1
|
Ingale SR, Sahu MR, Borade BR, Gamidi RK, Kontham R. Divergent Access to α-Carbonyl-α'-vinyl Sulfoxonium Ylides and Polysubstituted Furans from β-Ketosulfoxonium Ylides and Ynone-Esters. J Org Chem 2025; 90:6186-6207. [PMID: 40296324 DOI: 10.1021/acs.joc.5c00245] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/30/2025]
Abstract
Here, we describe the synthesis of novel α-carbonyl-α'-vinyl sulfoxonium ylides under ambient, catalyst-free, and additive-free conditions, demonstrating broad substrate scope and scalability using β-ketosulfoxonium ylides and α-ynone-esters. Furthermore, these ylides serve as versatile intermediates for the synthesis of highly substituted furans via Brønsted acid (p-TsOH) catalysis at 130 °C. This approach offers key advantages, including wide substrate compatibility, divergent product formation from common precursors, gram-scale feasibility, and good to excellent yields.
Collapse
Affiliation(s)
- Sudhir R Ingale
- Organic Chemistry Division, CSIR-National Chemical Laboratory, Dr. Homi Bhabha Road, Pune 411008, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Manas Ranjan Sahu
- Organic Chemistry Division, CSIR-National Chemical Laboratory, Dr. Homi Bhabha Road, Pune 411008, India
| | - Balasaheb R Borade
- Organic Chemistry Division, CSIR-National Chemical Laboratory, Dr. Homi Bhabha Road, Pune 411008, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Rama Krishna Gamidi
- Organic Chemistry Division, CSIR-National Chemical Laboratory, Dr. Homi Bhabha Road, Pune 411008, India
- Center for Materials Characterization, CSIR-National Chemical Laboratory, Dr. Homi Bhabha Road, Pune 411008, India
| | - Ravindar Kontham
- Organic Chemistry Division, CSIR-National Chemical Laboratory, Dr. Homi Bhabha Road, Pune 411008, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| |
Collapse
|
2
|
Jian Y, He YJ, Hu C, Li X, Liu PN. Catalyst-Free [4+1] Annulation of α-Imidoyl Sulfoxonium Ylides and Diazo Compounds Enabling the Modular Synthesis of 2-Indanones and 3(2 H)-Furanones. Org Lett 2024; 26:8492-8497. [PMID: 39331512 DOI: 10.1021/acs.orglett.4c03018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/29/2024]
Abstract
A novel substrate-regulated [4+1] annulation of α-imidoyl sulfoxonium ylides with diazoketones under catalyst-free conditions is described. The reaction proceeds through a coupling of sulfoxonium ylides and in situ-generated ketenes to form the key reactive zwitterionic intermediates, followed by selective formation of C-C or C-O bonds to achieve five-membered ring systems. The cascade reaction permits the direct synthesis of synthetically useful 2-indanones and 3(2H)-furanones, which expands the reaction pattern of sulfoxonium ylides in annulation transformation.
Collapse
Affiliation(s)
- Yong Jian
- Shanghai Key Laboratory of Functional Materials Chemistry, Key Laboratory for Advanced Materials, School of Chemistry and Molecular Engineering, East China University of Science & Technology, Shanghai 200237, China
- Shanghai Neutan Pharmaceutical Co., Ltd., Building 26, No.555 Huanqiao Road, Pudong New Area, Shanghai 201315, P. R. China
| | - Yu-Jie He
- Shanghai Key Laboratory of Functional Materials Chemistry, Key Laboratory for Advanced Materials, School of Chemistry and Molecular Engineering, East China University of Science & Technology, Shanghai 200237, China
| | - Chao Hu
- Shanghai Key Laboratory of Functional Materials Chemistry, Key Laboratory for Advanced Materials, School of Chemistry and Molecular Engineering, East China University of Science & Technology, Shanghai 200237, China
| | - Xingguang Li
- Shanghai Key Laboratory of Functional Materials Chemistry, Key Laboratory for Advanced Materials, School of Chemistry and Molecular Engineering, East China University of Science & Technology, Shanghai 200237, China
| | - Pei-Nian Liu
- Shanghai Key Laboratory of Functional Materials Chemistry, Key Laboratory for Advanced Materials, School of Chemistry and Molecular Engineering, East China University of Science & Technology, Shanghai 200237, China
- State Key Laboratory of Natural Medicines, School of Pharmacy, China Pharmaceutical University, Nanjing 210009, China
| |
Collapse
|
3
|
Shen DT, Wu WR, Zou WX, Hu Q, Wei J, Bao MZ, Liu X, Zhang SS. Isocyanide-Based Multicomponent Reaction: Cascade α-Acyloxylation/Carboxamidation and [3 + 1+1] Cyclization of I (III)/S (VI)-Ylides. Org Lett 2024; 26:6263-6268. [PMID: 38995695 DOI: 10.1021/acs.orglett.4c02255] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/14/2024]
Abstract
A metal-free cascade of α-acyloxylation/carboxamidation of I(III)/S(VI)-ylides, carboxylic acids, and isonitriles via a Passerini-like multicomponent reaction is reported. Unexpectedly, [3 + 1+1] cyclization involving I(III)/S(VI)-ylides and two molecules of ethyl isocyanoacetate was observed. The strategy allows for the synthesis of unsymmetrical α,α-disubstituted ketones and functionalized pyrroles with up to 99% yield and wide substrate compatibility. Notably, the procedure has been extended to the late-stage modification of drugs and natural products, offering an elegant complement to the classic Passerini reaction.
Collapse
Affiliation(s)
- Dan-Ting Shen
- Center for Drug Research and Development, Guangdong Provincial Key Laboratory of Advanced Drug Delivery, Guangdong Provincial Engineering Center of Topical Precise Drug Delivery System, Guangdong Pharmaceutical University, Guangzhou, Guangdong 510006, P. R. China
| | - Wen-Rong Wu
- Center for Drug Research and Development, Guangdong Provincial Key Laboratory of Advanced Drug Delivery, Guangdong Provincial Engineering Center of Topical Precise Drug Delivery System, Guangdong Pharmaceutical University, Guangzhou, Guangdong 510006, P. R. China
| | - Wen-Xuan Zou
- Center for Drug Research and Development, Guangdong Provincial Key Laboratory of Advanced Drug Delivery, Guangdong Provincial Engineering Center of Topical Precise Drug Delivery System, Guangdong Pharmaceutical University, Guangzhou, Guangdong 510006, P. R. China
| | - Qiong Hu
- Center for Drug Research and Development, Guangdong Provincial Key Laboratory of Advanced Drug Delivery, Guangdong Provincial Engineering Center of Topical Precise Drug Delivery System, Guangdong Pharmaceutical University, Guangzhou, Guangdong 510006, P. R. China
| | - Jiaohang Wei
- Center for Drug Research and Development, Guangdong Provincial Key Laboratory of Advanced Drug Delivery, Guangdong Provincial Engineering Center of Topical Precise Drug Delivery System, Guangdong Pharmaceutical University, Guangzhou, Guangdong 510006, P. R. China
| | - Mei-Zhu Bao
- Center for Drug Research and Development, Guangdong Provincial Key Laboratory of Advanced Drug Delivery, Guangdong Provincial Engineering Center of Topical Precise Drug Delivery System, Guangdong Pharmaceutical University, Guangzhou, Guangdong 510006, P. R. China
| | - Xiang Liu
- School of Chemistry and Chemical Engineering, Guangdong Pharmaceutical University, Zhongshan, Guangdong 528458, P. R. China
| | - Shang-Shi Zhang
- Center for Drug Research and Development, Guangdong Provincial Key Laboratory of Advanced Drug Delivery, Guangdong Provincial Engineering Center of Topical Precise Drug Delivery System, Guangdong Pharmaceutical University, Guangzhou, Guangdong 510006, P. R. China
| |
Collapse
|
4
|
Xiao W, Wang J, Ye J, Wang H, Wu J, Ye S. Electrochemical Synthesis of Spirolactones from α-Tetralone Derivatives with Methanol as a C1 Source. Org Lett 2024; 26:5016-5020. [PMID: 38825794 DOI: 10.1021/acs.orglett.4c01678] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/04/2024]
Abstract
Spirolactones are widely found in pharmaceuticals and bioactive natural products. However, efficient and environmentally friendly approaches to accessing spirolactones are still highly desirable. Herein, a novel electrochemical synthesis of spirolactones from α-tetralone derivatives with methanol as a C1 source is described. This electrochemical reaction exhibits a high efficiency and good functional group tolerance.
Collapse
Affiliation(s)
- Wei Xiao
- School of Pharmaceutical and Chemical Engineering & Institute for Advanced Studies, Taizhou University, Taizhou 318000, China
| | - Jianyan Wang
- School of Pharmaceutical and Chemical Engineering & Institute for Advanced Studies, Taizhou University, Taizhou 318000, China
| | - Jiamin Ye
- School of Pharmaceutical and Chemical Engineering & Institute for Advanced Studies, Taizhou University, Taizhou 318000, China
| | - Hongyan Wang
- School of Pharmaceutical and Chemical Engineering & Institute for Advanced Studies, Taizhou University, Taizhou 318000, China
| | - Jie Wu
- School of Pharmaceutical and Chemical Engineering & Institute for Advanced Studies, Taizhou University, Taizhou 318000, China
| | - Shengqing Ye
- School of Pharmaceutical and Chemical Engineering & Institute for Advanced Studies, Taizhou University, Taizhou 318000, China
| |
Collapse
|
5
|
Yang C, Jiang H, Mao H, Zhang Y, Cao Y, Zhang Y, Yu H, Lv M, Xu H, Dong X, Tao L. Structurally diverse deformed phenanthrenes from Strophioblachia fimbricalyx with cytotoxic activities by inducing cell apoptosis. PHYTOCHEMISTRY 2024; 221:114035. [PMID: 38401672 DOI: 10.1016/j.phytochem.2024.114035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Revised: 02/14/2024] [Accepted: 02/17/2024] [Indexed: 02/26/2024]
Abstract
A group of phenanthrene derivatives with different deformed types, including four previously undescribed derivatives (1-4), an undescribed natural product (5) and five known compounds (6-10), were isolated from the leaves and stems of Strophioblachia fimbricalyx by molecular networking based on UPLC-MS/MS method. Their structures were established by 1D/2D NMR spectroscopy, HRESIMS, quantum chemistry calculation, and single crystal X-ray diffraction. In biogenic pathways, series of deformed phenanthrenes were all suspected to be derived from 6/6/6 tricyclic phenanthrenes with a gem-dimethyl unit in one ring as characteristic components of Strophioblachia. Fimbricalyxone (1) and trigoxyphin M (6) with a 6/6/5 tricyclic carbon skeleton were reported for the first time from the genus and fimbricalyxanhydride C (2) is the first example of anhydride type bearing a rare 8,9-oxycycle. All the isolates were evaluated for their cytotoxic activity against three tumor cell lines, and compounds 8 and 10 exhibited significant activity with IC50 values of 4.65-9.02 μM, and the structure-activity relationship of the deformed phenanthrenes was discussed. In addition, the X-ray structure of 8 and 10 and the antineoplastic activity of 10 are reported herein for the first time. Trigohowilol G (10) inhibiting the proliferation of A549 cells might be related to cell cycle distribution and the induction of S phase arrest, and it induced cell apoptosis through Bad/Bax/Cleaved PARP1 pathway.
Collapse
Affiliation(s)
- Changshui Yang
- Department of Pharmacy, Institute of Translational Medicine, Medical College, Yangzhou University, Yangzhou, 225009, China; Jiangsu Key Laboratory of Integrated Traditional Chinese and Western Medicine for Prevention and Treatment of Senile Diseases, Yangzhou University, Yangzhou, 225009, China; The Key Laboratory of Syndrome Differentiation and Treatment of Gastric Cancer of the State Administration of Traditional Chinese Medicine, Yangzhou, 225009, China.
| | - Houli Jiang
- Department of Pharmacy, Institute of Translational Medicine, Medical College, Yangzhou University, Yangzhou, 225009, China
| | - Haoyu Mao
- Department of Pharmacy, Institute of Translational Medicine, Medical College, Yangzhou University, Yangzhou, 225009, China
| | - Yue Zhang
- Department of Pharmacy, Institute of Translational Medicine, Medical College, Yangzhou University, Yangzhou, 225009, China
| | - Yinxue Cao
- Department of Pharmacy, Institute of Translational Medicine, Medical College, Yangzhou University, Yangzhou, 225009, China
| | - Yanyan Zhang
- Testing Center, Yangzhou University, Yangzhou, 225009, China
| | - Hongyan Yu
- Department of Pharmacy, Institute of Translational Medicine, Medical College, Yangzhou University, Yangzhou, 225009, China
| | - Mengying Lv
- Department of Pharmacy, Institute of Translational Medicine, Medical College, Yangzhou University, Yangzhou, 225009, China; Jiangsu Key Laboratory of Integrated Traditional Chinese and Western Medicine for Prevention and Treatment of Senile Diseases, Yangzhou University, Yangzhou, 225009, China
| | - Hairong Xu
- Department of Pharmacy, Institute of Translational Medicine, Medical College, Yangzhou University, Yangzhou, 225009, China; Jiangsu Key Laboratory of Integrated Traditional Chinese and Western Medicine for Prevention and Treatment of Senile Diseases, Yangzhou University, Yangzhou, 225009, China
| | - Xiaoyun Dong
- Department of Pharmacy, Institute of Translational Medicine, Medical College, Yangzhou University, Yangzhou, 225009, China; Jiangsu Key Laboratory of Integrated Traditional Chinese and Western Medicine for Prevention and Treatment of Senile Diseases, Yangzhou University, Yangzhou, 225009, China
| | - Li Tao
- Department of Pharmacy, Institute of Translational Medicine, Medical College, Yangzhou University, Yangzhou, 225009, China; The Key Laboratory of Syndrome Differentiation and Treatment of Gastric Cancer of the State Administration of Traditional Chinese Medicine, Yangzhou, 225009, China.
| |
Collapse
|
6
|
Daniel FL, Srinivasan K. Intramolecular 1,2-Aroyl Migration in Spiro Donor-Acceptor Cyclopropanes: Formation of 1,4-Naphthoquinones and 1-Naphthols as Ring-Expansion Products. J Org Chem 2024; 89:5304-5313. [PMID: 38593430 DOI: 10.1021/acs.joc.3c02671] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/11/2024]
Abstract
Most of the known rearrangement reactions of donor-acceptor cyclopropanes (DACs) involve the migration of cationic carbon atom to anionic carbon or heteroatoms in 1,3- or 1,4-positions. In the present work, we observed that spiro DACs based on 1,3-indanedione or 1-indanone moiety undergo intramolecular 1,2-aroyl migration when treated with titanium(IV) chloride to afford 1,4-naphthoquinones and α-naphthols readily. The reactions take place through the formation of putative 1,3-dipolar intermediates, followed by cleavage and migration of the aroyl group to the adjacent carbon to afford the ring-expansion products.
Collapse
Affiliation(s)
- Franklin Leslin Daniel
- School of Chemistry, Bharathidasan University, Tiruchirappalli, Tamil Nadu 620 024, India
| | - Kannupal Srinivasan
- School of Chemistry, Bharathidasan University, Tiruchirappalli, Tamil Nadu 620 024, India
| |
Collapse
|
7
|
Mi E, Zhou L, Tong Y, Qiu X, Zeng X, Li J, Xiong B. Copper-Mediated Cyclization of Terminal Alkynes with CF 3-Imidoyl Sulfoxonium Ylides To Construct 5-Trifluoromethylpyrroles. Org Lett 2024; 26:2249-2254. [PMID: 38451534 DOI: 10.1021/acs.orglett.4c00423] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/08/2024]
Abstract
A copper-mediated [3 + 2] cyclization of CF3-imidoyl sulfoxonium ylides and terminal alkynes has been demonstrated. This work provides a practical approach for assembling 5-trifluoromethylpyrroles with the merits of a broad substrate scope, good functional tolerance, and mild reaction conditions. Control experiments and DFT studies indicate that this reaction may involve the addition of π-bonds of terminal alkynes by copper-carbene radicals and hydrogen migration.
Collapse
Affiliation(s)
- E Mi
- School of Pharmacy, Nantong University, 19 Qixiu Road, Nantong, Jiangsu Province 226001, China
| | - Li Zhou
- School of Pharmacy, Nantong University, 19 Qixiu Road, Nantong, Jiangsu Province 226001, China
| | - Yixin Tong
- School of Pharmacy, Nantong University, 19 Qixiu Road, Nantong, Jiangsu Province 226001, China
| | - Xiaodong Qiu
- School of Pharmacy, Nantong University, 19 Qixiu Road, Nantong, Jiangsu Province 226001, China
| | - Xiaobao Zeng
- School of Pharmacy, Nantong University, 19 Qixiu Road, Nantong, Jiangsu Province 226001, China
| | - Jinlong Li
- School of Pharmacy, Nantong University, 19 Qixiu Road, Nantong, Jiangsu Province 226001, China
| | - Biao Xiong
- School of Pharmacy, Nantong University, 19 Qixiu Road, Nantong, Jiangsu Province 226001, China
| |
Collapse
|
8
|
Kotipalli R, Nanubolu JB, Reddy MS. Pd-Catalyzed Chelation-Assisted Regioselective and Site Selective Cyclative C-H Annulation of Alkynyl Oximes with Activated Alkynes. J Org Chem 2024; 89:3834-3843. [PMID: 38421425 DOI: 10.1021/acs.joc.3c02665] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/02/2024]
Abstract
Electrophilic cyclization and concomitant C-H annulation constitute an expedient cascade strategy for the construction of multicyclic scaffolds with precise substitutional patterns. We report here a novel Pd-catalyzed cyclative annulation of ynone oxime with activated alkynes. The cascade features a dual regioselectivity including site selective C-H activation and chelation-assisted selective insertion of alkynes. Control experiments together with kinetic experiments give insights into the mechanism.
Collapse
Affiliation(s)
- Ramesh Kotipalli
- Department of Organic Synthesis & Process Chemistry, CSIR-Indian Institute of Chemical Technology, Hyderabad 500007, India
- Academy of Scientific and Innovative Research, Ghaziabad 201002, India
| | | | - Maddi Sridhar Reddy
- Department of Organic Synthesis & Process Chemistry, CSIR-Indian Institute of Chemical Technology, Hyderabad 500007, India
- Academy of Scientific and Innovative Research, Ghaziabad 201002, India
| |
Collapse
|
9
|
Saha S, Bhattacharyya H, Karjee P, Debnath B, Verma K, Punniyamurthy T. Expedient C-H allylation of sulfoxonium ylides: merging C-H and C-C/C-het bond activation. Chem Commun (Camb) 2023; 59:14173-14176. [PMID: 37955606 DOI: 10.1039/d3cc04507b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2023]
Abstract
Sulfoxonium ylide chelation-assisted C-H allylation of arenes has been accomplished utilizing strained vinyl carbo/heterocycles as the allyl surrogates via sequential C-H and C-C/het bond activation. Broad substrate scope, Co-catalysis, selectivity, and late-stage drug mutation are the important practical features.
Collapse
Affiliation(s)
- Sharajit Saha
- Department of Chemistry, Indian Institute of Technology Guwahati, Guwahati-781039, India.
| | - Hemanga Bhattacharyya
- Department of Chemistry, Indian Institute of Technology Guwahati, Guwahati-781039, India.
| | - Pallab Karjee
- Department of Chemistry, Indian Institute of Technology Guwahati, Guwahati-781039, India.
| | - Bijoy Debnath
- Department of Chemistry, Indian Institute of Technology Guwahati, Guwahati-781039, India.
| | - Kshitiz Verma
- Department of Chemistry, Indian Institute of Technology Guwahati, Guwahati-781039, India.
| | | |
Collapse
|
10
|
Kotipalli R, Babu US, Nanubolu JB, Reddy MS. Rh-catalyzed chemo-, stereo- and regioselective C-H cascade annulation of indolyloxopropanenitriles for pyranoindoles. Chem Commun (Camb) 2023; 59:10137-10140. [PMID: 37503886 DOI: 10.1039/d3cc02762g] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/29/2023]
Abstract
Selective annulations of alkynes represent a powerful tool for constructing multicyclic scaffolds while installing desired substitution patterns with precision. Herein, we report a Rh-catalyzed unique annulation of indolyl oxopropanenitrile with hydroxy-alkynoates to access pyranoindole cyclic motifs, featuring enol oxygen as a rare chemoselective reactive terminal. The reaction proceeds via a five-membered oxy-rodacycle through C-H activation by a rhodium complex guided by enolic- and propargyloxy dual co-ordination to enable a regio- and stereoselective modular assembly.
Collapse
Affiliation(s)
- Ramesh Kotipalli
- Department of OSPC, CSIR-Indian Institute of Chemical Technology, Habsiguda, Hyderabad 500007, India.
- Academy of Scientific and Innovative Research, Ghaziabad 201002, India
| | - Undamatla Suri Babu
- Department of OSPC, CSIR-Indian Institute of Chemical Technology, Habsiguda, Hyderabad 500007, India.
- Academy of Scientific and Innovative Research, Ghaziabad 201002, India
| | | | - Maddi Sridhar Reddy
- Department of OSPC, CSIR-Indian Institute of Chemical Technology, Habsiguda, Hyderabad 500007, India.
- Academy of Scientific and Innovative Research, Ghaziabad 201002, India
| |
Collapse
|
11
|
Nagesh K, Manda J, Sridhar B, Subba Reddy BV. Rh(III)-catalyzed [3 + 2] spiroannulation of 2,3-dihydro-1,4-benzoxazines with 4-hydroxy-2-alkynoates through ortho-C-H bond functionalization. Org Biomol Chem 2023. [PMID: 37464919 DOI: 10.1039/d3ob00786c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/20/2023]
Abstract
Rhodium(III)-catalyzed [3 + 2]-spiroannulation of 2-aryl-1,4-benzoxazines with 4-hydroxy-2-alkynoates has been developed for the synthesis of highly rigid spirolactones in good yields with high regioselectivity. The reaction proceeds through a cascade of C-H activation followed by C-H annulation and lactonization. In this approach, two C-C and C-O bonds are formed in a single step. This is the first report on the spiroannulation of 2,3-dihydro-1,4-benzoxazines with 4-hydroxy-2-alkynoates.
Collapse
Affiliation(s)
- Kommu Nagesh
- Fluoro-Agrochemicals, CSIR-Indian Institute of Chemical Technology, Hyderabad, 500007, India.
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad-201002, India
| | - Jagadish Manda
- Fluoro-Agrochemicals, CSIR-Indian Institute of Chemical Technology, Hyderabad, 500007, India.
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad-201002, India
| | - B Sridhar
- Laboratory of X-ray Crystallography, CSIR-Indian Institute of Chemical Technology, Hyderabad, 500007, India
| | - B V Subba Reddy
- Fluoro-Agrochemicals, CSIR-Indian Institute of Chemical Technology, Hyderabad, 500007, India.
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad-201002, India
| |
Collapse
|
12
|
Saha S, Debnath B, Talukdar K, Karjee P, Mandal S, Punniyamurthy T. Cascade C-H Activation/Annulation of Sulfoxonium Ylides with Vinyl Cyclopropanes: Access to Cyclopropane-Fused α-Tetralones. Org Lett 2023; 25:3352-3357. [PMID: 37140969 DOI: 10.1021/acs.orglett.3c00650] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
Rh-catalyzed weak and traceless directing-group-assisted cascade C-H activation and annulation of sulfoxonium ylides with vinyl cyclopropanes as a coupling partner have been accomplished to furnish functionalized cyclopropane-fused tetralones at moderate temperature. The C-C bond formation, cyclopropanation, functional group tolerance, late-stage diversifications of drug molecules, and scale-up are the important practical features.
Collapse
Affiliation(s)
- Sharajit Saha
- Department of Chemistry, Indian Institute of Technology Guwahati, Guwahati 781039, India
| | - Bijoy Debnath
- Department of Chemistry, Indian Institute of Technology Guwahati, Guwahati 781039, India
| | - Kangkan Talukdar
- Department of Chemistry, Indian Institute of Technology Guwahati, Guwahati 781039, India
| | - Pallab Karjee
- Department of Chemistry, Indian Institute of Technology Guwahati, Guwahati 781039, India
| | - Santu Mandal
- Department of Chemistry, Indian Institute of Technology Guwahati, Guwahati 781039, India
| | | |
Collapse
|
13
|
Kumar S, Borkar V, Nunewar S, Yadav S, Kanchupalli V. Rh(III)-Catalyzed C-H Annulation of Sulfoxonium Ylides and 1,3-Diynes: A Rapid Access to Alkynyl-1-Naphthol Derivatives. Chem Asian J 2023; 18:e202201201. [PMID: 36914590 DOI: 10.1002/asia.202201201] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2022] [Revised: 03/07/2023] [Accepted: 03/09/2023] [Indexed: 03/16/2023]
Abstract
An effective redox-neutral strategy to synthesize aryl/alkynyl and alkyl/alkynyl substituted 1-naphthol derivatives has been efficaciously developed by Rh(III)-catalyzed [4+2]-annulation of sulfoxonium ylides and 1,3-diynes with excellent regio- and chemoselectivity. Subsequently, the same strategy was extended to furnish various unsymmetrical binaphthol motifs in one-pot manner. Interestingly, the TMS-derived 1,3-diyne predominantly delivered the 3-alkynyl-1-naphthol via desilylation pathway. The salient features such as traceless directing group, broad substrate scope, good functional group tolerance, and operationally simple conditions made the present protocol more valuable and appealing.
Collapse
Affiliation(s)
- Sanjeev Kumar
- Department of Process Chemistry, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad, 500 037, Telangana, India
| | - Vaishnavi Borkar
- Department of Process Chemistry, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad, 500 037, Telangana, India
| | - Saiprasad Nunewar
- Department of Process Chemistry, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad, 500 037, Telangana, India
| | - Shashank Yadav
- Department of Process Chemistry, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad, 500 037, Telangana, India
| | - Vinaykumar Kanchupalli
- Department of Process Chemistry, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad, 500 037, Telangana, India
| |
Collapse
|
14
|
Singh A, Kumar S, Volla CMR. α-Carbonyl sulfoxonium ylides in transition metal-catalyzed C-H activation: a safe carbene precursor and a weak directing group. Org Biomol Chem 2023; 21:879-909. [PMID: 36562262 DOI: 10.1039/d2ob01835g] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Transition metal-catalyzed cross-coupling of sp2 C-H bonds with diazo compounds via carbene migratory insertion represents an efficient strategy for the construction of C-C and C-heteroatom bonds in organic synthesis. Despite the popularity of diazo compounds as coupling partners in C-H activation, they pose serious safety and stability issues due to potential exothermic reactions linked with the release of N2 gas. However, compared with diazo compounds, sulfoxonium ylides are generally crystalline solids, more stable, widely used in industrial scales, and easier/safer to prepare. Therefore, recent years have witnessed an upsurge in employing α-carbonyl sulfoxonium ylides as an alternative carbene surrogate in transition metal-catalyzed C-H activation. Unlike diazo compounds, α-carbonyl sulfoxonium ylides contain inherent potential to serve as a coupling partner as well as a weak directing group. This review will summarize the progress made in both categories of reactions.
Collapse
Affiliation(s)
- Anurag Singh
- Department of Chemistry, Indian Institute of Technology Bombay, Powai, Mumbai-400076, India.
| | - Shreemoyee Kumar
- Department of Chemistry, Indian Institute of Technology Bombay, Powai, Mumbai-400076, India.
| | - Chandra M R Volla
- Department of Chemistry, Indian Institute of Technology Bombay, Powai, Mumbai-400076, India.
| |
Collapse
|
15
|
Chen XL, Wang HY, Wu CY, Tang BC, Hu YL, Ma JT, Zhuang SY, Yu ZC, Wu YD, Wu AX. Synthesis of Tetrahydro-2 H-thiopyran 1,1-Dioxides via [1+1+1+1+1+1] Annulation: An Unconventional Usage of a Tethered C-S Synthon. Org Lett 2022; 24:7659-7664. [PMID: 36214546 DOI: 10.1021/acs.orglett.2c03194] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
An unprecedented [1+1+1+1+1+1] annulation process has been developed for the construction of tetrahydro-2H-thiopyran 1,1-dioxides. Notably, rongalite acted as a tethered C-S synthon in this reaction and can be chemoselectively used as triple C1 units and as a source of sulfone. Mechanistic investigation indicated that two different carbon-increasing models are involved in this reaction in which rongalite serves as C1 units.
Collapse
Affiliation(s)
- Xiang-Long Chen
- Key Laboratory of Pesticide & Chemical Biology, Ministry of Education, College of Chemistry, Central China Normal University, Wuhan 430079, P. R. China
| | - Huai-Yu Wang
- Key Laboratory of Pesticide & Chemical Biology, Ministry of Education, College of Chemistry, Central China Normal University, Wuhan 430079, P. R. China
| | - Chun-Yan Wu
- Key Laboratory of Pesticide & Chemical Biology, Ministry of Education, College of Chemistry, Central China Normal University, Wuhan 430079, P. R. China
| | - Bo-Cheng Tang
- State Key Laboratory of Chemical Biology and Drug Discovery, Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Kowloon, Hong Kong 999077, SAR, China
| | - Yao-Luo Hu
- Key Laboratory of Pesticide & Chemical Biology, Ministry of Education, College of Chemistry, Central China Normal University, Wuhan 430079, P. R. China
| | - Jin-Tian Ma
- Key Laboratory of Pesticide & Chemical Biology, Ministry of Education, College of Chemistry, Central China Normal University, Wuhan 430079, P. R. China
| | - Shi-Yi Zhuang
- Key Laboratory of Pesticide & Chemical Biology, Ministry of Education, College of Chemistry, Central China Normal University, Wuhan 430079, P. R. China
| | - Zhi-Cheng Yu
- Key Laboratory of Pesticide & Chemical Biology, Ministry of Education, College of Chemistry, Central China Normal University, Wuhan 430079, P. R. China
| | - Yan-Dong Wu
- Key Laboratory of Pesticide & Chemical Biology, Ministry of Education, College of Chemistry, Central China Normal University, Wuhan 430079, P. R. China
| | - An-Xin Wu
- Key Laboratory of Pesticide & Chemical Biology, Ministry of Education, College of Chemistry, Central China Normal University, Wuhan 430079, P. R. China
| |
Collapse
|
16
|
Sihag P, Jeganmohan M. Rhodium(III)-Catalyzed Redox-Neutral [4 + 1]-Annulation of Unactivated Alkenes with Sulfoxonium Ylides. J Org Chem 2022; 87:11073-11089. [PMID: 35946405 DOI: 10.1021/acs.joc.2c01324] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
A novel methodology for redox-neutral [4 + 1] annulation of unactivated alkenes with sulfoxonium ylides leads to the synthesis of a diverse library of indanone compounds. The developed annulation reaction was found to be highly versatile due to its compatibility with various unactivated alkenes functionalized with various sensitive functional groups as well as substituted sulfoxonium ylides. Further, multiple transformations such as ring-expansion, reduction, aldol condensation, and Wittig reaction were carried out with indanones. Using this way, highly useful cyclic heterocycles such as indene, dihydroisocoumarin, and 1-indanilidene were prepared in a single step. A possible reaction mechanism was supported by deuterium labeling studies, competitive studies, and kinetic isotopic studies.
Collapse
Affiliation(s)
- Pinki Sihag
- Department of Chemistry, Indian Institute of Technology Madras, Chennai 600036, Tamil Nadu, India
| | - Masilamani Jeganmohan
- Department of Chemistry, Indian Institute of Technology Madras, Chennai 600036, Tamil Nadu, India
| |
Collapse
|
17
|
Pan C, Yuan C, Yu JT. Ruthenium‐Catalyzed C–H Functionalization/Annulation of N‐Aryl Indazoles/Phthalazines with Sulfoxonium Ylides to access Tetracyclic Fused Cinnolines. ASIAN J ORG CHEM 2022. [DOI: 10.1002/ajoc.202200346] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Changduo Pan
- Jiangsu University of Technology School of Petrochemical Engineering Changzhou 213164 Changzhou CHINA
| | - Cheng Yuan
- Jiangsu University of Technology School of Chemical and Environmental Engineering CHINA
| | - Jin-Tao Yu
- Changzhou University School of Petrochemical Engineering CHINA
| |
Collapse
|
18
|
Kumar S, Nunewar S, Sabbi TK, Kanchupalli V. Synthesis of Indenone Derivatives by Rh(III)-Catalyzed C-H Functionalization of Sulfoxonium Ylides with 1,3-Diynes. Org Lett 2022; 24:3395-3400. [PMID: 35510866 DOI: 10.1021/acs.orglett.2c01166] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The transition-metal-catalyzed C-H functionalization of sulfoxonium ylides with alkynes formally participates in [4 + 2] annulations to deliver the naphthol scaffolds. In contrast, herein we disclose the first Rh(III)-catalyzed C-H activation, followed by redox-neutral [3 + 2] annulation of sulfoxonium ylides with 1,3-diynes, which delivers the alkynated indenone derivatives. This protocol features a good functional group tolerance, a broad substrate scope, moderate to excellent yields, and mild reaction conditions. The reaction mechanism was supported through ESI-HRMS by characterizing key intermediates in the catalytic cycle.
Collapse
Affiliation(s)
- Sanjeev Kumar
- National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad, Telangana 500 037, India
| | - Saiprasad Nunewar
- National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad, Telangana 500 037, India
| | - Tharun Kumar Sabbi
- National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad, Telangana 500 037, India
| | - Vinaykumar Kanchupalli
- National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad, Telangana 500 037, India
| |
Collapse
|
19
|
Wang P, Huang Y, Jing J, Wang F, Li X. Rhodium(III)-Catalyzed Atroposelective Synthesis of C-N Axially Chiral Naphthylamines and Variants via C-H Activation. Org Lett 2022; 24:2531-2535. [PMID: 35354287 DOI: 10.1021/acs.orglett.2c00686] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Reported herein is the efficient and atroposelective construction of two categories of C-N atropisomers via rhodium(III)-catalyzed C-H activation of sulfoxonium ylides en route to [4+2] annulation with sterically hindered, electron-rich alkynes. This reaction proceeds with high regio- and enantioselectivity under redox-neutral conditions via a double-substrate activation strategy, providing a novel entry to C-N axially chiral 4-functionalized 1-naphthols.
Collapse
Affiliation(s)
- Peiyuan Wang
- School of Chemistry and Chemical Engineering, Shaanxi Normal University (SNNU), Xi'an 710062, China
| | - Yaling Huang
- School of Chemistry and Chemical Engineering, Shaanxi Normal University (SNNU), Xi'an 710062, China
| | - Jierui Jing
- School of Chemistry and Chemical Engineering, Shaanxi Normal University (SNNU), Xi'an 710062, China
| | - Fen Wang
- School of Chemistry and Chemical Engineering, Shaanxi Normal University (SNNU), Xi'an 710062, China
| | - Xingwei Li
- School of Chemistry and Chemical Engineering, Shaanxi Normal University (SNNU), Xi'an 710062, China
| |
Collapse
|
20
|
Borah G, Dam B, Patel BK. Ortho
‐Functionalization of Benzimidates and Benzamidines. ChemistrySelect 2022. [DOI: 10.1002/slct.202104583] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Gongutri Borah
- Department of Chemistry Indian Institute of Technology Guwahati, North Guwahati Guwahati 781039 Assam India
| | - Binoyargha Dam
- Department of Chemistry Indian Institute of Technology Guwahati, North Guwahati Guwahati 781039 Assam India
| | - Bhisma K. Patel
- Department of Chemistry Indian Institute of Technology Guwahati, North Guwahati Guwahati 781039 Assam India
| |
Collapse
|
21
|
Bhorali P, Sultana S, Gogoi S. Recent Advances in Metal‐Catalyzed C−H Bond Functionalization Reactions of Sulfoxonium Ylides. ASIAN J ORG CHEM 2022. [DOI: 10.1002/ajoc.202100754] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Pratiksha Bhorali
- Applied Organic Chemistry Chemical Sciences & Technology Division CSIR-North East Institute of Science and Technology Jorhat 785006 India
- Academy of Scientific and Innovative Research (AcSIR) Ghaziabad 201002 India
| | - Sabera Sultana
- Applied Organic Chemistry Chemical Sciences & Technology Division CSIR-North East Institute of Science and Technology Jorhat 785006 India
| | - Sanjib Gogoi
- Applied Organic Chemistry Chemical Sciences & Technology Division CSIR-North East Institute of Science and Technology Jorhat 785006 India
- Academy of Scientific and Innovative Research (AcSIR) Ghaziabad 201002 India
| |
Collapse
|
22
|
Yadav SK, Ramesh B, Jeganmohan M. Cobalt(III)-Catalyzed Chemo- and Regioselective [4 + 2]-Annulation of Aromatic Sulfoxonium Ylides with 1,3-Diynes. J Org Chem 2022; 87:4134-4153. [PMID: 35245072 DOI: 10.1021/acs.joc.1c02967] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Air-stable, highly abundant, and cost-effective Co(III)-catalyzed redox-neutral [4 + 2]-annulation of aromatic sulfoxonium ylides with 1,3-diynes providing useful substituted 1-naphthol derivatives in a regioselective manner is described. Further, the prepared 1-naphthols having internal alkyne were converted into useful polycarbocyclic molecules and spiro-dienone derivatives in good-to-excellent yields. A possible reaction mechanism involving ortho C-H activation as a key step was proposed and supported by deuterium labeling and kinetic isotope labeling studies.
Collapse
Affiliation(s)
- Suresh Kumar Yadav
- Department of Chemistry, Indian Institute of Technology Madras, Chennai 600036, Tamil Nadu, India
| | - Balu Ramesh
- Department of Chemistry, Indian Institute of Technology Madras, Chennai 600036, Tamil Nadu, India
| | - Masilamani Jeganmohan
- Department of Chemistry, Indian Institute of Technology Madras, Chennai 600036, Tamil Nadu, India
| |
Collapse
|
23
|
Zhang J, Zhang C, Zheng Z, Zhou P, Liu W. Research Progress of Sulfoxonium Ylides in the Construction of Five/Six-Membered Nitrogen-Containing Heterocycles. CHINESE J ORG CHEM 2022. [DOI: 10.6023/cjoc202204002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
24
|
Kumar A, Hanchate V, Prabhu KR. Rhodium(III)-Catalyzed Cascade Reactions of Imines/Imidates with 4-Hydroxy-2-alkynoates to Synthesize Regioselective Furanone-Fused Isoquinoline Scaffolds. J Org Chem 2021; 86:17965-17974. [PMID: 34843247 DOI: 10.1021/acs.joc.1c02300] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
A regioselective synthesis of furanone-fused isoquinoline heterocycles is developed in a single step using a Rh(III) catalyst. In this reaction, a cascade C-H activation, regioselective annulation, and lactonization occur in one pot. A wide range of alkynoates was examined, which showed good regioselectivity. The regioselectivity was guided by steric bulk at the C4 position of the 4-hydroxy-2-alkynoates. The synthetic utility was exemplified, and the model reaction was scaled up to a 1 g scale.
Collapse
Affiliation(s)
- Anil Kumar
- Department of Organic Chemistry, Indian Institute of Science, Bangalore 560 012, Karnataka, India
| | - Vinayak Hanchate
- Department of Organic Chemistry, Indian Institute of Science, Bangalore 560 012, Karnataka, India
| | - Kandikere Ramaiah Prabhu
- Department of Organic Chemistry, Indian Institute of Science, Bangalore 560 012, Karnataka, India
| |
Collapse
|
25
|
Application of sulfoxonium ylide in transition-metal-catalyzed C-H bond activation and functionalization reactions. Tetrahedron 2021. [DOI: 10.1016/j.tet.2021.132478] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
|
26
|
Reddy Singam MK, Suri Babu U, Suresh V, Nanubolu JB, Sridhar Reddy M. Rhodium-Catalyzed Annulation of Phenacyl Ammonium Salts with Propargylic Alcohols via a Sequential Dual C-H and a C-C Bond Activation: Modular Entry to Diverse Isochromenones. Org Lett 2021; 23:7888-7893. [PMID: 34612648 DOI: 10.1021/acs.orglett.1c02890] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Given their omnipresence in natural products and pharmaceuticals, isochromenone congeners are one of the most privileged scaffolds to synthetic chemists. Disclosed herein is a dual (ortho/meta) C-H and C-C activation of phenacyl ammonium salts (acylammonium as traceless directing group) toward annulation with propargylic alcohols to accomplish rapid access for novel isochromenones by means of rhodium catalysis from readily available starting materials. This operationally simple protocol features broad substrate scope and wide functional group tolerance. Importantly, the protocol circumvents the need of any stoichiometric metal oxidants and proceeds under aerobic conditions.
Collapse
Affiliation(s)
- Maneesh Kumar Reddy Singam
- Department of Organic Syntheis & Process Chemistry, CSIR-Indian Institute of Chemical Technology, Hyderabad 500007, India.,Academy of Scientific and Innovative Research, Ghaziabad 201002, India
| | - Undamatla Suri Babu
- Department of Organic Syntheis & Process Chemistry, CSIR-Indian Institute of Chemical Technology, Hyderabad 500007, India.,Academy of Scientific and Innovative Research, Ghaziabad 201002, India
| | - Vavilapalli Suresh
- Department of Organic Syntheis & Process Chemistry, CSIR-Indian Institute of Chemical Technology, Hyderabad 500007, India.,Academy of Scientific and Innovative Research, Ghaziabad 201002, India
| | | | - Maddi Sridhar Reddy
- Department of Organic Syntheis & Process Chemistry, CSIR-Indian Institute of Chemical Technology, Hyderabad 500007, India.,Academy of Scientific and Innovative Research, Ghaziabad 201002, India
| |
Collapse
|
27
|
Desai B, Patel M, Dholakiya BZ, Rana S, Naveen T. Recent advances in directed sp 2 C-H functionalization towards the synthesis of N-heterocycles and O-heterocycles. Chem Commun (Camb) 2021; 57:8699-8725. [PMID: 34397068 DOI: 10.1039/d1cc02176a] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Heterocyclic compounds are widely present in the core structures of several natural products, pharmaceuticals and agrochemicals, and thus great efforts have been devoted to their synthesis in a mild and simpler way. In the past decade, remarkable progress has been made in the field of heterocycle synthesis by employing C-H functionalization as an emerging synthetic strategy. As a complement to previous protocols, transition metal catalyzed C-H functionalization of arenes using various directing groups has recently emerged as a powerful tool to create different classes of heterocycles. This review is mainly focussed on the recent key progress made in the field of the synthesis of N,O-heterocycles from olefins and allenes by using nitrogen based and oxidizing directing groups.
Collapse
Affiliation(s)
- Bhargav Desai
- Department of Chemistry, Sardar Vallabhbhai National Institute of Technology, Surat, Gujarat-395 007, India.
| | | | | | | | | |
Collapse
|
28
|
Hu M, Wu Z, Yao B, Li J, Wu W, Jiang H. Pd-Catalyzed Sequential Formation of C-C Bonds: A New Strategy for the Synthesis of ( E)-α,β-Unsaturated Carbonyl Compounds from Sulfoxonium Ylides and 1-Iodo-2-((2-methylallyl)oxy)benzene Compounds. J Org Chem 2021; 86:11545-11556. [PMID: 34479410 DOI: 10.1021/acs.joc.1c01119] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
α,β-Unsaturated carbonyl compounds are significant moieties in many biological molecules and have attracted considerable attention in organic synthetic chemistry. A Pd-catalyzed cascade cyclization for the synthesis of (E)-α,β-unsaturated carbonyl compounds with the sequential formation of C-C bonds was developed. This method offers high efficiency, good functional group tolerance, and moderate to excellent yields and generally displays high stereoselectivity.
Collapse
Affiliation(s)
- Miao Hu
- Key Laboratory of Functional Molecular Engineering of Guangdong Province, School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou 510640, P.R. China
| | - Ziying Wu
- Key Laboratory of Functional Molecular Engineering of Guangdong Province, School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou 510640, P.R. China
| | - Biao Yao
- Key Laboratory of Functional Molecular Engineering of Guangdong Province, School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou 510640, P.R. China
| | - Jianxiao Li
- Key Laboratory of Functional Molecular Engineering of Guangdong Province, School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou 510640, P.R. China
| | - Wanqing Wu
- Key Laboratory of Functional Molecular Engineering of Guangdong Province, School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou 510640, P.R. China
| | - Huanfeng Jiang
- Key Laboratory of Functional Molecular Engineering of Guangdong Province, School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou 510640, P.R. China
| |
Collapse
|
29
|
Dong Z, Li P, Li X, Liu B. Rh(
III
)‐Catalyzed Diverse C—H Functionalization of Iminopyridinium Ylides. CHINESE J CHEM 2021. [DOI: 10.1002/cjoc.202100203] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Affiliation(s)
- Zhenzhen Dong
- NMPA Key Laboratory for Research and Evaluation of Innovative Drug, Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals, School of Chemistry and Chemical Engineering, Henan Normal University Xinxiang Henan 453007 China
| | - Pengfei Li
- NMPA Key Laboratory for Research and Evaluation of Innovative Drug, Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals, School of Chemistry and Chemical Engineering, Henan Normal University Xinxiang Henan 453007 China
| | - Xingwei Li
- NMPA Key Laboratory for Research and Evaluation of Innovative Drug, Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals, School of Chemistry and Chemical Engineering, Henan Normal University Xinxiang Henan 453007 China
| | - Bingxian Liu
- NMPA Key Laboratory for Research and Evaluation of Innovative Drug, Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals, School of Chemistry and Chemical Engineering, Henan Normal University Xinxiang Henan 453007 China
| |
Collapse
|
30
|
Singam MKR, Suri Babu U, Nagireddy A, Nanubolu JB, Sridhar Reddy M. Harnessing Rhodium-Catalyzed C-H Activation: Regioselective Cascade Annulation for Fused Polyheterocycles. J Org Chem 2021; 86:8069-8077. [PMID: 34048238 DOI: 10.1021/acs.joc.1c00477] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
In the realm of transition-metal catalyzed arene functionalization, rhodium(III) catalysis is considered as exemplary due to its propensity to activate C-H bonds to obtain comprehensive molecular assembly. Herein, we demonstrate a new rhodium(III) catalyzed assembly of polyheterocyclic scaffolds via C-H activation and regioselective annulation of 4-arylbut-3-yn-1-amines with 4-hydroxy-2-alkynoates. Heterocyclization and trans-metalation prior to annulation is the key for initiation of this relay redox-neutral catalytic cascade.
Collapse
Affiliation(s)
- Maneesh Kumar Reddy Singam
- Department of Organic Synthesis & Process Chemistry, CSIR-Indian Institute of Chemical Technology, Hyderabad 500007, India.,Academy of Scientific and Innovative Research, Ghaziabad 201002, India
| | - Undamatla Suri Babu
- Department of Organic Synthesis & Process Chemistry, CSIR-Indian Institute of Chemical Technology, Hyderabad 500007, India.,Academy of Scientific and Innovative Research, Ghaziabad 201002, India
| | - Attunuri Nagireddy
- Department of Organic Synthesis & Process Chemistry, CSIR-Indian Institute of Chemical Technology, Hyderabad 500007, India.,Academy of Scientific and Innovative Research, Ghaziabad 201002, India
| | | | - Maddi Sridhar Reddy
- Department of Organic Synthesis & Process Chemistry, CSIR-Indian Institute of Chemical Technology, Hyderabad 500007, India.,Academy of Scientific and Innovative Research, Ghaziabad 201002, India
| |
Collapse
|
31
|
He Y, Zheng T, Huang YH, Dong L. Rh(III)-Catalyzed olefination to build diverse oxazole derivatives from functional alkynes. Org Biomol Chem 2021; 19:4937-4942. [PMID: 33983356 DOI: 10.1039/d1ob00507c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A novel Rh(iii)-catalyzed olefination reaction of oxazoles to generate diverse oxazole skeleton derivatives has been realized by directly using oxazole as the directing group. The reaction could tolerate many functional groups, affording complex oxazole derivatives with long chain alkenyls in moderate to good yields, which might find applications in the construction of diverse compounds.
Collapse
Affiliation(s)
- Yuan He
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry, Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu 610041, China.
| | - Ting Zheng
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry, Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu 610041, China.
| | - Yin-Hui Huang
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry, Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu 610041, China.
| | - Lin Dong
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry, Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu 610041, China.
| |
Collapse
|
32
|
Ning SS, Meng D, Zhang JY, Liu SL, Zhou NN, Jin X, Zhu HT. Metal-Free Intramolecular [3+2] Cycloaddition of γ-Hydroxy Acetylenic Ketones with Alkynes for the Synthesis of Naphtho[1,2- c]furan-5-ones and Its Derivatization via a Selective C(sp 2)-H Deuteration Reaction. J Org Chem 2021; 86:7347-7358. [PMID: 34032437 DOI: 10.1021/acs.joc.1c00224] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
A metal-free intramolecular [3+2] cycloaddtion has been achieved by treating benzene-linked propynol-ynes with AcOH/H2O in a one-pot manner. The reaction provides greener, 100% atom-economic, highly regioselective, and more practical access to functionalized naphtho[1,2-c]furan-5-ones with valuable and versatile applications. The regioselective α-deuteration of naphtho[1,2-c]furan-5-ones has been also presented with excellent deuterium incorporation and chemical yields. Moreover, the fluorescent properties of naphtho[1,2-c]furan-5-one products have been investigated in solution.
Collapse
Affiliation(s)
- Si-Si Ning
- Shannxi Key Laboratory of Phytochemistry, College of Chemistry and Chemical Engineering, Baoji University of Arts and Sciences, Baoji 721013, China
| | - Dan Meng
- Shannxi Key Laboratory of Phytochemistry, College of Chemistry and Chemical Engineering, Baoji University of Arts and Sciences, Baoji 721013, China
| | - Jie-Yun Zhang
- Shannxi Key Laboratory of Phytochemistry, College of Chemistry and Chemical Engineering, Baoji University of Arts and Sciences, Baoji 721013, China
| | - Shi-Lei Liu
- Shannxi Key Laboratory of Phytochemistry, College of Chemistry and Chemical Engineering, Baoji University of Arts and Sciences, Baoji 721013, China
| | - Ni-Ni Zhou
- Shannxi Key Laboratory of Phytochemistry, College of Chemistry and Chemical Engineering, Baoji University of Arts and Sciences, Baoji 721013, China
| | - Xiaojie Jin
- Gansu University Key Laboratory for Molecular Medicine & Chinese Medicine Prevention and Treatment of Major Diseases, Gansu University of Chinese Medicine, Lanzhou 730000, China
| | - Hai-Tao Zhu
- Shannxi Key Laboratory of Phytochemistry, College of Chemistry and Chemical Engineering, Baoji University of Arts and Sciences, Baoji 721013, China
| |
Collapse
|
33
|
Direct synthesis of benzoxazinones via Cp*Co(III)-catalyzed C–H activation and annulation of sulfoxonium ylides with dioxazolones. CHINESE CHEM LETT 2021. [DOI: 10.1016/j.cclet.2020.09.020] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
|
34
|
Xie W, Jian X, Zhang L, Jin K, Shi J, Zhu F. Synthesis of C3-sulfone substituted naphthols via rhodium(III)-catalyzed annulation of sulfoxonium ylides with alkynylsulfones. Org Biomol Chem 2021; 19:1498-1502. [PMID: 33529298 DOI: 10.1039/d0ob02267e] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
C-H activation of sulfoxonium ylides catalyzed by rhodium(iii) with subsequent annulation by alkynylsulfones was accomplished. This methodology offers a step-economical approach for assembling C3-sulfone-substituted naphthols with a high level of regioselectivity that is complementary to previous protocols. The approach has an extensive substrate spectrum and broad functional group tolerance.
Collapse
Affiliation(s)
- Wucheng Xie
- School of Environment and Chemical Engineering, Foshan University, Foshan 528000, China.
| | - Xinyi Jian
- School of Environment and Chemical Engineering, Foshan University, Foshan 528000, China.
| | - Liyang Zhang
- School of Environment and Chemical Engineering, Foshan University, Foshan 528000, China.
| | - Kexin Jin
- School of Environment and Chemical Engineering, Foshan University, Foshan 528000, China.
| | - Junjun Shi
- School of Environment and Chemical Engineering, Foshan University, Foshan 528000, China.
| | - Feng Zhu
- School of Environment and Chemical Engineering, Foshan University, Foshan 528000, China.
| |
Collapse
|
35
|
Xie H, Zhong M, Kang H, Shu B, Zhang S. A Cascade Rh(III)‐catalyzed C−H Activation/Chemodivergent Annulation of
N
‐carbamoylindoles with Sulfoxonium Ylides for the Synthesis of Dihydropyrimidoindolone and Tricyclic [1,3]Oxazino[3,4‐
a
]indol‐1‐ones Derivatives. Adv Synth Catal 2021. [DOI: 10.1002/adsc.202001380] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Affiliation(s)
- Hui Xie
- Center for Drug Research and Development Guangdong Pharmaceutical University Guangzhou 510006 People's Republic of China
| | - Mei Zhong
- School of Pharmacy Guangdong Pharmaceutical University Guangzhou 510006 People's Republic of China
| | - Hua‐Jie Kang
- School of Pharmacy Guangdong Pharmaceutical University Guangzhou 510006 People's Republic of China
| | - Bing Shu
- School of Pharmacy Guangdong Pharmaceutical University Guangzhou 510006 People's Republic of China
| | - Shang‐Shi Zhang
- Center for Drug Research and Development Guangdong Pharmaceutical University Guangzhou 510006 People's Republic of China
| |
Collapse
|
36
|
Khan I, Ibrar A, Zaib S. Alkynoates as Versatile and Powerful Chemical Tools for the Rapid Assembly of Diverse Heterocycles under Transition-Metal Catalysis: Recent Developments and Challenges. Top Curr Chem (Cham) 2021; 379:3. [PMID: 33398642 DOI: 10.1007/s41061-020-00316-4] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2020] [Accepted: 11/16/2020] [Indexed: 12/15/2022]
Abstract
Heterocycles, heteroaromatics and spirocyclic entities are ubiquitous components of a wide plethora of synthetic drugs, biologically active natural products, marketed pharmaceuticals and agrochemical targets. Recognizing their high proportion in drugs and rich pharmacological potential, these invaluable structural motifs have garnered significant interest, thus enabling the development of efficient catalytic methodologies providing access to architecturally complex and diverse molecules with high atom-economy and low cost. These chemical processes not only allow the formation of diverse heterocycles but also utilize a range of flexible and easily accessible building units in a single operation to discover diversity-oriented synthetic approaches. Alkynoates are significantly important, diverse and powerful building blocks in organic chemistry due to their unique and inherent properties such as the electronic bias on carbon-carbon triple bonds posed by electron-withdrawing groups or the metallic coordination site provided by carbonyl groups. The present review highlights the comprehensive picture of the utility of alkynoates (2007-2019) for the synthesis of various heterocycles (> 50 types) using transition-metal catalysts (Ru, Rh, Pd, Ir, Ag, Au, Pt, Cu, Mn, Fe) in various forms. The valuable function of versatile alkynoates (bearing multifunctional groups) as simple and useful starting materials is explored, thus cyclizing with an array of coupling partners to deliver a broad range of oxygen-, nitrogen-, sulfur-containing heterocycles alongside fused-, and spiro-heterocyclic compounds. In addition, these examples will also focus the scope and reaction limitations, as well as mechanistic investigations into the synthesis of these heterocycles. The biological significance will also be discussed, citing relevant examples of drug molecules highlighting each class of heterocycles. This review summarizes the recent developments in the synthetic methods for the synthesis of various heterocycles using alkynoates as readily available starting materials under transition-metal catalysis.
Collapse
Affiliation(s)
- Imtiaz Khan
- Department of Chemistry, School of Natural Sciences, The University of Manchester, Oxford Road, Manchester, M13 9PL, UK.
- Manchester Institute of Biotechnology, The University of Manchester, 131 Princess Street, Manchester, M1 7DN, UK.
| | - Aliya Ibrar
- Department of Chemistry, Faculty of Natural Sciences, The University of Haripur, Haripur, KPK-22620, Pakistan
| | - Sumera Zaib
- Department of Biochemistry, Faculty of Life Sciences, University of Central Punjab, Lahore, 54590, Pakistan
| |
Collapse
|
37
|
Chen T, Ding Z, Guan Y, Zhang R, Yao J, Chen Z. Ruthenium-catalyzed coupling of α-carbonyl phosphoniums with sulfoxonium ylides via C–H activation/Wittig reaction sequences. Chem Commun (Camb) 2021; 57:2665-2668. [DOI: 10.1039/d1cc00433f] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
A Ru(ii)-catalyzed coupling of various α-carbonyl phosphoniums with sulfoxonium ylides has been realized for the facile synthesis of 1-naphthols in good to excellent yields.
Collapse
Affiliation(s)
- Tian Chen
- Center for Molecular Science and Engineering
- College of Sciences
- Northeastern University
- Shenyang 110819
- P. R. China
| | - Zhiqiang Ding
- Center for Molecular Science and Engineering
- College of Sciences
- Northeastern University
- Shenyang 110819
- P. R. China
| | - Yuqiu Guan
- Center for Molecular Science and Engineering
- College of Sciences
- Northeastern University
- Shenyang 110819
- P. R. China
| | - Ruike Zhang
- Center for Molecular Science and Engineering
- College of Sciences
- Northeastern University
- Shenyang 110819
- P. R. China
| | - Jinzhong Yao
- College of Biological
- Chemical Sciences and Engineering
- Jiaxing University
- Jiaxing 314001
- People's Republic of China
| | - Zhangpei Chen
- Center for Molecular Science and Engineering
- College of Sciences
- Northeastern University
- Shenyang 110819
- P. R. China
| |
Collapse
|
38
|
Zhang L, Zhao J, Jiang Y, Zhang X, Fan X. Synthesis of tetracyclic indenopyrazolopyrazolones through cascade reactions of aryl azomethine imines with propargyl alcohols. Org Chem Front 2021. [DOI: 10.1039/d1qo00025j] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Presented herein is a novel and efficient synthesis of tetracyclic indenopyrazolopyrazolone derivatives from aryl azomethine imines and propargyl alcohols through an initial inert C(sp2)–H bond alkenylation followed by the cascade formation of two five-membered rings.
Collapse
Affiliation(s)
- Linghua Zhang
- Henan Key Laboratory of Organic Functional Molecules and Drug Innovation
- Key Laboratory of Green Chemical Media and Reactions
- Ministry of Education
- Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals
- School of Chemistry and Chemical Engineering
| | - Jie Zhao
- Henan Key Laboratory of Organic Functional Molecules and Drug Innovation
- Key Laboratory of Green Chemical Media and Reactions
- Ministry of Education
- Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals
- School of Chemistry and Chemical Engineering
| | - Yuqin Jiang
- Henan Key Laboratory of Organic Functional Molecules and Drug Innovation
- Key Laboratory of Green Chemical Media and Reactions
- Ministry of Education
- Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals
- School of Chemistry and Chemical Engineering
| | - Xinying Zhang
- Henan Key Laboratory of Organic Functional Molecules and Drug Innovation
- Key Laboratory of Green Chemical Media and Reactions
- Ministry of Education
- Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals
- School of Chemistry and Chemical Engineering
| | - Xuesen Fan
- Henan Key Laboratory of Organic Functional Molecules and Drug Innovation
- Key Laboratory of Green Chemical Media and Reactions
- Ministry of Education
- Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals
- School of Chemistry and Chemical Engineering
| |
Collapse
|
39
|
Lyu X, Huang S, Huang Y, Song H, Liu Y, Li Y, Yang S, Wang Q. Rhodium(III)‐Catalyzed Cross‐Coupling of Sulfoxonium Ylides with Quinoline‐8‐carboxaldehydes for Synthesis of Quinoline‐1,3‐diketones. ASIAN J ORG CHEM 2020. [DOI: 10.1002/ajoc.202000581] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Affiliation(s)
- Xue‐Li Lyu
- State Key Laboratory of Elemento-Organic Chemistry, Research Institute of Elemento-Organic Chemistry College of Chemistry, Collaborative Innovation Center of Chemical Science and Engineering (Tianjin) Nankai University Tianjin 300071 P. R. China
| | - Shi‐Sheng Huang
- State Key Laboratory of Elemento-Organic Chemistry, Research Institute of Elemento-Organic Chemistry College of Chemistry, Collaborative Innovation Center of Chemical Science and Engineering (Tianjin) Nankai University Tianjin 300071 P. R. China
| | - Yuan‐Qiong Huang
- State Key Laboratory of Elemento-Organic Chemistry, Research Institute of Elemento-Organic Chemistry College of Chemistry, Collaborative Innovation Center of Chemical Science and Engineering (Tianjin) Nankai University Tianjin 300071 P. R. China
| | - Hong‐Jian Song
- State Key Laboratory of Elemento-Organic Chemistry, Research Institute of Elemento-Organic Chemistry College of Chemistry, Collaborative Innovation Center of Chemical Science and Engineering (Tianjin) Nankai University Tianjin 300071 P. R. China
| | - Yu‐Xiu Liu
- State Key Laboratory of Elemento-Organic Chemistry, Research Institute of Elemento-Organic Chemistry College of Chemistry, Collaborative Innovation Center of Chemical Science and Engineering (Tianjin) Nankai University Tianjin 300071 P. R. China
| | - Yong‐Qiang Li
- State Key Laboratory of Elemento-Organic Chemistry, Research Institute of Elemento-Organic Chemistry College of Chemistry, Collaborative Innovation Center of Chemical Science and Engineering (Tianjin) Nankai University Tianjin 300071 P. R. China
| | - Shao‐Xiang Yang
- Beijing Key Laboratory of Flavor Chemistry Beijing Technology and Business University Beijing 100048 P. R. China
| | - Qing‐Min Wang
- State Key Laboratory of Elemento-Organic Chemistry, Research Institute of Elemento-Organic Chemistry College of Chemistry, Collaborative Innovation Center of Chemical Science and Engineering (Tianjin) Nankai University Tianjin 300071 P. R. China
| |
Collapse
|
40
|
Kumar GR, Rajesh M, Lin S, Liu S. Propargylic Alcohols as Coupling Partners in Transition‐Metal‐Catalyzed Arene C−H Activation. Adv Synth Catal 2020. [DOI: 10.1002/adsc.202000896] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Affiliation(s)
- Gadi Ranjith Kumar
- Key Laboratory of Molecular Target & Clinical Pharmacology and the State Key Laboratory of Respiratory Disease School of Pharmaceutical Sciences & the Fifth Affiliated Hospital Guangzhou Medical University Guangzhou 511436 People's Republic of China
| | - Manda Rajesh
- Department of Organic Synthesis & Process Chemistry CSIR-Indian Institute of Chemical Technology Hyderabad 500007 India
| | - Shuimu Lin
- Key Laboratory of Molecular Target & Clinical Pharmacology and the State Key Laboratory of Respiratory Disease School of Pharmaceutical Sciences & the Fifth Affiliated Hospital Guangzhou Medical University Guangzhou 511436 People's Republic of China
| | - Shouping Liu
- Key Laboratory of Molecular Target & Clinical Pharmacology and the State Key Laboratory of Respiratory Disease School of Pharmaceutical Sciences & the Fifth Affiliated Hospital Guangzhou Medical University Guangzhou 511436 People's Republic of China
| |
Collapse
|
41
|
Vargas JAM, Day DP, Burtoloso ACB. Substituted Naphthols: Preparations, Applications, and Reactions. European J Org Chem 2020. [DOI: 10.1002/ejoc.202001132] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Jorge Andrés Mora Vargas
- Instituto de Química de São Carlos Universidade de São Paulo CEP 13560‐970 São Carlos SP Brasil
- Facultad de Ciencias Básicas Universidad Santiago de Cali Calle 5 # 62‐00, Campus Pampalinda Santiago de Cali Colombia
| | - David P. Day
- Instituto de Química de São Carlos Universidade de São Paulo CEP 13560‐970 São Carlos SP Brasil
| | - Antonio C. B. Burtoloso
- Instituto de Química de São Carlos Universidade de São Paulo CEP 13560‐970 São Carlos SP Brasil
| |
Collapse
|
42
|
Rani G, Luxami V, Paul K. Traceless directing groups: a novel strategy in regiodivergent C-H functionalization. Chem Commun (Camb) 2020; 56:12479-12521. [PMID: 32985634 DOI: 10.1039/d0cc04863a] [Citation(s) in RCA: 63] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
The use of functional groups as internal ligands for assisting C-H functionalization, termed the chelation assisted strategy, is emerging as one of the most powerful tools for construction of C-C and C-X bonds from inert C-H bonds. However, there are various directing groups which cannot be either removed after functionalization or require some additional steps or reagents for their removal, thereby limiting the scope of structural diversity of the products, and the step and atom economy of the system. These limitations are overcome by the use of the traceless directing group (TDG) strategy wherein functionalization of the substrate and removal of the directing group can be carried out in a one pot fashion. Traceless directing groups serve as the most ideal chelation assisted strategy with a high degree of reactivity and selectivity without any requirement for additional steps for their removal. The present review overviews the use of various functional groups such as carboxylic acids, aldehydes, N-oxides, nitrones, N-nitroso amines, amides, sulfoxonium ylides and silicon tethered directing groups for assisting transition metal catalyzed C-H functionalization reactions in the last decade.
Collapse
Affiliation(s)
- Geetika Rani
- School of Chemistry and Biochemistry, Thapar Institute of Engineering and Technology, Patiala-147001, India.
| | | | | |
Collapse
|
43
|
Zhang M, Zhang J, Teng Z, Chen J, Xia Y. Ruthenium(II)-Catalyzed Homocoupling of α-Carbonyl Sulfoxonium Ylides Under Mild Conditions: Methodology Development and Mechanistic DFT Study. Front Chem 2020; 8:648. [PMID: 33195001 PMCID: PMC7525066 DOI: 10.3389/fchem.2020.00648] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2020] [Accepted: 06/22/2020] [Indexed: 01/22/2023] Open
Abstract
A mild ruthenium(II)-catalyzed homocoupling of α-carbonyl sulfoxonium ylides was developed and the detailed mechanism was understood based on DFT calculations in the current report. The catalytic system utilizes the α-carbonyl sulfoxonium ylide as both the directing group for ortho-sp2 C-H activation and the acylmethylating reagent for C-C coupling. Various substituents are compatible in the transformation and a variety of isocoumarin derivatives were synthesized at room temperature without any protection. The theoretical results disclosed that the full catalytic cycle contains eight elementary steps, and in all the cationic Ru(II) monomer is involved as the catalytic active species. The acid additive is responsible for protonation of the ylide carbon prior to the intramolecular nucleophilic addition and C-C bond cleavage. Interestingly, the intermediacy of free acylmethylation intermediate or its enol isomer is not necessary for the transformation.
Collapse
Affiliation(s)
- Maosheng Zhang
- College of Chemistry and Materials Engineering, Wenzhou University, Wenzhou, China
| | - Jinrong Zhang
- College of Chemistry and Materials Engineering, Wenzhou University, Wenzhou, China
| | - Zhenfang Teng
- Information Technology Center, Wenzhou University, Wenzhou, China
| | - Jianhui Chen
- College of Chemistry and Materials Engineering, Wenzhou University, Wenzhou, China
| | - Yuanzhi Xia
- College of Chemistry and Materials Engineering, Wenzhou University, Wenzhou, China
| |
Collapse
|
44
|
Liu R, Wei Y, Shi M. Rhodium(III)‐Catalyzed Cross Coupling of Sulfoxonium Ylides and 1,3‐Diynes to Produce Naphthol‐Indole Derivatives: An Arene
ortho
C−H Activation/Annulation Cascade. ChemCatChem 2020. [DOI: 10.1002/cctc.202001315] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- Ruixing Liu
- State Key Laboratory of Organometallic Chemistry, Center for Excellence in Molecular Synthesis University of Chinese Academy of Sciences, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, 345 Linglin Lu Shanghai 200032 China
| | - Yin Wei
- State Key Laboratory of Organometallic Chemistry, Center for Excellence in Molecular Synthesis University of Chinese Academy of Sciences, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, 345 Linglin Lu Shanghai 200032 China
| | - Min Shi
- State Key Laboratory of Organometallic Chemistry, Center for Excellence in Molecular Synthesis University of Chinese Academy of Sciences, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, 345 Linglin Lu Shanghai 200032 China
- Shenzhen Grubbs Institute Southern University of Science and Technology Shenzhen 518000 Guangdong China
| |
Collapse
|
45
|
Yadav P, Pratap R, Ji Ram V. Natural and Synthetic Spirobutenolides and Spirobutyrolactones. ASIAN J ORG CHEM 2020. [DOI: 10.1002/ajoc.202000259] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- Pratik Yadav
- Department of Chemistry Kirori Mal College University of Delhi Delhi 110 007 India
| | - Ramendra Pratap
- Department of Chemistry University of Delhi Delhi 110 007 India
| | - Vishnu Ji Ram
- B-67, Eldeco Towne IIM road, PO-Diguria Lucknow-226020 Uttar Pradesh India
| |
Collapse
|
46
|
Wu X, Li P, Lu Y, Qiao J, Zhao J, Jia X, Ni H, Kong L, Zhang X, Zhao F. Rhodium‐Catalyzed Cascade Reactions of Indoles with 4‐Hydroxy‐2‐Alkynoates for the Synthesis of Indole‐Fused Polyheterocycles. Adv Synth Catal 2020. [DOI: 10.1002/adsc.202000493] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- Xiaowei Wu
- Antibiotics Research and Re-evaluation Key Laboratory of Sichuan ProvinceSichuan Industrial Institute of AntibioticsChengdu University 168 Hua Guan Road Chengdu 610052 People's Republic of China
- Department of Pharmacology and Chemical BiologyBaylor College of Medicine 1 Baylor Plaza Houston Texas 77030 United States
| | - Pinyi Li
- Antibiotics Research and Re-evaluation Key Laboratory of Sichuan ProvinceSichuan Industrial Institute of AntibioticsChengdu University 168 Hua Guan Road Chengdu 610052 People's Republic of China
| | - Yangbin Lu
- Jinhua BranchSichuan Industrial Institute of AntibioticsChengdu University 888 West Hai Tang Road Jinhua 321007 People's Republic of China
| | - Jin Qiao
- Jinhua BranchSichuan Industrial Institute of AntibioticsChengdu University 888 West Hai Tang Road Jinhua 321007 People's Republic of China
| | - Jingwei Zhao
- Antibiotics Research and Re-evaluation Key Laboratory of Sichuan ProvinceSichuan Industrial Institute of AntibioticsChengdu University 168 Hua Guan Road Chengdu 610052 People's Republic of China
- Jinhua BranchSichuan Industrial Institute of AntibioticsChengdu University 888 West Hai Tang Road Jinhua 321007 People's Republic of China
| | - Xiuwen Jia
- Antibiotics Research and Re-evaluation Key Laboratory of Sichuan ProvinceSichuan Industrial Institute of AntibioticsChengdu University 168 Hua Guan Road Chengdu 610052 People's Republic of China
| | - Hangcheng Ni
- Jinhua BranchSichuan Industrial Institute of AntibioticsChengdu University 888 West Hai Tang Road Jinhua 321007 People's Republic of China
| | - Lichun Kong
- Key Laboratory of the Ministry of Education for Advanced Catalysis MaterialsZhejiang Normal University Jinhua 321004 People's Republic of China
| | - Xiaoning Zhang
- Jinhua BranchSichuan Industrial Institute of AntibioticsChengdu University 888 West Hai Tang Road Jinhua 321007 People's Republic of China
| | - Fei Zhao
- Antibiotics Research and Re-evaluation Key Laboratory of Sichuan ProvinceSichuan Industrial Institute of AntibioticsChengdu University 168 Hua Guan Road Chengdu 610052 People's Republic of China
- Jinhua BranchSichuan Industrial Institute of AntibioticsChengdu University 888 West Hai Tang Road Jinhua 321007 People's Republic of China
| |
Collapse
|
47
|
Wang X, Song J, Zhong M, Kang H, Xie H, Che T, Shu B, Peng D, Zhang L, Zhang S. Iridium‐Catalyzed [4+2] Annulations of β‐Keto Sulfoxonium Ylides and
o
‐Phenylenediamines: Mild and Facile Synthesis of Quinoxaline Derivatives. European J Org Chem 2020. [DOI: 10.1002/ejoc.202000411] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Affiliation(s)
- Xiao‐Tong Wang
- Center for Drug Research and Development Guangdong Pharmaceutical University 510006 Guangzhou China
- School of Pharmacy Guangdong Pharmaceutical University 510006 Guangzhou PR China
| | - Jia‐Lin Song
- School of Pharmacy Guangdong Pharmaceutical University 510006 Guangzhou PR China
| | - Mei Zhong
- School of Pharmacy Guangdong Pharmaceutical University 510006 Guangzhou PR China
| | - Hua‐Jie Kang
- School of Pharmacy Guangdong Pharmaceutical University 510006 Guangzhou PR China
| | - Hui Xie
- Center for Drug Research and Development Guangdong Pharmaceutical University 510006 Guangzhou China
| | - Tong Che
- Center for Drug Research and Development Guangdong Pharmaceutical University 510006 Guangzhou China
| | - Bing Shu
- School of Pharmacy Guangdong Pharmaceutical University 510006 Guangzhou PR China
| | - Dongming Peng
- Department of Medicinal Chemistry School of Pharmacy Hunan University of Chinese Medicine 410208 Changsha China
| | - Luyong Zhang
- Center for Drug Research and Development Guangdong Pharmaceutical University 510006 Guangzhou China
- Guangzhou Key Laboratory of Construction and Application of New Drug Screening Model Systems Guangdong Pharmaceutical University 510006 Guangzhou China
- Key Laboratory of New Drug Discovery and Evaluation of Ordinary Universities of Guangdong Province Guangdong Pharmaceutical University 510006 Guangzhou China
| | - Shang‐Shi Zhang
- Center for Drug Research and Development Guangdong Pharmaceutical University 510006 Guangzhou China
- Guangzhou Key Laboratory of Construction and Application of New Drug Screening Model Systems Guangdong Pharmaceutical University 510006 Guangzhou China
- Key Laboratory of New Drug Discovery and Evaluation of Ordinary Universities of Guangdong Province Guangdong Pharmaceutical University 510006 Guangzhou China
| |
Collapse
|
48
|
Kona CN, Nishii Y, Miura M. Thioether-Directed C4-Selective C–H Acylmethylation of Indoles Using α-Carbonyl Sulfoxonium Ylides. Org Lett 2020; 22:4806-4811. [DOI: 10.1021/acs.orglett.0c01617] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Affiliation(s)
- Chandrababu Naidu Kona
- Department of Applied Chemistry, Graduate School of Engineering, Osaka University, Suita, Osaka 565-0871, Japan
| | - Yuji Nishii
- Frontier Research Base for Global Young Researchers, Graduate School of Engineering, Osaka University, Suita, Osaka 565-0871, Japan
| | - Masahiro Miura
- Department of Applied Chemistry, Graduate School of Engineering, Osaka University, Suita, Osaka 565-0871, Japan
| |
Collapse
|
49
|
Chen X, Wang M, Zhang X, Fan X. A novel synthesis of diversely functionalized 1,2,4-triones through the homo- and cross-coupling reactions of β-keto sulfoxonium ylides. Tetrahedron Lett 2020. [DOI: 10.1016/j.tetlet.2020.151912] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
|
50
|
Hanchate V, Devarajappa R, Prabhu KR. Sulfoxonium-Ylide-Directed C–H Activation and Tandem (4 + 1) Annulation. Org Lett 2020; 22:2878-2882. [DOI: 10.1021/acs.orglett.0c00451] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Affiliation(s)
- Vinayak Hanchate
- Department of Organic Chemistry, Indian Institute of Science, Bangalore 560012, Karnataka, India
| | - Ravi Devarajappa
- Department of Organic Chemistry, Indian Institute of Science, Bangalore 560012, Karnataka, India
| | - Kandikere Ramaiah Prabhu
- Department of Organic Chemistry, Indian Institute of Science, Bangalore 560012, Karnataka, India
| |
Collapse
|