1
|
Luo Y, Zhang Y, Liu M, Wang X, Wan Y, Cao S. Photoredox/Copper-Cocatalyzed Domino Annulation of Oxime Esters and NH 4SCN: Access to Fully Substituted 2-Aminothiazoles. J Org Chem 2024; 89:15187-15196. [PMID: 39370928 DOI: 10.1021/acs.joc.4c01951] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/08/2024]
Abstract
Domino cyclization of oxime esters and NH4SCN facilitated by photoredox and copper cocatalysis has been established. Various structurally diverse fully substituted 2-aminothiazoles have been obtained in good yields at room temperature. It is featured by mild conditions, favorable functional group tolerance, and wide substrate scope. The present reaction is amenable to gram-scale synthesis, which is expected to find potential applications in organic synthesis and drug discovery. A plausible reaction mechanism is proposed.
Collapse
Affiliation(s)
- Yongyan Luo
- Key Laboratory of Theoretical Organic Chemistry and Functional Molecule, Ministry of Education, School of Chemistry and Chemical Engineering, Hunan University of Science and Technology, Xiangtan 411201, China
| | - Yanyan Zhang
- Key Laboratory of Theoretical Organic Chemistry and Functional Molecule, Ministry of Education, School of Chemistry and Chemical Engineering, Hunan University of Science and Technology, Xiangtan 411201, China
| | - Mengting Liu
- Key Laboratory of Theoretical Organic Chemistry and Functional Molecule, Ministry of Education, School of Chemistry and Chemical Engineering, Hunan University of Science and Technology, Xiangtan 411201, China
| | - Xiaozhen Wang
- Key Laboratory of Theoretical Organic Chemistry and Functional Molecule, Ministry of Education, School of Chemistry and Chemical Engineering, Hunan University of Science and Technology, Xiangtan 411201, China
| | - Yichao Wan
- Key Laboratory of Theoretical Organic Chemistry and Functional Molecule, Ministry of Education, School of Chemistry and Chemical Engineering, Hunan University of Science and Technology, Xiangtan 411201, China
| | - Shujun Cao
- Key Laboratory of Theoretical Organic Chemistry and Functional Molecule, Ministry of Education, School of Chemistry and Chemical Engineering, Hunan University of Science and Technology, Xiangtan 411201, China
| |
Collapse
|
2
|
Hu ZJ, Chen W, Lyu X, Zhang HP, Chen SW, Ding XH, Yu CH, Cui Z, Miao CB, Yang HT. Copper-Catalyzed [3 + 2] Annulation of O-Acyl Oximes with 4-Sulfonamidophenols for the Synthesis of 5-Sulfonamidoindoles and 2-Amido-5-sulfonamidobenzofuran-3(2 H)-ones. Org Lett 2024; 26:4229-4234. [PMID: 38738828 DOI: 10.1021/acs.orglett.4c01071] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/14/2024]
Abstract
A copper-catalyzed [3 + 2] annulation of O-acyl oximes with 4-sulfonamidophenols is developed. The advantage of this method lies in the concurrent double activation of two substrates to form nucleophilic enamines and electrophilic quinone monoimines. The substituent on the α-carbon of O-acyl oxime determines two different reaction pathways, thereby leading to the selective generation of 5-sulfonamidoindoles and 2-amido-5-sulfonamidobenzofuran-3(2H)-ones.
Collapse
Affiliation(s)
- Zi-Jun Hu
- School of Petrochemical Engineering, Changzhou University, Jiangsu Key Laboratory of Advanced Catalytic Materials and Technology, Changzhou, Jiangsu 213164, P. R. China
| | - Wei Chen
- Changzhou Siyao Pharmaceuticals Co., Ltd., Changzhou, Jiangsu 213018, P. R. China
| | - Xinyu Lyu
- School of Petrochemical Engineering, Changzhou University, Jiangsu Key Laboratory of Advanced Catalytic Materials and Technology, Changzhou, Jiangsu 213164, P. R. China
| | - Hui-Peng Zhang
- School of Petrochemical Engineering, Changzhou University, Jiangsu Key Laboratory of Advanced Catalytic Materials and Technology, Changzhou, Jiangsu 213164, P. R. China
| | - Si-Wei Chen
- School of Petrochemical Engineering, Changzhou University, Jiangsu Key Laboratory of Advanced Catalytic Materials and Technology, Changzhou, Jiangsu 213164, P. R. China
| | - Xian-Heng Ding
- School of Petrochemical Engineering, Changzhou University, Jiangsu Key Laboratory of Advanced Catalytic Materials and Technology, Changzhou, Jiangsu 213164, P. R. China
| | - Cang-Hai Yu
- School of Petrochemical Engineering, Changzhou University, Jiangsu Key Laboratory of Advanced Catalytic Materials and Technology, Changzhou, Jiangsu 213164, P. R. China
| | - Zhen Cui
- School of Petrochemical Engineering, Changzhou University, Jiangsu Key Laboratory of Advanced Catalytic Materials and Technology, Changzhou, Jiangsu 213164, P. R. China
| | - Chun-Bao Miao
- School of Petrochemical Engineering, Changzhou University, Jiangsu Key Laboratory of Advanced Catalytic Materials and Technology, Changzhou, Jiangsu 213164, P. R. China
| | - Hai-Tao Yang
- School of Petrochemical Engineering, Changzhou University, Jiangsu Key Laboratory of Advanced Catalytic Materials and Technology, Changzhou, Jiangsu 213164, P. R. China
| |
Collapse
|
3
|
Ding H, Shi S, Hou Y, Cui W, Sun R, Lv Y, Yue H, Wei W, Yi D. Visible-Light-Promoted Cascade Coupling of 2-Isocyanonaphthalenes with Elemental Sulfur and Amines to Construct Naphtho[2,1-d]thiazol-2-Amines. Chemistry 2024; 30:e202400719. [PMID: 38462510 DOI: 10.1002/chem.202400719] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Revised: 03/05/2024] [Accepted: 03/05/2024] [Indexed: 03/12/2024]
Abstract
A visible-light-induced strategy has been explored for the synthesis of naphtho[2,1-d]thiazol-2-amines through ortho-C-H sulfuration of 2-isocyanonaphthalenes with elemental sulfur and amines under external photocatalyst-free conditions. This three-component reaction, which utilizes elemental sulfur as the odorless sulfur source, molecular oxygen as the clean oxidant, and visible light as the clean energy source, provides a mild and efficient approach to construct a series of naphtho[2,1-d]thiazol-2-amines. Preliminary mechanistic studies indicated that visible-light-promoted photoexcitation of reaction intermediates consisting of thioureas and DBU might be involved in this transformation.
Collapse
Affiliation(s)
- Hongyu Ding
- Key Laboratory of Catalytic Conversion and Clean Energy in Universities of Shandong Province, Department School of Chemistry and Chemical Engineering, Qufu Normal University, Qufu, 273165, Shandong, P.R.China
| | - Siyu Shi
- Key Laboratory of Catalytic Conversion and Clean Energy in Universities of Shandong Province, Department School of Chemistry and Chemical Engineering, Qufu Normal University, Qufu, 273165, Shandong, P.R.China
| | - Yanan Hou
- Key Laboratory of Catalytic Conversion and Clean Energy in Universities of Shandong Province, Department School of Chemistry and Chemical Engineering, Qufu Normal University, Qufu, 273165, Shandong, P.R.China
| | - Wenxiu Cui
- Key Laboratory of Catalytic Conversion and Clean Energy in Universities of Shandong Province, Department School of Chemistry and Chemical Engineering, Qufu Normal University, Qufu, 273165, Shandong, P.R.China
| | - Rong Sun
- Key Laboratory of Catalytic Conversion and Clean Energy in Universities of Shandong Province, Department School of Chemistry and Chemical Engineering, Qufu Normal University, Qufu, 273165, Shandong, P.R.China
| | - Yufen Lv
- Key Laboratory of Catalytic Conversion and Clean Energy in Universities of Shandong Province, Department School of Chemistry and Chemical Engineering, Qufu Normal University, Qufu, 273165, Shandong, P.R.China
| | - Huilan Yue
- Qinghai Provincial Key Laboratory of Tibetan Medicine Research, CAS Key Laboratory of Tibetan Medicine Research, Northwest Institute of Plateau Biology, Qinghai, 810008, P.R.China
| | - Wei Wei
- Key Laboratory of Catalytic Conversion and Clean Energy in Universities of Shandong Province, Department School of Chemistry and Chemical Engineering, Qufu Normal University, Qufu, 273165, Shandong, P.R.China
- Qinghai Provincial Key Laboratory of Tibetan Medicine Research, CAS Key Laboratory of Tibetan Medicine Research, Northwest Institute of Plateau Biology, Qinghai, 810008, P.R.China
| | - Dong Yi
- Green Pharmaceutical Technology Key Laboratory of Luzhou City, School of Pharmacy, Southwest Medical University, Luzhou, 646000, Sichuan, P. R. China
| |
Collapse
|
4
|
Chen S, Li Z, Hu K, Feng W, Mao G, Xiao F, Deng GJ. Three-component selective synthesis of phenothiazines and bis-phenothiazines under metal-free conditions. Org Biomol Chem 2023; 21:1920-1926. [PMID: 36752306 DOI: 10.1039/d3ob00055a] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
An iodine-containing reagent promoted three-component method for the selective synthesis of phenothiazines and bis-phenothiazines has been developed. The present protocol starts from simple and easily available cyclohexanones, elemental sulfur, and inorganic ammonium salts, selectively producing phenothiazines and bis-phenothiazines in satisfactory yields under aerobic conditions. This method has the advantages of simple and readily available starting materials and metal-free conditions, affording a facile and practical approach for the preparation of phenothiazines and bis-phenothiazines.
Collapse
Affiliation(s)
- Shanping Chen
- Key Laboratory for Green Organic Synthesis and Application of Hunan Province, Key Laboratory of Environmentally Friendly Chemistry and Application of Ministry of Education, College of Chemistry, Xiangtan University, Xiangtan, 411105, P. R. China.
| | - Zhuoqin Li
- Key Laboratory for Green Organic Synthesis and Application of Hunan Province, Key Laboratory of Environmentally Friendly Chemistry and Application of Ministry of Education, College of Chemistry, Xiangtan University, Xiangtan, 411105, P. R. China.
| | - Kai Hu
- Key Laboratory for Green Organic Synthesis and Application of Hunan Province, Key Laboratory of Environmentally Friendly Chemistry and Application of Ministry of Education, College of Chemistry, Xiangtan University, Xiangtan, 411105, P. R. China.
| | - Wei Feng
- Key Laboratory for Green Organic Synthesis and Application of Hunan Province, Key Laboratory of Environmentally Friendly Chemistry and Application of Ministry of Education, College of Chemistry, Xiangtan University, Xiangtan, 411105, P. R. China.
| | - Guojiang Mao
- School of Chemistry and Chemical Engineering, Henan Normal University Xinxiang, 453007, P. R. China
| | - Fuhong Xiao
- Key Laboratory for Green Organic Synthesis and Application of Hunan Province, Key Laboratory of Environmentally Friendly Chemistry and Application of Ministry of Education, College of Chemistry, Xiangtan University, Xiangtan, 411105, P. R. China.
| | - Guo-Jun Deng
- Key Laboratory for Green Organic Synthesis and Application of Hunan Province, Key Laboratory of Environmentally Friendly Chemistry and Application of Ministry of Education, College of Chemistry, Xiangtan University, Xiangtan, 411105, P. R. China.
| |
Collapse
|
5
|
Nguyen HY, Tran TMC, Nguyen VH, Retailleau P, Mac DH, Nguyen TB. Reaction of 1-acetonaphthones with anilines and elemental sulfur: rapid construction of 1-anilinonaphtho[2,1- b]thiophenes. Org Biomol Chem 2023; 21:503-507. [PMID: 36519810 DOI: 10.1039/d2ob01898e] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
1-Anilinonaphtho[2,1-b]thiophenes could be conveniently synthesized from a three-component reaction of 1-acetonaphthones with anilines and elemental sulfur under catalyst-free simple heating conditions.
Collapse
Affiliation(s)
- Hoang Yen Nguyen
- Faculty of Chemistry, VNU University of Science, Vietnam National University in Hanoi, 19 Le Thanh Tong, Hanoi, Viet Nam.
| | - Thi Minh Chau Tran
- Faculty of Chemistry, VNU University of Science, Vietnam National University in Hanoi, 19 Le Thanh Tong, Hanoi, Viet Nam.
| | - Van Ha Nguyen
- Faculty of Chemistry, VNU University of Science, Vietnam National University in Hanoi, 19 Le Thanh Tong, Hanoi, Viet Nam.
| | - Pascal Retailleau
- Institut de Chimie des Substances Naturelles, CNRS UPR 2301, Université Paris-Sud, Université Paris-Saclay, 1, av de la Terrasse, 91198 Gif-sur-Yvette, France.
| | - Dinh Hung Mac
- Faculty of Chemistry, VNU University of Science, Vietnam National University in Hanoi, 19 Le Thanh Tong, Hanoi, Viet Nam.
| | - Thanh Binh Nguyen
- Institut de Chimie des Substances Naturelles, CNRS UPR 2301, Université Paris-Sud, Université Paris-Saclay, 1, av de la Terrasse, 91198 Gif-sur-Yvette, France.
| |
Collapse
|
6
|
Yang G, Yao L, Mao G, Deng GJ, Xiao F. Synthesis of Indenoquinolinones and 2-Substituted Quinolines via [4 + 2] Cycloaddition Reaction. J Org Chem 2022; 87:14523-14535. [PMID: 36261413 DOI: 10.1021/acs.joc.2c01939] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
We have reported a metal-free protocol for the synthesis of indenoquinolinones and 2-substituted quinolines via [4 + 2] cycloaddition reaction using readily available 2-aminobenzaldehydes and ketones as starting materials. Different quinoline derivatives can be selectively synthesized by changing the type of ketones. O2 and dimethyl sulfoxide (DMSO) as co-oxidants play an important role in the synthesis of indenoquinolinones. This condensation/oxidation strategy involves the formation of C-N, C-C, and C-O bonds, with the advantages of high yields and a broad substrate range.
Collapse
Affiliation(s)
- Gang Yang
- Key Laboratory of Environmentally Friendly Chemistry and Application of Ministry of Education, Hunan Province Key Laboratory of Green Organic Synthesis and Application, College of Chemistry, Xiangtan University, Xiangtan 411105, China
| | - Lin Yao
- Key Laboratory of Environmentally Friendly Chemistry and Application of Ministry of Education, Hunan Province Key Laboratory of Green Organic Synthesis and Application, College of Chemistry, Xiangtan University, Xiangtan 411105, China
| | - Guojiang Mao
- School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang 453007, P. R. China
| | - Guo-Jun Deng
- Key Laboratory of Environmentally Friendly Chemistry and Application of Ministry of Education, Hunan Province Key Laboratory of Green Organic Synthesis and Application, College of Chemistry, Xiangtan University, Xiangtan 411105, China
| | - Fuhong Xiao
- Key Laboratory of Environmentally Friendly Chemistry and Application of Ministry of Education, Hunan Province Key Laboratory of Green Organic Synthesis and Application, College of Chemistry, Xiangtan University, Xiangtan 411105, China
| |
Collapse
|
7
|
Ma W, Zhou Y, Wang Y, Li B, Zheng T, Cheng Z, Mei R. Palladium‐Catalyzed Remote δ‐C–H Selenylation of Arylethylamide and Alkenylethylamide Derivatives. Adv Synth Catal 2022. [DOI: 10.1002/adsc.202200691] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
| | - Yunhao Zhou
- Sichuan Industrial Institute of Antibiotics CHINA
| | | | | | | | | | | |
Collapse
|
8
|
Zhao YM, Wang X, Guo ZY, Li H, Zhang JT, Xie MH. Cu-Catalyzed Diarylthiolation of Ynones with Aryl Iodides and Elemental Sulfur: An Access to Tetrasubstituted ( Z)-1,2-Bis(arylthio)alkenes and Benzo[ b][1,4]dithiines. J Org Chem 2022; 87:11796-11804. [PMID: 35993485 DOI: 10.1021/acs.joc.2c01575] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
A copper-catalyzed three-component reaction of ynones, aryl iodides, and elemental sulfur via a syn-addition process is established. The reaction features operational practicality, broad substrate scope, and readily accessible scale-up synthesis by affording a series of (Z)-1,2-bis(arylthio)alkenes in good to excellent yield. Moreover, benzo[b][1,4]dithiines can be also constructed efficiently by using 1,2-diiodobenzene as the coupling partner.
Collapse
Affiliation(s)
- Yi-Ming Zhao
- Key Laboratory of Functional Molecular Solids (Ministry of Education), Anhui Key Laboratory of Molecular Based Materials, College of Chemistry and Materials Science, Anhui Normal University, Wuhu 241002, China
| | - Xu Wang
- Key Laboratory of Functional Molecular Solids (Ministry of Education), Anhui Key Laboratory of Molecular Based Materials, College of Chemistry and Materials Science, Anhui Normal University, Wuhu 241002, China
| | - Zi-Yi Guo
- Key Laboratory of Functional Molecular Solids (Ministry of Education), Anhui Key Laboratory of Molecular Based Materials, College of Chemistry and Materials Science, Anhui Normal University, Wuhu 241002, China
| | - Hang Li
- Key Laboratory of Functional Molecular Solids (Ministry of Education), Anhui Key Laboratory of Molecular Based Materials, College of Chemistry and Materials Science, Anhui Normal University, Wuhu 241002, China
| | - Ji-Tan Zhang
- Key Laboratory of Functional Molecular Solids (Ministry of Education), Anhui Key Laboratory of Molecular Based Materials, College of Chemistry and Materials Science, Anhui Normal University, Wuhu 241002, China
| | - Mei-Hua Xie
- Key Laboratory of Functional Molecular Solids (Ministry of Education), Anhui Key Laboratory of Molecular Based Materials, College of Chemistry and Materials Science, Anhui Normal University, Wuhu 241002, China
| |
Collapse
|
9
|
Cao S, Li H, Teng X, Si H, Chen R, Zhu Y. Access to Fully Substituted Dihydropyrimidines via Dual Copper/Photoredox‐Catalyzed Domino Annulation of Oxime Esters and Imines. Adv Synth Catal 2022. [DOI: 10.1002/adsc.202200736] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
10
|
Cao S, Yuan W, Li Y, Teng X, Si H, Chen R, Zhu Y. Photoredox/copper cocatalyzed domino cyclization of oxime esters with TMSCN: access to antifungal active tetrasubstituted pyrazines. Chem Commun (Camb) 2022; 58:7200-7203. [PMID: 35671164 DOI: 10.1039/d2cc02480b] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
A photoredox/copper cocatalyzed domino cyclization of oxime esters with TMSCN has been developed. A range of structurally novel tetrasubstituted pyrazines have been obtained. This method features high bond-forming efficiency, high step economy, broad substrate scope, and gram-scale synthesis. Moreover, preliminary bioactivity evaluation of pyrazine products shows their promising antifungal activities.
Collapse
Affiliation(s)
- Shujun Cao
- Jiangsu Key Laboratory of Pesticide Science and Department of Chemistry, College of Sciences, Nanjing Agricultural University, Nanjing 210095, P. R. China.
| | - Weidong Yuan
- Jiangsu Key Laboratory of Pesticide Science and Department of Chemistry, College of Sciences, Nanjing Agricultural University, Nanjing 210095, P. R. China.
| | - Yun Li
- Jiangsu Key Laboratory of Pesticide Science and Department of Chemistry, College of Sciences, Nanjing Agricultural University, Nanjing 210095, P. R. China.
| | - Xinjie Teng
- Jiangsu Key Laboratory of Pesticide Science and Department of Chemistry, College of Sciences, Nanjing Agricultural University, Nanjing 210095, P. R. China.
| | - Huaxing Si
- Jiangsu Key Laboratory of Pesticide Science and Department of Chemistry, College of Sciences, Nanjing Agricultural University, Nanjing 210095, P. R. China.
| | - Rongshun Chen
- Jiangsu Key Laboratory of Pesticide Science and Department of Chemistry, College of Sciences, Nanjing Agricultural University, Nanjing 210095, P. R. China.
| | - Yingguang Zhu
- Jiangsu Key Laboratory of Pesticide Science and Department of Chemistry, College of Sciences, Nanjing Agricultural University, Nanjing 210095, P. R. China.
| |
Collapse
|
11
|
Yan H, Xu G, Gu M, Zhang S, Wu Q, Meng J, Zhu N, Fang Z, Duan J, Guo K. Copper-catalyzed [4+2] oxidative annulation of α,β-unsaturated ketoxime acetates with ethyl trifluoropyruvate. Chem Commun (Camb) 2022; 58:6757-6760. [PMID: 35611963 DOI: 10.1039/d2cc01573k] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
A novel route for tandem C-N/C-O formation via copper-catalyzed [4+2] oxidative annulation of α,β-unsaturated ketoxime acetates with ethyl trifluoropyruvate to synthesize valuable trifluoromethyl-containing 2H-1,3-oxazines in moderate to good yields is developed. This procedure represents the first [4+2] oxidative annulation of oxime derivatives with activated CO bonds and provides an alternative route towards functionalized 2H-1,3-oxazines.
Collapse
Affiliation(s)
- Huan Yan
- College of Biotechnology and Pharmaceutical Engineering, State Key Laboratory of Materials-Oriented Chemical Engineering, Nanjing Tech University, 30 Puzhu Rd S, Nanjing, 211816, China.
| | - Gaochen Xu
- College of Biotechnology and Pharmaceutical Engineering, State Key Laboratory of Materials-Oriented Chemical Engineering, Nanjing Tech University, 30 Puzhu Rd S, Nanjing, 211816, China.
| | - Meng Gu
- College of Biotechnology and Pharmaceutical Engineering, State Key Laboratory of Materials-Oriented Chemical Engineering, Nanjing Tech University, 30 Puzhu Rd S, Nanjing, 211816, China.
| | - Sai Zhang
- College of Biotechnology and Pharmaceutical Engineering, State Key Laboratory of Materials-Oriented Chemical Engineering, Nanjing Tech University, 30 Puzhu Rd S, Nanjing, 211816, China.
| | - Qinghuan Wu
- College of Biotechnology and Pharmaceutical Engineering, State Key Laboratory of Materials-Oriented Chemical Engineering, Nanjing Tech University, 30 Puzhu Rd S, Nanjing, 211816, China.
| | - Jingjing Meng
- College of Biotechnology and Pharmaceutical Engineering, State Key Laboratory of Materials-Oriented Chemical Engineering, Nanjing Tech University, 30 Puzhu Rd S, Nanjing, 211816, China.
| | - Ning Zhu
- College of Biotechnology and Pharmaceutical Engineering, State Key Laboratory of Materials-Oriented Chemical Engineering, Nanjing Tech University, 30 Puzhu Rd S, Nanjing, 211816, China.
| | - Zheng Fang
- College of Biotechnology and Pharmaceutical Engineering, State Key Laboratory of Materials-Oriented Chemical Engineering, Nanjing Tech University, 30 Puzhu Rd S, Nanjing, 211816, China.
| | - Jindian Duan
- College of Biotechnology and Pharmaceutical Engineering, State Key Laboratory of Materials-Oriented Chemical Engineering, Nanjing Tech University, 30 Puzhu Rd S, Nanjing, 211816, China.
| | - Kai Guo
- College of Biotechnology and Pharmaceutical Engineering, State Key Laboratory of Materials-Oriented Chemical Engineering, Nanjing Tech University, 30 Puzhu Rd S, Nanjing, 211816, China.
| |
Collapse
|
12
|
Miao CB, Qiang XQ, Xu X, Song XQ, Zhou SQ, Lyu X, Yang HT. Synthesis of Stable N-H Imines with a Benzo[7,8]indolizine Core and Benzo[7,8]indolizino[1,2- c]quinolines via Copper-Catalyzed Annulation of α,β-Unsaturated O-Acyl Ketoximes with Isoquinolinium N-Ylides. Org Lett 2022; 24:3828-3833. [PMID: 35605016 DOI: 10.1021/acs.orglett.2c01386] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
A copper-catalyzed annulation of α,β-unsaturated O-acyl ketoximes with isoquinolinium N-ylides has been developed for the concise synthesis of stable N-H imines with a benzo[7,8]indolizine core. When β-(2-bromoaryl)-α,β-unsaturated O-acyl ketoximes are used as the starting materials, a cascade cyclization occurs to afford the benzo[7,8]indolizino[1,2-c]quinolines.
Collapse
Affiliation(s)
- Chun-Bao Miao
- Jiangsu Key Laboratory of Advanced Catalytic Materials and Technology, Jiangsu Province Key Laboratory of Fine Petrochemical Engineering, School of Petrochemical Engineering, School of Environmental and Safety Engineering, Changzhou University, Changzhou, Jiangsu 213164, P. R. China
| | - Xiao-Qi Qiang
- Jiangsu Key Laboratory of Advanced Catalytic Materials and Technology, Jiangsu Province Key Laboratory of Fine Petrochemical Engineering, School of Petrochemical Engineering, School of Environmental and Safety Engineering, Changzhou University, Changzhou, Jiangsu 213164, P. R. China
| | - Xiaoli Xu
- Jiangsu Key Laboratory of Advanced Catalytic Materials and Technology, Jiangsu Province Key Laboratory of Fine Petrochemical Engineering, School of Petrochemical Engineering, School of Environmental and Safety Engineering, Changzhou University, Changzhou, Jiangsu 213164, P. R. China
| | - Xiao-Qing Song
- Jiangsu Key Laboratory of Advanced Catalytic Materials and Technology, Jiangsu Province Key Laboratory of Fine Petrochemical Engineering, School of Petrochemical Engineering, School of Environmental and Safety Engineering, Changzhou University, Changzhou, Jiangsu 213164, P. R. China
| | - Su-Qing Zhou
- Jiangsu Key Laboratory of Advanced Catalytic Materials and Technology, Jiangsu Province Key Laboratory of Fine Petrochemical Engineering, School of Petrochemical Engineering, School of Environmental and Safety Engineering, Changzhou University, Changzhou, Jiangsu 213164, P. R. China
| | - Xinyu Lyu
- Jiangsu Key Laboratory of Advanced Catalytic Materials and Technology, Jiangsu Province Key Laboratory of Fine Petrochemical Engineering, School of Petrochemical Engineering, School of Environmental and Safety Engineering, Changzhou University, Changzhou, Jiangsu 213164, P. R. China
| | - Hai-Tao Yang
- Jiangsu Key Laboratory of Advanced Catalytic Materials and Technology, Jiangsu Province Key Laboratory of Fine Petrochemical Engineering, School of Petrochemical Engineering, School of Environmental and Safety Engineering, Changzhou University, Changzhou, Jiangsu 213164, P. R. China
| |
Collapse
|
13
|
Wang ZH, Shen LW, Yang P, You Y, Zhao JQ, Yuan WC. Access to 4-Trifluoromethyl Quinolines via Cu-Catalyzed Annulation Reaction of Ketone Oxime Acetates with ortho-Trifluoroacetyl Anilines under Redox-Neutral Conditions. J Org Chem 2022; 87:5804-5816. [PMID: 35475619 DOI: 10.1021/acs.joc.2c00128] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
An efficient Cu-catalyzed annulation reaction of ketone oxime acetates with ortho-trifluoroacetyl anilines has been disclosed. With the developed protocol, a series of 4-trifluoromethyl quinolines were obtained in good to excellent yields (58-99%) under redox-neutral conditions. The protocol also could be extended to ferrocene-based ketone oxime acetates for the construction of ferrocene-substituted fluorine-containing quinolines.
Collapse
Affiliation(s)
- Zhen-Hua Wang
- Innovation Research Center of Chiral Drugs, Institute for Advanced Study, Chengdu University, Chengdu 610106, China
| | - Li-Wen Shen
- Innovation Research Center of Chiral Drugs, Institute for Advanced Study, Chengdu University, Chengdu 610106, China.,National Engineering Research Center of Chiral Drugs, Chengdu Institute of Organic Chemistry, Chinese Academy of Sciences, Chengdu 610041, China
| | - Ping Yang
- Innovation Research Center of Chiral Drugs, Institute for Advanced Study, Chengdu University, Chengdu 610106, China.,National Engineering Research Center of Chiral Drugs, Chengdu Institute of Organic Chemistry, Chinese Academy of Sciences, Chengdu 610041, China.,School of Pharmacy, Zunyi Medical University, Zunyi 563000, China
| | - Yong You
- Innovation Research Center of Chiral Drugs, Institute for Advanced Study, Chengdu University, Chengdu 610106, China
| | - Jian-Qiang Zhao
- Innovation Research Center of Chiral Drugs, Institute for Advanced Study, Chengdu University, Chengdu 610106, China
| | - Wei-Cheng Yuan
- Innovation Research Center of Chiral Drugs, Institute for Advanced Study, Chengdu University, Chengdu 610106, China
| |
Collapse
|
14
|
Qu Z, Tian T, Deng GJ, Huang H. Diverse catalytic systems for nitrogen-heterocycle formation from O-acyl ketoximes. CHINESE CHEM LETT 2022. [DOI: 10.1016/j.cclet.2022.05.079] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
15
|
Yang T, Li H, Nie Z, Su MD, Luo WP, Liu Q, Guo CC. [3+1+1+1] Annulation to the Pyridine Structure in Quinoline Molecules Based on DMSO as a Nonadjacent Dual-Methine Synthon: Simple Synthesis of 3-Arylquinolines from Arylaldehydes, Arylamines, and DMSO. J Org Chem 2022; 87:2797-2808. [DOI: 10.1021/acs.joc.1c02708] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Tonglin Yang
- College of Chemistry and Chemical Engineering, Advanced Catalytic Engineering Research Center of the Ministry of Education, Hunan University, Changsha 410082, China
| | - Hui Li
- College of Chemistry and Chemical Engineering, Advanced Catalytic Engineering Research Center of the Ministry of Education, Hunan University, Changsha 410082, China
| | - Zhiwen Nie
- College of Chemistry and Chemical Engineering, Advanced Catalytic Engineering Research Center of the Ministry of Education, Hunan University, Changsha 410082, China
| | - Miao-dong Su
- College of Chemistry and Chemical Engineering, Advanced Catalytic Engineering Research Center of the Ministry of Education, Hunan University, Changsha 410082, China
| | - Wei-ping Luo
- College of Chemistry and Chemical Engineering, Advanced Catalytic Engineering Research Center of the Ministry of Education, Hunan University, Changsha 410082, China
| | - Qiang Liu
- College of Chemistry and Chemical Engineering, Advanced Catalytic Engineering Research Center of the Ministry of Education, Hunan University, Changsha 410082, China
| | - Can-Cheng Guo
- College of Chemistry and Chemical Engineering, Advanced Catalytic Engineering Research Center of the Ministry of Education, Hunan University, Changsha 410082, China
| |
Collapse
|
16
|
Cao S, Ma C, Teng X, Chen R, Li Y, Yuan W, Zhu Y. Facile synthesis of fully substituted 1 H-imidazoles from oxime esters via dual photoredox/copper catalyzed multicomponent reactions. Org Chem Front 2022. [DOI: 10.1039/d2qo01475k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
A novel and efficient photoredox/copper cocatalyzed domino cyclization of oxime esters, aldehydes, and amines has been achieved, affording a broad range of fully substituted 1H-imidazoles in good yields.
Collapse
Affiliation(s)
- Shujun Cao
- Jiangsu Key Laboratory of Pesticide Science and Department of Chemistry, College of Sciences, Nanjing Agricultural University, Nanjing 210095, China
| | - Chongchong Ma
- Jiangsu Key Laboratory of Pesticide Science and Department of Chemistry, College of Sciences, Nanjing Agricultural University, Nanjing 210095, China
| | - Xinjie Teng
- Jiangsu Key Laboratory of Pesticide Science and Department of Chemistry, College of Sciences, Nanjing Agricultural University, Nanjing 210095, China
| | - Rongshun Chen
- Jiangsu Key Laboratory of Pesticide Science and Department of Chemistry, College of Sciences, Nanjing Agricultural University, Nanjing 210095, China
| | - Yun Li
- Jiangsu Key Laboratory of Pesticide Science and Department of Chemistry, College of Sciences, Nanjing Agricultural University, Nanjing 210095, China
| | - Weidong Yuan
- Jiangsu Key Laboratory of Pesticide Science and Department of Chemistry, College of Sciences, Nanjing Agricultural University, Nanjing 210095, China
| | - Yingguang Zhu
- Jiangsu Key Laboratory of Pesticide Science and Department of Chemistry, College of Sciences, Nanjing Agricultural University, Nanjing 210095, China
| |
Collapse
|
17
|
Xiao L, Liu G, Ren P, Wu T, Lu Y, Kong J. Elemental Sulfur: An Excellent Sulfur-Source for Synthesis of Sulfur-Containing Heterocyclics. CHINESE J ORG CHEM 2022. [DOI: 10.6023/cjoc202109038] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
18
|
Chen L, Xuchen X, Wang F, Yang Y, Deng G, Liu Y, Liang Y. Double C-S bond formation via multiple Csp 3-H bond cleavage: synthesis of 4-hydroxythiazoles from amides and elemental sulfur under metal-free conditions. Org Biomol Chem 2021; 19:10068-10072. [PMID: 34762083 DOI: 10.1039/d1ob01989a] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
A novel and efficient approach for the synthesis of 4-hydroxythiazoles from amides and elemental sulfur has been developed. In the presence of P2O5, DMSO and HMPA, this metal-free protocol proceeds smoothly and tolerates a spectrum of functional groups. Furthermore, this strategy involves the process of double Csp3-S bond formation through the cleavage of multiple Csp3-H bonds for the first time.
Collapse
Affiliation(s)
- Liang Chen
- National & Local Joint Engineering Laboratory for New Petro-chemical Materials and Fine Utilization of Resources, Key Laboratory of Chemical Biology and Traditional Chinese Medicine Research, Ministry of Education, Key Laboratory of the Assembly and Application of Organic Functional Molecules of Hunan Province, Hunan Normal University, Changsha, Hunan 410081, China. .,Huaihua Normal College, Huaihua 418008, China
| | - Xinyu Xuchen
- National & Local Joint Engineering Laboratory for New Petro-chemical Materials and Fine Utilization of Resources, Key Laboratory of Chemical Biology and Traditional Chinese Medicine Research, Ministry of Education, Key Laboratory of the Assembly and Application of Organic Functional Molecules of Hunan Province, Hunan Normal University, Changsha, Hunan 410081, China.
| | - Fei Wang
- National & Local Joint Engineering Laboratory for New Petro-chemical Materials and Fine Utilization of Resources, Key Laboratory of Chemical Biology and Traditional Chinese Medicine Research, Ministry of Education, Key Laboratory of the Assembly and Application of Organic Functional Molecules of Hunan Province, Hunan Normal University, Changsha, Hunan 410081, China.
| | - Yuan Yang
- National & Local Joint Engineering Laboratory for New Petro-chemical Materials and Fine Utilization of Resources, Key Laboratory of Chemical Biology and Traditional Chinese Medicine Research, Ministry of Education, Key Laboratory of the Assembly and Application of Organic Functional Molecules of Hunan Province, Hunan Normal University, Changsha, Hunan 410081, China.
| | - Guobo Deng
- National & Local Joint Engineering Laboratory for New Petro-chemical Materials and Fine Utilization of Resources, Key Laboratory of Chemical Biology and Traditional Chinese Medicine Research, Ministry of Education, Key Laboratory of the Assembly and Application of Organic Functional Molecules of Hunan Province, Hunan Normal University, Changsha, Hunan 410081, China. .,Ministry of Education Key Laboratory of Functional Molecular Solids, Ministry of Education, Anhui Laboratory of Molecule-Based Materials (State Key Laboratory Cultivation Base), College of Chemistry and Materials Science, Anhui Normal University, Wuhu 241002, P. R. China
| | - Yilin Liu
- Institute of Organic Synthesis, College of Chemistry and Materials Engineering, Huaihua University, Huaihua 418008, China.
| | - Yun Liang
- National & Local Joint Engineering Laboratory for New Petro-chemical Materials and Fine Utilization of Resources, Key Laboratory of Chemical Biology and Traditional Chinese Medicine Research, Ministry of Education, Key Laboratory of the Assembly and Application of Organic Functional Molecules of Hunan Province, Hunan Normal University, Changsha, Hunan 410081, China.
| |
Collapse
|
19
|
Zhang ZZ, Sun CL, Zhang XH, Zhang XG. Base-promoted thioannulation of o-alkynyl oxime ethers with sodium sulfide for the general synthesis of isothiocoumarins. Org Biomol Chem 2021; 19:10174-10180. [PMID: 34787150 DOI: 10.1039/d1ob02012a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A general and efficient strategy for the one-pot synthesis of isothiocoumarin-1-ones has been developed via the base-promoted 6-endo-dig thioannulation of o-alkynyl oxime ethers using the cheap and readily available Na2S as the sulfur source. Mechanistic studies disclosed that the reaction proceeded through two C-S bond formations, N-O bond cleavage and the final hydrolysis of imines.
Collapse
Affiliation(s)
- Zhu-Zhu Zhang
- College of chemical and materials engineering, Wenzhou University, Wenzhou 325035, China.
| | - Cai-Ling Sun
- College of chemical and materials engineering, Wenzhou University, Wenzhou 325035, China.
| | - Xiao-Hong Zhang
- College of chemical and materials engineering, Wenzhou University, Wenzhou 325035, China.
| | - Xing-Guo Zhang
- College of chemical and materials engineering, Wenzhou University, Wenzhou 325035, China.
| |
Collapse
|
20
|
Miao CB, Guan HR, Tang Y, Wang K, Ren WL, Lyu X, Yao C, Yang HT. Copper-Catalyzed Bisannulations of Malonate-Tethered O-Acyl Oximes with Pyridine, Pyrazine, Pyridazine, and Quinoline Derivatives for the Construction of Dihydroindolizine-Fused Pyrrolidinones and Analogues. Org Lett 2021; 23:8699-8704. [PMID: 34723547 DOI: 10.1021/acs.orglett.1c03078] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
A copper-catalyzed bisannulation reaction of malonate-tethered O-acyl oximes with pyridine, pyrazine, pyridazine, and quinoline derivatives has been developed for the concise synthesis of structurally novel dihydroindolizine-fused pyrrolidinones and their analogues. The present reaction shows excellent regioselectivity and stereoselectivity. Theoretical calculations reveal that the coordination effect of the carbonyl group in the nucleophilic substrate determines the excellent regioselectivity. Further functionalization of the generated dihydroindolizine-fused pyrrolidinone could be easily realized through substitution, Michael addition, selective aminolysis, and hydrolysis reactions.
Collapse
Affiliation(s)
- Chun-Bao Miao
- Jiangsu Key Laboratory of Advanced Catalytic Materials and Technology, Jiangsu Province Key Laboratory of Fine Petrochemical Engineering, School of Petrochemical Engineering, Changzhou University, Changzhou, Jiangsu 213164, P. R. China
| | - Hong-Rong Guan
- Jiangsu Key Laboratory of Advanced Catalytic Materials and Technology, Jiangsu Province Key Laboratory of Fine Petrochemical Engineering, School of Petrochemical Engineering, Changzhou University, Changzhou, Jiangsu 213164, P. R. China
| | - YiHan Tang
- Jiangsu Key Laboratory of Advanced Catalytic Materials and Technology, Jiangsu Province Key Laboratory of Fine Petrochemical Engineering, School of Petrochemical Engineering, Changzhou University, Changzhou, Jiangsu 213164, P. R. China
| | - Kun Wang
- Jiangsu Key Laboratory of Advanced Catalytic Materials and Technology, Jiangsu Province Key Laboratory of Fine Petrochemical Engineering, School of Petrochemical Engineering, Changzhou University, Changzhou, Jiangsu 213164, P. R. China
| | - Wen-Long Ren
- Jiangsu Key Laboratory of Advanced Catalytic Materials and Technology, Jiangsu Province Key Laboratory of Fine Petrochemical Engineering, School of Petrochemical Engineering, Changzhou University, Changzhou, Jiangsu 213164, P. R. China
| | | | - ChangSheng Yao
- Jiangsu Key Lab of Green Synthetic Chemistry for Functional Materials, School of Chemistry and Materials Science, Jiangsu Normal University, Xuzhou, Jiangsu 221116, P. R. China
| | - Hai-Tao Yang
- Jiangsu Key Laboratory of Advanced Catalytic Materials and Technology, Jiangsu Province Key Laboratory of Fine Petrochemical Engineering, School of Petrochemical Engineering, Changzhou University, Changzhou, Jiangsu 213164, P. R. China
| |
Collapse
|
21
|
Hu QQ, Gao YT, Sun JC, Gao JJ, Mu HX, Li YM, Zheng YN, Yang KR, Zhu YP. Iodine-imine Synergistic Promoted Povarov-Type Multicomponent Reaction for the Synthesis of 2,2'-Biquinolines and Their Application to a Copper/Ligand Catalytic System. Org Lett 2021; 23:9000-9005. [PMID: 34748354 DOI: 10.1021/acs.orglett.1c03546] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
An efficient iodine-imine synergistic promoted Povarov-type multicomponent reaction was reported for the synthesis of a practical 2,2'-biquinoline scaffold. The tandem annulation has reconciled iodination, Kornblum oxidation, and Povarov aromatization, where the methyl group of the methyl azaarenes represents uniquely reactive input in the Povarov reaction. This method has broad substrate scope and mild conditions. Furthermore, these 2,2'-biquinoline derivatives had been directly used as bidentate ligands in metal-catalyzed reactions.
Collapse
Affiliation(s)
- Qi-Qi Hu
- School of Pharmacy, Yantai University, Shandong, Yantai, 264005, P. R. China
| | - Yan-Ting Gao
- School of Pharmacy, Yantai University, Shandong, Yantai, 264005, P. R. China
| | - Jia-Chen Sun
- School of Pharmacy, Yantai University, Shandong, Yantai, 264005, P. R. China
| | - Jing-Jing Gao
- School of Pharmacy, Yantai University, Shandong, Yantai, 264005, P. R. China
| | - Hong-Xiao Mu
- School of Pharmacy, Yantai University, Shandong, Yantai, 264005, P. R. China
| | - Yi-Ming Li
- School of Pharmacy, Yantai University, Shandong, Yantai, 264005, P. R. China
| | - Ya-Nan Zheng
- School of Pharmacy, Yantai University, Shandong, Yantai, 264005, P. R. China
| | - Kai-Rui Yang
- School of Pharmacy, Yantai University, Shandong, Yantai, 264005, P. R. China
| | - Yan-Ping Zhu
- School of Pharmacy, Yantai University, Shandong, Yantai, 264005, P. R. China
| |
Collapse
|
22
|
Zhang J, Tang J, Chen Z, Wu X. Elemental Sulfur and Dimethyl
Sulfoxide‐Promoted
Oxidative Cyclization of Trifluoroacetimidohydrazides with Methylhetarenes for the Synthesis of
3‐Hetaryl
‐5‐trifluoromethyl‐1,2,4‐triazoles. CHINESE J CHEM 2021. [DOI: 10.1002/cjoc.202100579] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- Jiajun Zhang
- Department of Chemistry, Key Laboratory of Surface & Interface Science of Polymer Materials of Zhejiang Province, Zhejiang Sci‐Tech University Hangzhou Zhejiang 310018 China
| | - Jianhua Tang
- Department of Chemistry, Key Laboratory of Surface & Interface Science of Polymer Materials of Zhejiang Province, Zhejiang Sci‐Tech University Hangzhou Zhejiang 310018 China
| | - Zhengkai Chen
- Department of Chemistry, Key Laboratory of Surface & Interface Science of Polymer Materials of Zhejiang Province, Zhejiang Sci‐Tech University Hangzhou Zhejiang 310018 China
| | - Xiao‐Feng Wu
- Dalian National Laboratory for Clean Energy, Dalian Institute of Chemical Physics Chinese Academy of Sciences Dalian Liaoning 116023 China
- Leibniz‐Institut für Katalyse e. V., Albert‐Einstein‐Straβe 29a, 18059 Rostock Germany
| |
Collapse
|
23
|
Xu Z, Chen H, Deng GJ, Huang H. Copper-catalyzed three-component formal [3 + 1 + 2] annulations for the synthesis of 2-aminopyrimidines from O-acyl ketoximes. Org Biomol Chem 2021; 19:8706-8710. [PMID: 34581386 DOI: 10.1039/d1ob01582f] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
A copper-based catalytic system has been developed to enable formal [3 + 1 + 2] annulations of ketoxime acetates, aldehydes, and cyanamides. This protocol offers a new strategy for the synthesis of highly substituted 2-aminopyrimidine compounds, and more importantly, pyrimidines have now been included in the N-heterocycle family constructed using O-acyl ketoximes as N-C-C synthons.
Collapse
Affiliation(s)
- Zhenhua Xu
- Key Laboratory for Green Organic Synthesis and Application of Hunan Province, Key Laboratory of Environmentally Friendly Chemistry and Application of Ministry of Education, College of Chemistry, Xiangtan University, Xiangtan 411105, China.
| | - Hongbiao Chen
- Key Laboratory for Green Organic Synthesis and Application of Hunan Province, Key Laboratory of Environmentally Friendly Chemistry and Application of Ministry of Education, College of Chemistry, Xiangtan University, Xiangtan 411105, China.
| | - Guo-Jun Deng
- Key Laboratory for Green Organic Synthesis and Application of Hunan Province, Key Laboratory of Environmentally Friendly Chemistry and Application of Ministry of Education, College of Chemistry, Xiangtan University, Xiangtan 411105, China.
| | - Huawen Huang
- Key Laboratory for Green Organic Synthesis and Application of Hunan Province, Key Laboratory of Environmentally Friendly Chemistry and Application of Ministry of Education, College of Chemistry, Xiangtan University, Xiangtan 411105, China.
| |
Collapse
|
24
|
Wang D, Xiao F, Zhang F, Deng G. Three‐Component
Synthesis of
2‐Heteroaryl
‐3‐hydroxybenzo[
b
]‐thiophenes under
Transition‐Metal‐Free
Conditions. CHINESE J CHEM 2021. [DOI: 10.1002/cjoc.202100238] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Affiliation(s)
- Dahan Wang
- Key Laboratory for Green Organic Synthesis and Application of Hunan Province, Key Laboratory of Environmentally Friendly Chemistry and Application of Ministry of Education, College of Chemistry Xiangtan University Xiangtan Hunan 411105 China
| | - Fuhong Xiao
- Key Laboratory for Green Organic Synthesis and Application of Hunan Province, Key Laboratory of Environmentally Friendly Chemistry and Application of Ministry of Education, College of Chemistry Xiangtan University Xiangtan Hunan 411105 China
| | - Feng Zhang
- Key Laboratory for Green Organic Synthesis and Application of Hunan Province, Key Laboratory of Environmentally Friendly Chemistry and Application of Ministry of Education, College of Chemistry Xiangtan University Xiangtan Hunan 411105 China
| | - Guo‐Jun Deng
- Key Laboratory for Green Organic Synthesis and Application of Hunan Province, Key Laboratory of Environmentally Friendly Chemistry and Application of Ministry of Education, College of Chemistry Xiangtan University Xiangtan Hunan 411105 China
- Guangdong Provincial Key Laboratory of Luminescence from Molecular Aggregates, South China University of Technology Guangzhou Guangdong 510640 China
| |
Collapse
|
25
|
Xia Y, Huang H, Hu W, Deng GJ. NH 4I-promoted oxidative formation of benzothiazoles and thiazoles from arylacetic acids and phenylalanines with elemental sulfur. Org Biomol Chem 2021; 19:5108-5113. [PMID: 34009226 DOI: 10.1039/d1ob00671a] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
A NH4I/K3PO4-based catalytic system has been established to enable oxidative formation of thiazole compounds from arylacetic acids and phenylalanines with elemental sulfur. While the three-component reaction of anilines or β-naphthylamines with arylacetic acids and elemental sulfur affords benzo[2,1-d]thiazoles and naphtho[2,1-d]thiazoles, the annulation of phenylalanines with elemental sulfur produces 2-benzyl and 2-benzoylthiazoles. This work well complements previous three-component annulations of benzothiazoles from other coupling partners.
Collapse
Affiliation(s)
- Yujia Xia
- Key Laboratory for Green Organic Synthesis and Application of Hunan Province, Key Laboratory of Environmentally Friendly Chemistry and Application of Ministry of Education, College of Chemistry, Xiangtan University, Xiangtan 411105, China.
| | - Huawen Huang
- Key Laboratory for Green Organic Synthesis and Application of Hunan Province, Key Laboratory of Environmentally Friendly Chemistry and Application of Ministry of Education, College of Chemistry, Xiangtan University, Xiangtan 411105, China.
| | - Wei Hu
- Key Laboratory for Green Organic Synthesis and Application of Hunan Province, Key Laboratory of Environmentally Friendly Chemistry and Application of Ministry of Education, College of Chemistry, Xiangtan University, Xiangtan 411105, China.
| | - Guo-Jun Deng
- Key Laboratory for Green Organic Synthesis and Application of Hunan Province, Key Laboratory of Environmentally Friendly Chemistry and Application of Ministry of Education, College of Chemistry, Xiangtan University, Xiangtan 411105, China.
| |
Collapse
|
26
|
Singh D, Chowdhury SR, Pramanik S, Maity S. Molecular iodine enabled generation of iminyl radicals from oximes: A facile route to imidazo[1,2-a]pyridines and its regioselective C-3 sulfenylated products from simple pyridines. Tetrahedron 2021. [DOI: 10.1016/j.tet.2021.132125] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
27
|
Xu Z, Xian N, Chen H, Deng G, Huang H. Cu‐Catalyzed
Cascade Cyclization of Ketoxime Acetates and Alkynals Enabling Synthesis of Acylpyrroles. CHINESE J CHEM 2021. [DOI: 10.1002/cjoc.202000660] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Affiliation(s)
- Zhenhua Xu
- Key Laboratory for Green Organic Synthesis and Application of Hunan Province, Key Laboratory of Environmentally Friendly Chemistry and Application of Ministry of Education, College of Chemistry, Xiangtan University Xiangtan Hunan 411105 China
| | - Ning Xian
- Key Laboratory for Green Organic Synthesis and Application of Hunan Province, Key Laboratory of Environmentally Friendly Chemistry and Application of Ministry of Education, College of Chemistry, Xiangtan University Xiangtan Hunan 411105 China
| | - Hongbiao Chen
- Key Laboratory for Green Organic Synthesis and Application of Hunan Province, Key Laboratory of Environmentally Friendly Chemistry and Application of Ministry of Education, College of Chemistry, Xiangtan University Xiangtan Hunan 411105 China
| | - Guo‐Jun Deng
- Key Laboratory for Green Organic Synthesis and Application of Hunan Province, Key Laboratory of Environmentally Friendly Chemistry and Application of Ministry of Education, College of Chemistry, Xiangtan University Xiangtan Hunan 411105 China
| | - Huawen Huang
- Key Laboratory for Green Organic Synthesis and Application of Hunan Province, Key Laboratory of Environmentally Friendly Chemistry and Application of Ministry of Education, College of Chemistry, Xiangtan University Xiangtan Hunan 411105 China
| |
Collapse
|
28
|
Mei R, Xiong F, Yang C, Zhao J. Salicylic Acid‐Promoted Three‐Component Annulation of Benzimidazoles, Aryl Nitroalkenes and Elemental Sulfur. Adv Synth Catal 2021. [DOI: 10.1002/adsc.202001564] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Ruhuai Mei
- Key Laboratory of Coarse Cereal Processing Ministry of Agriculture and Rural Affairs Chengdu University Chengdu 610106 People's Republic of China
| | - Feng Xiong
- Key Laboratory of Coarse Cereal Processing Ministry of Agriculture and Rural Affairs Chengdu University Chengdu 610106 People's Republic of China
| | - Chenrui Yang
- Key Laboratory of Coarse Cereal Processing Ministry of Agriculture and Rural Affairs Chengdu University Chengdu 610106 People's Republic of China
| | - Jinwu Zhao
- School of Pharmacy Guangdong Medical University Dongguan 523808 People's Republic of China
| |
Collapse
|
29
|
Xu Z, Chen H, Deng GJ, Huang H. Copper-Catalyzed Formal [3 + 3] Annulations of Arylketoximes and o-Fluorobenzaldehydes: An Entry to Quinoline Compounds. Org Lett 2021; 23:936-942. [DOI: 10.1021/acs.orglett.0c04138] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- Zhenhua Xu
- Key Laboratory for Green Organic Synthesis and Application of Hunan Province, Key Laboratory of Environmentally Friendly Chemistry and Application of Ministry of Education, College of Chemistry, Xiangtan University, Xiangtan 411105, China
| | - Hongbiao Chen
- Key Laboratory for Green Organic Synthesis and Application of Hunan Province, Key Laboratory of Environmentally Friendly Chemistry and Application of Ministry of Education, College of Chemistry, Xiangtan University, Xiangtan 411105, China
| | - Guo-Jun Deng
- Key Laboratory for Green Organic Synthesis and Application of Hunan Province, Key Laboratory of Environmentally Friendly Chemistry and Application of Ministry of Education, College of Chemistry, Xiangtan University, Xiangtan 411105, China
| | - Huawen Huang
- Key Laboratory for Green Organic Synthesis and Application of Hunan Province, Key Laboratory of Environmentally Friendly Chemistry and Application of Ministry of Education, College of Chemistry, Xiangtan University, Xiangtan 411105, China
| |
Collapse
|
30
|
Zhou L, Chen Z, Li J, Li B. Synthesis of dithienofurans via cascade copper catalysed dual C–S coupling and ring closure reactions under mild conditions. RSC Adv 2021; 11:34071-34078. [PMID: 35497301 PMCID: PMC9042320 DOI: 10.1039/d1ra06881d] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2021] [Accepted: 10/12/2021] [Indexed: 01/23/2023] Open
Abstract
We have developed a mild catalytic approach for the synthesis of new dithienofuran compounds via cascade copper catalysed dual C–S coupling and subsequent ring closure reactions. This strategy shows broad substrate scope.
Collapse
Affiliation(s)
- Lu Zhou
- School of Chemical Sciences, University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Zhaopeng Chen
- School of Chemical Sciences, University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Jiahui Li
- School of Chemical Sciences, University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Baolin Li
- School of Chemical Sciences, University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| |
Collapse
|
31
|
Fairoosa J, Neetha M, Anilkumar G. Recent developments and perspectives in the copper-catalyzed multicomponent synthesis of heterocycles. RSC Adv 2021; 11:3452-3469. [PMID: 35424324 PMCID: PMC8694354 DOI: 10.1039/d0ra10472h] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2020] [Accepted: 01/08/2021] [Indexed: 12/11/2022] Open
Abstract
Heterocyclic compounds have become an inevitable part of organic chemistry due to their ubiquitous presence in bioactive compounds. Copper-catalyzed multicomponent synthesis of heterocycles has developed as the most convenient and facile synthetic route towards complex heterocyclic motifs. In this review, we discuss the advancements in the field of copper-catalyzed multicomponent reactions for the preparation of heterocycles since 2018. Heterocycles are abundant in several pharmaceutical and naturally occurring compounds. Copper-catalyzed multicomponent reactions are a convenient method for easy access to heterocycles. In this review, we focus on the advancement in this field for the past two years.![]()
Collapse
Affiliation(s)
- Jaleel Fairoosa
- School of Chemical Sciences
- Mahatma Gandhi University
- Kottayam
- India
| | - Mohan Neetha
- School of Chemical Sciences
- Mahatma Gandhi University
- Kottayam
- India
| | - Gopinathan Anilkumar
- School of Chemical Sciences
- Mahatma Gandhi University
- Kottayam
- India
- Advanced Molecular Materials Research Centre (AMMRC)
| |
Collapse
|
32
|
Duan J, Mao Y, Xian A, Rong B, Xu G, Li Z, Zhao L, Zhu N, Guo K. Copper-catalyzed regioselective [3+2] annulation of malonate-tethered acyl oximes with isatins. Chem Commun (Camb) 2021; 57:3379-3382. [DOI: 10.1039/d0cc07995b] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
A copper-catalyzed regioselective [3+2] annulation of malonate-tethered acyl oximes with isatins was developed, affording valuable 2,3-dihydrooxazole-spirooxindoles in moderate to good yields with excellent diastereoselectivity.
Collapse
Affiliation(s)
- Jindian Duan
- College of Biotechnology and Pharmaceutical Engineering
- State Key Laboratory of Materials-Oriented Chemical Engineering
- Nanjing Tech University
- Nanjing
- China
| | - Yiyang Mao
- College of Biotechnology and Pharmaceutical Engineering
- State Key Laboratory of Materials-Oriented Chemical Engineering
- Nanjing Tech University
- Nanjing
- China
| | - Anmei Xian
- Institute of Advanced Synthesis
- School of Chemistry and Molecular Engineering
- Nanjing Tech University
- Nanjing
- China
| | - Binsen Rong
- College of Biotechnology and Pharmaceutical Engineering
- State Key Laboratory of Materials-Oriented Chemical Engineering
- Nanjing Tech University
- Nanjing
- China
| | - Gaochen Xu
- College of Biotechnology and Pharmaceutical Engineering
- State Key Laboratory of Materials-Oriented Chemical Engineering
- Nanjing Tech University
- Nanjing
- China
| | - Zhenjiang Li
- College of Biotechnology and Pharmaceutical Engineering
- State Key Laboratory of Materials-Oriented Chemical Engineering
- Nanjing Tech University
- Nanjing
- China
| | - Lili Zhao
- Institute of Advanced Synthesis
- School of Chemistry and Molecular Engineering
- Nanjing Tech University
- Nanjing
- China
| | - Ning Zhu
- College of Biotechnology and Pharmaceutical Engineering
- State Key Laboratory of Materials-Oriented Chemical Engineering
- Nanjing Tech University
- Nanjing
- China
| | - Kai Guo
- College of Biotechnology and Pharmaceutical Engineering
- State Key Laboratory of Materials-Oriented Chemical Engineering
- Nanjing Tech University
- Nanjing
- China
| |
Collapse
|
33
|
He M, Gu L, Tan Y, Wang Y, Wang Y, Zhang C, Ma W. Palladium‐Catalyzed Distal C−H Selenylation of 2‐Aryl Acetamides with Diselenides and Selenyl Chlorides. Adv Synth Catal 2020. [DOI: 10.1002/adsc.202000948] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Affiliation(s)
- Meicui He
- Antibiotics Research and Re-evaluation Key Laboratory of Sichuan Province, Sichuan Industrial Institute of Antibiotics Chengdu University People's Republic of China 610052 city is missing
| | - Linghui Gu
- Antibiotics Research and Re-evaluation Key Laboratory of Sichuan Province, Sichuan Industrial Institute of Antibiotics Chengdu University People's Republic of China 610052 city is missing
| | - Yuqiang Tan
- Antibiotics Research and Re-evaluation Key Laboratory of Sichuan Province, Sichuan Industrial Institute of Antibiotics Chengdu University People's Republic of China 610052 city is missing
| | - Yang Wang
- Antibiotics Research and Re-evaluation Key Laboratory of Sichuan Province, Sichuan Industrial Institute of Antibiotics Chengdu University People's Republic of China 610052 city is missing
| | - Yuchi Wang
- Antibiotics Research and Re-evaluation Key Laboratory of Sichuan Province, Sichuan Industrial Institute of Antibiotics Chengdu University People's Republic of China 610052 city is missing
| | - Chunran Zhang
- Antibiotics Research and Re-evaluation Key Laboratory of Sichuan Province, Sichuan Industrial Institute of Antibiotics Chengdu University People's Republic of China 610052 city is missing
| | - Wenbo Ma
- Antibiotics Research and Re-evaluation Key Laboratory of Sichuan Province, Sichuan Industrial Institute of Antibiotics Chengdu University People's Republic of China 610052 city is missing
| |
Collapse
|
34
|
Liu T, Xu F, Liu X, Huang Z, Long L, Xu G, Xiao H, Chen Z. Switching the Regioselectivity Access to Pyrroles and Isoquinolines from Ketoxime Acetates and Ynals. ACS OMEGA 2020; 5:31473-31484. [PMID: 33324860 PMCID: PMC7726942 DOI: 10.1021/acsomega.0c05272] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/28/2020] [Accepted: 11/12/2020] [Indexed: 05/28/2023]
Abstract
A novel formal [3+2] and [4+2] annulation of ketoxime acetates and ynals for the synthesis of pyrroles and isoquinolines has been developed. By simply switching the catalyst and solvent, the reaction proceeds via two pathways. The reactions are achieved under mild conditions with broad substrate scope and excellent regioselectivity.
Collapse
|
35
|
Gui QW, Teng F, Ying SN, Liu Y, Guo T, Tang JX, Chen JY, Cao Z, He WM. Ultrasound-assisted tandem synthesis of tri- and tetra-substituted pyrrole-2-carbonitriles from alkenes, TMSCN and N,N-disubstituted formamides. CHINESE CHEM LETT 2020. [DOI: 10.1016/j.cclet.2020.07.017] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
36
|
Deng GJ, Huang H, Liu S. Recent Advances in Sulfur-Containing Heterocycle Formation via Direct C–H Sulfuration with Elemental Sulfur. Synlett 2020. [DOI: 10.1055/s-0040-1707217] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
The synthesis of sulfur heterocycles via the construction of C–S bonds has received considerable attention due to their biological value and extensive pharmaceutical application. While diverse sulfurating agents have been developed over the past few decades, in this regard, elemental sulfur, with advantages of low toxicity, odorless nature and chemical stability, has great potential for the construction of diverse sulfur heterocycles through its direct incorporation into the target molecules in a concise way. Direct functionalization of inert C–H bonds can shorten the number of reaction steps and minimize the amount of waste formed. Hence, heteroannulations via direct C–H sulfuration is considered to be an attractive strategy for the synthesis of sulfur heterocycles. In the last few years, a vast array of concise systems have been reported for the synthesis of some valuable sulfur heterocycles such as thiophenes, thienoindoles, thienothiazoles, thiazoles, benzothiazoles, and thiadiazoles through direct C–H sulfuration/annulations with elemental sulfur. These are discussed in detail in this review.1 Introduction2 Thiophenes3 Thienoindoles4 Thienothiazoles5 Other Fused Thiophenes6 Thiazoles7 Benzothiazoles8 Thiadiazoles9 Others10 Summary and Outlook
Collapse
Affiliation(s)
- Guo-Jun Deng
- Key Laboratory for Green Organic Synthesis and Application of Hunan Province, Key Laboratory of Environmentally Friendly Chemistry and Application of Ministry of Education, College of Chemistry, Xiangtan University
| | - Huawen Huang
- Key Laboratory for Green Organic Synthesis and Application of Hunan Province, Key Laboratory of Environmentally Friendly Chemistry and Application of Ministry of Education, College of Chemistry, Xiangtan University
| | - Saiwen Liu
- College of Materials and Chemical Engineering, Hunan City University
- Key Laboratory for Green Organic Synthesis and Application of Hunan Province, Key Laboratory of Environmentally Friendly Chemistry and Application of Ministry of Education, College of Chemistry, Xiangtan University
| |
Collapse
|
37
|
Tran LT, Ho TH, Phan NTA, Nguyen TT, Phan NTS. Sulfur-mediated annulation of 1,2-phenylenediamines towards benzofuro- and benzothieno-quinoxalines. Org Biomol Chem 2020; 18:5652-5659. [PMID: 32648870 DOI: 10.1039/d0ob00887g] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
We report a method for condensation between ortho-phenylenediamines and ortho-hydroxyacetophenones to afford benzofuroquinoxalines. The reactions proceeded in the presence of an elemental sulfur mediator, DABCO base, and DMSO solvent. Functionalities such as nitrile, ester, and halogen groups were compatible. The conditions could be applicable for the synthesis of benzothienoquinoxalines from ortho-chloroacetophenones.
Collapse
Affiliation(s)
- Loan T Tran
- Faculty of Chemical Engineering, Ho Chi Minh City University of Technology (HCMUT), 268 Ly Thuong Kiet, District 10, Ho Chi Minh City, Vietnam.
| | | | | | | | | |
Collapse
|
38
|
Meng H, Xu Z, Qu Z, Huang H, Deng GJ. Copper(0)/PPh3-Mediated Bisheteroannulations of o-Nitroalkynes with Methylketoximes Accessing Pyrazo-Fused Pseudoindoxyls. Org Lett 2020; 22:6117-6121. [DOI: 10.1021/acs.orglett.0c02180] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Huanxin Meng
- Key Laboratory for Green Organic Synthesis and Application of Hunan Province, Key Laboratory of Environmentally Friendly Chemistry and Application of Ministry of Education, College of Chemistry, Xiangtan University, Xiangtan 411105, China
| | - Zhenhua Xu
- Key Laboratory for Green Organic Synthesis and Application of Hunan Province, Key Laboratory of Environmentally Friendly Chemistry and Application of Ministry of Education, College of Chemistry, Xiangtan University, Xiangtan 411105, China
| | - Zhonghua Qu
- Key Laboratory for Green Organic Synthesis and Application of Hunan Province, Key Laboratory of Environmentally Friendly Chemistry and Application of Ministry of Education, College of Chemistry, Xiangtan University, Xiangtan 411105, China
| | - Huawen Huang
- Key Laboratory for Green Organic Synthesis and Application of Hunan Province, Key Laboratory of Environmentally Friendly Chemistry and Application of Ministry of Education, College of Chemistry, Xiangtan University, Xiangtan 411105, China
| | - Guo-Jun Deng
- Key Laboratory for Green Organic Synthesis and Application of Hunan Province, Key Laboratory of Environmentally Friendly Chemistry and Application of Ministry of Education, College of Chemistry, Xiangtan University, Xiangtan 411105, China
| |
Collapse
|
39
|
Nguyen TB. Recent Advances in the Synthesis of Heterocycles via Reactions Involving Elemental Sulfur. Adv Synth Catal 2020. [DOI: 10.1002/adsc.202000535] [Citation(s) in RCA: 63] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- Thanh Binh Nguyen
- Institut de Chimie des Substances NaturellesCNRS UPR 2301Université Paris-SudUniversité Paris-Saclay 1, avenue de la Terrasse Gif-sur-Yvette 91198 France
| |
Collapse
|
40
|
Wang Z, Li C, Huang H, Deng GJ. Elemental Sulfur-Promoted Aerobic Dehydrogenative Aromatization of Cyclohexanones with Amines. J Org Chem 2020; 85:9415-9423. [DOI: 10.1021/acs.joc.0c01122] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Affiliation(s)
- Zhen Wang
- Key Laboratory for Green Organic Synthesis and Application of Hunan Province, Key Laboratory of Environmentally Friendly Chemistry and Application of Ministry of Education, College of Chemistry, Xiangtan University, Xiangtan 411105, China
| | - Cheng Li
- Key Laboratory for Green Organic Synthesis and Application of Hunan Province, Key Laboratory of Environmentally Friendly Chemistry and Application of Ministry of Education, College of Chemistry, Xiangtan University, Xiangtan 411105, China
| | - Huawen Huang
- Key Laboratory for Green Organic Synthesis and Application of Hunan Province, Key Laboratory of Environmentally Friendly Chemistry and Application of Ministry of Education, College of Chemistry, Xiangtan University, Xiangtan 411105, China
| | - Guo-Jun Deng
- Key Laboratory for Green Organic Synthesis and Application of Hunan Province, Key Laboratory of Environmentally Friendly Chemistry and Application of Ministry of Education, College of Chemistry, Xiangtan University, Xiangtan 411105, China
| |
Collapse
|
41
|
Chen Q, Xie R, Jia H, Sun J, Lu G, Jiang H, Zhang M. Access to Phenothiazine Derivatives via Iodide-Mediated Oxidative Three-Component Annulation Reaction. J Org Chem 2020; 85:5629-5637. [PMID: 32203658 DOI: 10.1021/acs.joc.0c00562] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Herein, a new iodide-mediated three-component annulation reaction of secondary anilines, cyclohexanones, and elemental sulfur is demonstrated, which allows access to various phenothiazines with the merits of formation of multiple chemical bonds in one single operation, high step and atom efficiency, readily available feedstocks and catalyst system, and good substrate and functional group compatibility. The developed chemistry capable of constructing novel phenothiazines with structural diversity offers a significant basis for further applications.
Collapse
Affiliation(s)
- Qinghua Chen
- Key Lab of Functional Molecular Engineering of Guangdong Province, School of Chemistry and Chemical Engineering, South China University of Technology, Wushan Road 381, Guangzhou 510641, P.R. China
| | - Rong Xie
- Key Lab of Functional Molecular Engineering of Guangdong Province, School of Chemistry and Chemical Engineering, South China University of Technology, Wushan Road 381, Guangzhou 510641, P.R. China
| | - Huanhuan Jia
- Key Lab of Functional Molecular Engineering of Guangdong Province, School of Chemistry and Chemical Engineering, South China University of Technology, Wushan Road 381, Guangzhou 510641, P.R. China
| | - Jialu Sun
- Key Lab of Functional Molecular Engineering of Guangdong Province, School of Chemistry and Chemical Engineering, South China University of Technology, Wushan Road 381, Guangzhou 510641, P.R. China
| | - Guangpeng Lu
- Key Lab of Functional Molecular Engineering of Guangdong Province, School of Chemistry and Chemical Engineering, South China University of Technology, Wushan Road 381, Guangzhou 510641, P.R. China
| | - Huanfeng Jiang
- Key Lab of Functional Molecular Engineering of Guangdong Province, School of Chemistry and Chemical Engineering, South China University of Technology, Wushan Road 381, Guangzhou 510641, P.R. China
| | - Min Zhang
- Key Lab of Functional Molecular Engineering of Guangdong Province, School of Chemistry and Chemical Engineering, South China University of Technology, Wushan Road 381, Guangzhou 510641, P.R. China
| |
Collapse
|
42
|
Liu C, Li Z, Weng Z, Fang X, Zhao F, Tang K, Chen J, Ma W. Transition‐Metal‐Free Selective C(sp
3
)−H Thiolation of Arylacetamides with Substituted Benzenethiols, Aryl Sulfenylchlorides and Diaryl Disulfides. ASIAN J ORG CHEM 2020. [DOI: 10.1002/ajoc.202000083] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Affiliation(s)
- Changying Liu
- Antibiotics Research and Re-evaluation Key Laboratory of Sichuan Province Sichuan Industrial Institute of AntibioticsChengdu University Huaguan Road. 168 610052 Chengdu P. R. China
| | - Zheyu Li
- Antibiotics Research and Re-evaluation Key Laboratory of Sichuan Province Sichuan Industrial Institute of AntibioticsChengdu University Huaguan Road. 168 610052 Chengdu P. R. China
| | - Zhengyun Weng
- Antibiotics Research and Re-evaluation Key Laboratory of Sichuan Province Sichuan Industrial Institute of AntibioticsChengdu University Huaguan Road. 168 610052 Chengdu P. R. China
| | - Xinyue Fang
- Antibiotics Research and Re-evaluation Key Laboratory of Sichuan Province Sichuan Industrial Institute of AntibioticsChengdu University Huaguan Road. 168 610052 Chengdu P. R. China
| | - Fei Zhao
- Antibiotics Research and Re-evaluation Key Laboratory of Sichuan Province Sichuan Industrial Institute of AntibioticsChengdu University Huaguan Road. 168 610052 Chengdu P. R. China
| | - Kehui Tang
- Antibiotics Research and Re-evaluation Key Laboratory of Sichuan Province Sichuan Industrial Institute of AntibioticsChengdu University Huaguan Road. 168 610052 Chengdu P. R. China
| | - Jianyang Chen
- College of Chemistry and Environmental EngineeringChongqing University of Arts and Sciences No.319 Honghe Avenue, Yongchuan Chongqing P. R. China
| | - Wenbo Ma
- Antibiotics Research and Re-evaluation Key Laboratory of Sichuan Province Sichuan Industrial Institute of AntibioticsChengdu University Huaguan Road. 168 610052 Chengdu P. R. China
| |
Collapse
|
43
|
Pham PH, Nguyen KX, Nguyen NP, Pham HTB, Nguyen TT, Phan NTS. 2‐Benzoyl Thienothiazoles from Annulation of C−H Bonds in Acetophenone Oximes. ASIAN J ORG CHEM 2020. [DOI: 10.1002/ajoc.202000046] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Affiliation(s)
- Phuc H. Pham
- Faculty of Chemical EngineeringHo Chi Minh City University of Technology (HCMUT) 268 Ly Thuong Kiet, District 10 Ho Chi Minh City Vietnam
- Vietnam National University Ho Chi Minh City Vietnam
| | - Khang X. Nguyen
- Faculty of Chemical EngineeringHo Chi Minh City University of Technology (HCMUT) 268 Ly Thuong Kiet, District 10 Ho Chi Minh City Vietnam
- Vietnam National University Ho Chi Minh City Vietnam
| | - Ninh P. Nguyen
- Faculty of Chemical EngineeringHo Chi Minh City University of Technology (HCMUT) 268 Ly Thuong Kiet, District 10 Ho Chi Minh City Vietnam
- Vietnam National University Ho Chi Minh City Vietnam
| | - Hoai T. B. Pham
- Faculty of Chemical EngineeringHo Chi Minh City University of Technology (HCMUT) 268 Ly Thuong Kiet, District 10 Ho Chi Minh City Vietnam
- Vietnam National University Ho Chi Minh City Vietnam
- Department of ChemistryUniversity of Colorado Denver Denver CO 80204 USA
| | - Tung T. Nguyen
- Faculty of Chemical EngineeringHo Chi Minh City University of Technology (HCMUT) 268 Ly Thuong Kiet, District 10 Ho Chi Minh City Vietnam
- Vietnam National University Ho Chi Minh City Vietnam
| | - Nam T. S. Phan
- Faculty of Chemical EngineeringHo Chi Minh City University of Technology (HCMUT) 268 Ly Thuong Kiet, District 10 Ho Chi Minh City Vietnam
- Vietnam National University Ho Chi Minh City Vietnam
| |
Collapse
|
44
|
Jafarpour F, Rajai-Daryasarei S, Gohari MH. Cascade cyclization versus chemoselective reduction: a solvent-controlled product divergence. Org Chem Front 2020. [DOI: 10.1039/d0qo00876a] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
A convenient controllable cascade cyclization and partial reduction of enones for the divergent construction of two types of valuable compounds including polysubstituted thiophenes and saturated ketones are developed.
Collapse
Affiliation(s)
- Farnaz Jafarpour
- School of Chemistry
- College of Science
- University of Tehran
- 14155-6455 Tehran
- Iran
| | | | | |
Collapse
|
45
|
Jiang J, Tuo X, Fu Z, Huang H, Deng GJ. Three-component synthesis of 1,4-benzothiazines via iodide-catalyzed aerobic C–H sulfuration with elemental sulfur. Org Biomol Chem 2020; 18:3234-3238. [DOI: 10.1039/d0ob00074d] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Five to Six: Beyond the well-established thiazole formation from elemental sulfur, this method provides the first access to the corresponding six-membered N,S-heterocyclic products via direct functionalization of multiple C–H bonds.
Collapse
Affiliation(s)
- Jingjing Jiang
- Key Laboratory for Green Organic Synthesis and Application of Hunan Province
- Key Laboratory of Environmentally Friendly Chemistry and Application of Ministry of Education
- College of Chemistry
- Xiangtan University
- Xiangtan 411105
| | - Xiaolong Tuo
- Key Laboratory for Green Organic Synthesis and Application of Hunan Province
- Key Laboratory of Environmentally Friendly Chemistry and Application of Ministry of Education
- College of Chemistry
- Xiangtan University
- Xiangtan 411105
| | - Zhuquan Fu
- Key Laboratory for Green Organic Synthesis and Application of Hunan Province
- Key Laboratory of Environmentally Friendly Chemistry and Application of Ministry of Education
- College of Chemistry
- Xiangtan University
- Xiangtan 411105
| | - Huawen Huang
- Key Laboratory for Green Organic Synthesis and Application of Hunan Province
- Key Laboratory of Environmentally Friendly Chemistry and Application of Ministry of Education
- College of Chemistry
- Xiangtan University
- Xiangtan 411105
| | - Guo-Jun Deng
- Key Laboratory for Green Organic Synthesis and Application of Hunan Province
- Key Laboratory of Environmentally Friendly Chemistry and Application of Ministry of Education
- College of Chemistry
- Xiangtan University
- Xiangtan 411105
| |
Collapse
|
46
|
Yu Z, Zhang Y, Tang J, Zhang L, Liu Q, Li Q, Gao G, You J. Ir-Catalyzed Cascade C–H Fusion of Aldoxime Ethers and Heteroarenes: Scope and Mechanisms. ACS Catal 2019. [DOI: 10.1021/acscatal.9b04274] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Zhiqian Yu
- Key Laboratory of Green Chemistry and Technology of Ministry of Education, College of Chemistry, Sichuan University, 29 Wangjiang Road, Chengdu 610064, People’s Republic of China
| | - Yan Zhang
- Key Laboratory of Green Chemistry and Technology of Ministry of Education, College of Chemistry, Sichuan University, 29 Wangjiang Road, Chengdu 610064, People’s Republic of China
| | - Junbin Tang
- Key Laboratory of Green Chemistry and Technology of Ministry of Education, College of Chemistry, Sichuan University, 29 Wangjiang Road, Chengdu 610064, People’s Republic of China
| | - Luoqiang Zhang
- Key Laboratory of Green Chemistry and Technology of Ministry of Education, College of Chemistry, Sichuan University, 29 Wangjiang Road, Chengdu 610064, People’s Republic of China
| | - Qianhui Liu
- Key Laboratory of Green Chemistry and Technology of Ministry of Education, College of Chemistry, Sichuan University, 29 Wangjiang Road, Chengdu 610064, People’s Republic of China
| | - Qian Li
- Key Laboratory of Green Chemistry and Technology of Ministry of Education, College of Chemistry, Sichuan University, 29 Wangjiang Road, Chengdu 610064, People’s Republic of China
| | - Ge Gao
- Key Laboratory of Green Chemistry and Technology of Ministry of Education, College of Chemistry, Sichuan University, 29 Wangjiang Road, Chengdu 610064, People’s Republic of China
| | - Jingsong You
- Key Laboratory of Green Chemistry and Technology of Ministry of Education, College of Chemistry, Sichuan University, 29 Wangjiang Road, Chengdu 610064, People’s Republic of China
| |
Collapse
|