| | - Valentin Lehuédé
- Chemical Process Research and Development, Janssen Pharmaceutica N.V., Turnhoutseweg 30, 2340, Beerse, Belgium
| | - Mathéo La Torre
- Chemical Process Research and Development, Janssen Pharmaceutica N.V., Turnhoutseweg 30, 2340, Beerse, Belgium
| | - Kiran Matcha
- Chemical Process Research and Development, Janssen Pharmaceutica N.V., Turnhoutseweg 30, 2340, Beerse, Belgium
| |
Collapse
|
2
|
Chen X, Fang SJ, Zhou Q, Huang W, Liu QL, Wang L. Cu(II)-catalyzed synthesis of N-sulfonated quinolin-2(1 H)-one-3-carboxamides. Org Biomol Chem 2024. [PMID: 39565359 DOI: 10.1039/d4ob01071j] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2024]
Abstract
Herein, N-N bond cleavage of sulfonylhydrazides was observed and applied in the synthesis of N-sulfonated quinolin-2-(1H)-one-3-carboxamides. More than 30 examples were forged in 52%-97% yields. Further transformation delivered a 3,4-dihydro-quinolin-2(1H)-one derivative.
Collapse
Affiliation(s)
- Xue Chen
- School of Pharmaceutical Sciences, Taizhou University, Taizhou, Zhejiang, 318000, P. R. China.
| | - Shi-Jie Fang
- School of Pharmaceutical and Chemical Engineering, Taizhou University, Taizhou, Zhejiang, 318000, P. R. China
| | - Quan Zhou
- School of Pharmaceutical Sciences, Taizhou University, Taizhou, Zhejiang, 318000, P. R. China.
- Advanced Research Institute, Taizhou University, Taizhou, Zhejiang 318000, P. R. China
| | - Wei Huang
- School of Pharmaceutical Sciences, Taizhou University, Taizhou, Zhejiang, 318000, P. R. China.
| | - Qiu-Lan Liu
- School of Pharmaceutical Sciences, Taizhou University, Taizhou, Zhejiang, 318000, P. R. China.
| | - Lei Wang
- School of Pharmaceutical Sciences, Taizhou University, Taizhou, Zhejiang, 318000, P. R. China.
- Advanced Research Institute, Taizhou University, Taizhou, Zhejiang 318000, P. R. China
| |
Collapse
|
3
|
Mamedov VA, Mustakimova LV, Qu ZW, Zhu H, Syakaev VV, Galimullina VR, Shamsutdinova LR, Rizvanov IK, Gubaidullin AT, Sinyashin OG, Grimme S. Divergent Synthesis of 3-(Indol-2-yl)quinoxalin-2-ones and 4-(Benzimidazol-2-yl)-3-methyl(aryl)cinnolines via Polyphosphoric Acid (PPA)-Mediated Intramolecular Rearrangements of 3-(Methyl/aryl(2-phenylhydrazono)methyl)quinoxalin-2-ones. J Org Chem 2023. [PMID: 38033308 DOI: 10.1021/acs.joc.3c01626] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/02/2023]
Abstract
Herein, we report a polyphosphoric acid (PPA)-mediated divergent metal-free operation to access a diverse collection of 3-(indol-2-yl)quinoxalin-2-ones and 4-(benzimidazol-2-yl)-3-methylcinnolines in moderate to excellent overall yields. The described process involves two distinct, and competing rearrangements of 3-(methyl(2-phenylhydrazono)methyl)quinoxalin-2-ones, namely [3,3]-sigmatropic Fischer rearrangement with the formation of an indole ring to produce 3-(indol-2-yl)-quinoxalin-2-ones, and Mamedov rearrangement with simultaneous construction of benzimidazole and cinnoline rings to form the new biheterocyclic system─4-(benzimidazol-2-yl)-3-methylcinnolines. The reaction mechanism of both rearrangement channels is explored by extensive dispersion-corrected DFT calculations. It is partcularly remarkable that when 3-(aryl(2-phenylhydrazono)methyl)quinoxalin-2-ones is used, instead of 3-(methyl(2-phenylhydrazono)methyl)quinoxalin-2-ones, reactions proceed regioselectively with the formation of only rearrangement products─4-(benzimidazol-2-yl)-3-arylcinnolines with high yields. This operationally simple protocol enables a rapid access to these scaffolds and is compatible with a wide scope of starting materials. In addition, the new rearrangement found features a promising approach for the design of unique compound libraries for drug design and discovery programs.
Collapse
Affiliation(s)
- Vakhid A Mamedov
- A.E. Arbuzov Institute of Organic and Physical Chemistry, RFC Kazan Scientific Center, Russian Academy of Sciences, Arbuzov Street 8, 420088 Kazan, Russian Federation
| | - Liliya V Mustakimova
- A.E. Arbuzov Institute of Organic and Physical Chemistry, RFC Kazan Scientific Center, Russian Academy of Sciences, Arbuzov Street 8, 420088 Kazan, Russian Federation
| | - Zheng-Wang Qu
- Mulliken Center for Theoretical Chemistry University of Bonn Beringstr. 4, 53115 Bonn, Germany
| | - Hui Zhu
- Mulliken Center for Theoretical Chemistry University of Bonn Beringstr. 4, 53115 Bonn, Germany
| | - Victor V Syakaev
- A.E. Arbuzov Institute of Organic and Physical Chemistry, RFC Kazan Scientific Center, Russian Academy of Sciences, Arbuzov Street 8, 420088 Kazan, Russian Federation
| | - Venera R Galimullina
- A.E. Arbuzov Institute of Organic and Physical Chemistry, RFC Kazan Scientific Center, Russian Academy of Sciences, Arbuzov Street 8, 420088 Kazan, Russian Federation
| | - Leisan R Shamsutdinova
- A.E. Arbuzov Institute of Organic and Physical Chemistry, RFC Kazan Scientific Center, Russian Academy of Sciences, Arbuzov Street 8, 420088 Kazan, Russian Federation
| | - Il'dar Kh Rizvanov
- A.E. Arbuzov Institute of Organic and Physical Chemistry, RFC Kazan Scientific Center, Russian Academy of Sciences, Arbuzov Street 8, 420088 Kazan, Russian Federation
| | - Aidar T Gubaidullin
- A.E. Arbuzov Institute of Organic and Physical Chemistry, RFC Kazan Scientific Center, Russian Academy of Sciences, Arbuzov Street 8, 420088 Kazan, Russian Federation
| | - Oleg G Sinyashin
- A.E. Arbuzov Institute of Organic and Physical Chemistry, RFC Kazan Scientific Center, Russian Academy of Sciences, Arbuzov Street 8, 420088 Kazan, Russian Federation
| | - Stefan Grimme
- Mulliken Center for Theoretical Chemistry University of Bonn Beringstr. 4, 53115 Bonn, Germany
| |
Collapse
|
4
|
Korbekandi M, Mohammadpoor-Baltork I, Moghadam M, Tangestaninejad S, Mirkhani V, Omidvar A, Notash B. Diphenhydramine Hydrochloride-CuCl as a New Catalyst for the Synthesis of Tetrahydrocinnolin-5(1 H)-ones. ACS OMEGA 2023; 8:15883-15895. [PMID: 37179652 PMCID: PMC10173344 DOI: 10.1021/acsomega.2c06765] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/20/2022] [Accepted: 04/11/2023] [Indexed: 05/15/2023]
Abstract
The current study deals with the synthesis and characterization of a novel catalyst made from diphenhydramine hydrochloride and CuCl ([HDPH]Cl-CuCl). The prepared catalyst was thoroughly characterized using various techniques, such as 1H NMR, Fourier transform-infrared spectroscopy, differential scanning calorimetry, and thermogravimetric analysis and derivative thermogravimetry. More importantly, the observed hydrogen bond between the components was proven experimentally. The activity of this catalyst was checked in the preparation of some new derivatives of tetrahydrocinnolin-5(1H)-ones via a multicomponent reaction between dimedone, aromatic aldehydes, and aryl/alkyl hydrazines in ethanol as a green solvent. Also, for the first time, this new homogeneous catalytic system was effectively used for the preparation of unsymmetric tetrahydrocinnolin-5(1H)-one derivatives as well as mono- and bis-tetrahydrocinnolin-5(1H)-ones from two different aryl aldehydes and dialdehydes, respectively. The effectiveness of this catalyst was further confirmed by the preparation of compounds containing both tetrahydrocinnolin-5(1H)-one and benzimidazole moieties from dialdehydes. The one-pot operation, mild conditions, rapid reaction, and high atom economy, along with the recyclability and reusability of the catalyst, are other notable features of this approach.
Collapse
Affiliation(s)
- Mehri
Moeini Korbekandi
- Department
of Chemistry, Catalysis Division, University
of Isfahan, Isfahan 81746-73441, Iran
| | | | - Majid Moghadam
- Department
of Chemistry, Catalysis Division, University
of Isfahan, Isfahan 81746-73441, Iran
| | - Shahram Tangestaninejad
- Department
of Chemistry, Catalysis Division, University
of Isfahan, Isfahan 81746-73441, Iran
| | - Valiollah Mirkhani
- Department
of Chemistry, Catalysis Division, University
of Isfahan, Isfahan 81746-73441, Iran
| | - Akbar Omidvar
- Department
of Physical Chemistry, Faculty of Chemistry, University of Isfahan, Isfahan 81746-73441, Iran
| | - Behrouz Notash
- Department
of Inorganic Chemistry, Shahid Beheshti
University, Tehran 1983963113 Iran
| |
Collapse
|
5
|
Tian S, Liu Y, Wan C, Wan JP, Hao G. Catalyst-Free Cascade Annulation of Enaminones and Aryl Diazonium Tetrafluoroboronates for Cinnoline Synthesis and the Anti-Inflammatory Activity Study. J Org Chem 2023; 88:2433-2442. [PMID: 36753776 DOI: 10.1021/acs.joc.2c02858] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/10/2023]
Abstract
A simple and concise method for the synthesis of cinnolines has been developed by the reactions of readily available enaminones and aryl diazonium tetrafluoroboronates. The reactions run efficiently to provide cinnolines with broad diversity in the substructure by heating in dimethyl sulfoxide without using any catalyst or additive. In addition, the primary investigation of the anti-inflammatory activity of these products leads to the observation of p-chlorobenzoyl (3f) and p-nitrobenzoyl (3j) cinnolines as attractive anti-inflammatory compounds in vitro.
Collapse
Affiliation(s)
- Shanghui Tian
- National Engineering Research Center for Carbohydrate Synthesis, College of Chemistry and Chemical Engineering, Jiangxi Normal University, Nanchang 330022, China
| | - Yunyun Liu
- National Engineering Research Center for Carbohydrate Synthesis, College of Chemistry and Chemical Engineering, Jiangxi Normal University, Nanchang 330022, China
| | - Changfeng Wan
- National Engineering Research Center for Carbohydrate Synthesis, College of Chemistry and Chemical Engineering, Jiangxi Normal University, Nanchang 330022, China
| | - Jie-Ping Wan
- National Engineering Research Center for Carbohydrate Synthesis, College of Chemistry and Chemical Engineering, Jiangxi Normal University, Nanchang 330022, China.,International Innovation Center for Forest Chemicals and Materials, Nanjing Forestry University, Nanjing 210037, China
| | - Guifeng Hao
- Center for General Practice Medicine, Department of Rheumatology and Immunology, Zhejiang Provincial People's Hospital (Affiliated People's Hospital, Hangzhou Medical College), Hangzhou 310014, China
| |
Collapse
|
6
|
Akbari A, Faryabi MS, Tomar R. Efficient method for the synthesis of novel methyl 4-cinnolinecarboxylate. Mol Divers 2022:10.1007/s11030-022-10497-3. [PMID: 35864428 DOI: 10.1007/s11030-022-10497-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2022] [Accepted: 07/11/2022] [Indexed: 11/30/2022]
Abstract
A new method is designed for the synthesis of some novel methyl 3-aryl/alkyl-4-cinnolinecarboxylate with developed a general Richter cyclization through diazotization strategy of commercially available 2-aryl/alkyl ethynyl aniline and methyl acetate. Most substrates were achieved in moderate to excellent yields in one-pot procedures under mild reaction conditions.
Collapse
Affiliation(s)
- Ali Akbari
- Department of Chemistry, Faculty of Science, University of Jiroft, P. O. Box 8767161167, Jiroft, Iran.
| | - Muhammad Saleh Faryabi
- Department of Chemistry, Faculty of Science, University of Jiroft, P. O. Box 8767161167, Jiroft, Iran
| | - Ravi Tomar
- Department of Chemistry, Faculty of Science, SGT University, Gurugram, Haryana, 122505, India.
| |
Collapse
|
7
|
Li N, Zhang X, Fan X. Synthesis of pyrazolidinone fused cinnolines via the cascade reactions of 1-phenylpyrazolidinones with vinylene carbonate. Tetrahedron Lett 2022. [DOI: 10.1016/j.tetlet.2022.153984] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
|
8
|
Mekheimer RA, Abd-Elmonem M, Abou Elsebaa M, Nazmy MH, Sadek KU. Recent developments in the green synthesis of biologically relevant cinnolines and phthalazines. PHYSICAL SCIENCES REVIEWS 2022; 0. [DOI: 10.1515/psr-2021-0091] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/02/2023]
Abstract
Abstract
Both cinnolines and phthalazines are heterocyclic compounds which have a wide range of biological activities and pharmacological profiles. This work represents the recent advances in the green synthesis of cinnolines and phthalazines as 1,2 and 2,3-diazanaphalenes were cited. The docking studies and mode of action for key scaffolds were also reported.
Collapse
Affiliation(s)
| | - Mohamed Abd-Elmonem
- Chemistry Department , Faculty of Science, Minia University , Minia 61519 , Egypt
| | - Mohamed Abou Elsebaa
- Chemistry Department , Faculty of Science, Minia University , Minia 61519 , Egypt
| | - Maiiada Hassan Nazmy
- Biochemistry Department , Faculty of Pharmacy, Minia University , Minia 61519 , Egypt
| | - Kamal Usef Sadek
- Chemistry Department , Faculty of Science, Minia University , Minia 61519 , Egypt
| |
Collapse
|
9
|
Pan C, Yuan C, Chen D, Chen Y, Yu JT. Rh(III)‐Catalyzed C–H Activation/Annulation of N‐methyl Arylhydrazines with Iodonium Ylides toward Ring‐fused Cinnolines. ASIAN J ORG CHEM 2022. [DOI: 10.1002/ajoc.202100809] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Changduo Pan
- Jiangsu University of Technology SChoo of chemical and environmental engineering CHINA
| | - Cheng Yuan
- Jiangsu University of Technology School of chemical and environmetal engineering CHINA
| | - Dongdong Chen
- Jiangsu University of Technology School of chemical and envirionmetal enhineering CHINA
| | - Yuecheng Chen
- Jiangsu University of Technology School of chemcial and envionmental engineering CHINA
| | - Jin-Tao Yu
- Changzhou University School of Petrochemical Engineering Changzhou 213000 Changzhou CHINA
| |
Collapse
|
10
|
Sa Y, Cai MX, Lv X, Wu AB, Shu WM, Yu WC. Intramolecular redox cyclization reaction access to cinnolines from 2-nitrobenzyl alcohol and benzylamine via intermediate 2-nitrosobenzaldehyde. RSC Adv 2022; 12:33260-33263. [DOI: 10.1039/d2ra06523a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2022] [Accepted: 11/16/2022] [Indexed: 11/22/2022] Open
Abstract
An efficient base-promoted synthesis of cinnolines from 2-nitrobenzyl alcohol and benzylamine via an intramolecular redox cyclization reaction. The formation of intermediate 2-nitrosobenzaldehyde plays an important role in this transformation.
Collapse
Affiliation(s)
- Yun Sa
- Hubei Engineering Research Centers for Clean Production and Pollution Control of Oil and Gas Fields, College of Chemistry and Environmental Engineering, Yangtze University, Jingzhou 434023, P. R. China
| | - Mao-Xin Cai
- Hubei Engineering Research Centers for Clean Production and Pollution Control of Oil and Gas Fields, College of Chemistry and Environmental Engineering, Yangtze University, Jingzhou 434023, P. R. China
| | - Xin Lv
- Hubei Engineering Research Centers for Clean Production and Pollution Control of Oil and Gas Fields, College of Chemistry and Environmental Engineering, Yangtze University, Jingzhou 434023, P. R. China
| | - Ai-Bin Wu
- Hubei Engineering Research Centers for Clean Production and Pollution Control of Oil and Gas Fields, College of Chemistry and Environmental Engineering, Yangtze University, Jingzhou 434023, P. R. China
| | - Wen-Ming Shu
- Hubei Engineering Research Centers for Clean Production and Pollution Control of Oil and Gas Fields, College of Chemistry and Environmental Engineering, Yangtze University, Jingzhou 434023, P. R. China
- Hubei Key Laboratory of Pollutant Analysis & Reuse Technology, Hubei Normal University, Huangshi 435002, P. R. China
| | - Wei-Chu Yu
- Hubei Engineering Research Centers for Clean Production and Pollution Control of Oil and Gas Fields, College of Chemistry and Environmental Engineering, Yangtze University, Jingzhou 434023, P. R. China
| |
Collapse
|
11
|
Lv Y, Meng J, Li C, Wang X, Ye Y, Sun K. Update on the Synthesis of N‐Heterocycles via Cyclization of Hydrazones (2017–2021). Adv Synth Catal 2021. [DOI: 10.1002/adsc.202101184] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Affiliation(s)
- Yunhe Lv
- College of Chemistry and Chemical Engineering Anyang Normal University Anyang 4550008 People's Republic of China
| | - Jianping Meng
- College of Chemistry and Chemical Engineering Yantai University Yantai 264005 People's Republic of China
| | - Chen Li
- College of Chemistry and Chemical Engineering Yantai University Yantai 264005 People's Republic of China
| | - Xin Wang
- College of Chemistry and Chemical Engineering Yantai University Yantai 264005 People's Republic of China
| | - Yong Ye
- College of Chemistry Zhengzhou University Zhengzhou 450001 People's Republic of China
| | - Kai Sun
- College of Chemistry and Chemical Engineering Yantai University Yantai 264005 People's Republic of China
| |
Collapse
|
12
|
Chu XQ, Ge D, Cui YY, Shen ZL, Li CJ. Desulfonylation via Radical Process: Recent Developments in Organic Synthesis. Chem Rev 2021; 121:12548-12680. [PMID: 34387465 DOI: 10.1021/acs.chemrev.1c00084] [Citation(s) in RCA: 116] [Impact Index Per Article: 29.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
As the "chemical chameleon", sulfonyl-containing compounds and their variants have been merged with various types of reactions for the efficient construction of diverse molecular architectures by taking advantage of their incredible reactive flexibility. Currently, their involvement in radical transformations, in which the sulfonyl group typically acts as a leaving group via selective C-S, N-S, O-S, S-S, and Se-S bond cleavage/functionalization, has facilitated new bond formation strategies which are complementary to classical two-electron cross-couplings via organometallic or ionic intermediates. Considering the great influence and synthetic potential of these novel avenues, we summarize recent advances in this rapidly expanding area by discussing the reaction designs, substrate scopes, mechanistic studies, and their limitations, outlining the state-of-the-art processes involved in radical-mediated desulfonylation and related transformations. With a specific emphasis on their synthetic applications, we believe this review will be useful for medicinal and synthetic organic chemists who are interested in radical chemistry and radical-mediated desulfonylation in particular.
Collapse
Affiliation(s)
- Xue-Qiang Chu
- Institute of Advanced Synthesis, School of Chemistry and Molecular Engineering, Nanjing Tech University, Nanjing 211816, China
| | - Danhua Ge
- Institute of Advanced Synthesis, School of Chemistry and Molecular Engineering, Nanjing Tech University, Nanjing 211816, China
| | - Yan-Ying Cui
- Institute of Advanced Synthesis, School of Chemistry and Molecular Engineering, Nanjing Tech University, Nanjing 211816, China
| | - Zhi-Liang Shen
- Institute of Advanced Synthesis, School of Chemistry and Molecular Engineering, Nanjing Tech University, Nanjing 211816, China
| | - Chao-Jun Li
- Department of Chemistry and FQRNT Centre for Green Chemistry and Catalysis, McGill University, Montreal, Quebec H3A 0B8, Canada
| |
Collapse
|
13
|
Hu M, Wu Z, Yao B, Li J, Wu W, Jiang H. Pd-Catalyzed Sequential Formation of C-C Bonds: A New Strategy for the Synthesis of ( E)-α,β-Unsaturated Carbonyl Compounds from Sulfoxonium Ylides and 1-Iodo-2-((2-methylallyl)oxy)benzene Compounds. J Org Chem 2021; 86:11545-11556. [PMID: 34479410 DOI: 10.1021/acs.joc.1c01119] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
α,β-Unsaturated carbonyl compounds are significant moieties in many biological molecules and have attracted considerable attention in organic synthetic chemistry. A Pd-catalyzed cascade cyclization for the synthesis of (E)-α,β-unsaturated carbonyl compounds with the sequential formation of C-C bonds was developed. This method offers high efficiency, good functional group tolerance, and moderate to excellent yields and generally displays high stereoselectivity.
Collapse
Affiliation(s)
- Miao Hu
- Key Laboratory of Functional Molecular Engineering of Guangdong Province, School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou 510640, P.R. China
| | - Ziying Wu
- Key Laboratory of Functional Molecular Engineering of Guangdong Province, School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou 510640, P.R. China
| | - Biao Yao
- Key Laboratory of Functional Molecular Engineering of Guangdong Province, School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou 510640, P.R. China
| | - Jianxiao Li
- Key Laboratory of Functional Molecular Engineering of Guangdong Province, School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou 510640, P.R. China
| | - Wanqing Wu
- Key Laboratory of Functional Molecular Engineering of Guangdong Province, School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou 510640, P.R. China
| | - Huanfeng Jiang
- Key Laboratory of Functional Molecular Engineering of Guangdong Province, School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou 510640, P.R. China
| |
Collapse
|
14
|
Wei WT, Li Q, Zhang MZ, He WM. N-Radical enabled cyclization of 1,n-enynes. CHINESE JOURNAL OF CATALYSIS 2021. [DOI: 10.1016/s1872-2067(20)63702-0] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
15
|
Li H, Zhao J, Yi S, Hu K, Feng P. Consequent Construction of C–C and C–N Bonds via Palladium-Catalyzed Dual C–H Activation: Synthesis of Benzo[ c]cinnoline Derivatives. Organometallics 2021. [DOI: 10.1021/acs.organomet.0c00800] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Hongsheng Li
- PET Center, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong 510515, P. R. China
| | - Junhao Zhao
- Department of Chemistry, Jinan University, Guangzhou, Guangdong 510632, P. R. China
| | - Songjian Yi
- Department of Chemistry, Jinan University, Guangzhou, Guangdong 510632, P. R. China
| | - Kongzhen Hu
- PET Center, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong 510515, P. R. China
| | - Pengju Feng
- Department of Chemistry, Jinan University, Guangzhou, Guangdong 510632, P. R. China
| |
Collapse
|
16
|
Xu K, Zheng Y, Ye Y, Liu D, Zhang W. Desymmetrization of meso-Dicarbonatecyclohexene with β-Hydrazino Carboxylic Esters via a Pd-Catalyzed Allylic Substitution Cascade. Org Lett 2020; 22:8836-8841. [PMID: 33170017 DOI: 10.1021/acs.orglett.0c03211] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
The desymmetrization of meso-dicarbonatecyclohexene with β-hydrazino carboxylic esters has been achieved via a RuPHOX/Pd-catalyzed allylic substitution cascade for the construction of chiral hexahydrocinnoline derivatives with high performance. Mechanistic studies reveal that the reaction exploits a pathway different from that of our previous work and that the first nitrogen nucleophilic process is the rate-determining step. The protocol could be conducted on a gram scale without any loss of catalytic behavior, and the corresponding chiral hexahydrocinnolines can undergo diverse transformations.
Collapse
Affiliation(s)
- Kai Xu
- Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs, School of Pharmacy, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, P. R. China
| | - Yan Zheng
- Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs, School of Pharmacy, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, P. R. China
| | - Yong Ye
- Green Catalysis Center, College of Chemistry, Zhengzhou University, 100 Kexue Road, Zhengzhou 450001, P. R. China
| | - Delong Liu
- Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs, School of Pharmacy, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, P. R. China
| | - Wanbin Zhang
- Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs, School of Pharmacy, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, P. R. China.,Green Catalysis Center, College of Chemistry, Zhengzhou University, 100 Kexue Road, Zhengzhou 450001, P. R. China
| |
Collapse
|