1
|
Dohi T, Elboray EE, Kikushima K, Morimoto K, Kita Y. Iodoarene Activation: Take a Leap Forward toward Green and Sustainable Transformations. Chem Rev 2025; 125:3440-3550. [PMID: 40053418 PMCID: PMC11951092 DOI: 10.1021/acs.chemrev.4c00808] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2024] [Revised: 01/29/2025] [Accepted: 02/05/2025] [Indexed: 03/09/2025]
Abstract
Constructing chemical bonds under green sustainable conditions has drawn attention from environmental and economic perspectives. The dissociation of (hetero)aryl-halide bonds is a crucial step of most arylations affording (hetero)arene derivatives. Herein, we summarize the (hetero)aryl halides activation enabling the direct (hetero)arylation of trapping reagents and construction of highly functionalized (hetero)arenes under benign conditions. The strategies for the activation of aryl iodides are classified into (a) hypervalent iodoarene activation followed by functionalization under thermal/photochemical conditions, (b) aryl-I bond dissociation in the presence of bases with/without organic catalysts and promoters, (c) photoinduced aryl-I bond dissociation in the presence/absence of organophotocatalysts, (d) electrochemical activation of aryl iodides by direct/indirect electrolysis mediated by organocatalysts and mediators acting as electron shuttles, and (e) electrophotochemical activation of aryl iodides mediated by redox-active organocatalysts. These activation modes result in aryl iodides exhibiting diverse reactivity as formal aryl cations/radicals/anions and aryne precursors. The coupling of these reactive intermediates with trapping reagents leads to the facile and selective formation of C-C and C-heteroatom bonds. These ecofriendly, inexpensive, and functional group-tolerant activation strategies offer green alternatives to transition metal-based catalysis.
Collapse
Affiliation(s)
- Toshifumi Dohi
- Graduate
School of Pharmaceutical Sciences, Ritsumeikan
University, 1-1-1, Nojihigashi, Kusatsu Shiga 525-8577, Japan
- Research
Organization of Science and Technology, Ritsumeikan University, 1-1-1, Nojihigashi, Kusatsu Shiga 525-8577, Japan
| | - Elghareeb E. Elboray
- Graduate
School of Pharmaceutical Sciences, Ritsumeikan
University, 1-1-1, Nojihigashi, Kusatsu Shiga 525-8577, Japan
- Department
of Chemistry, Faculty of Science, South
Valley University, Qena 83523, Egypt
| | - Kotaro Kikushima
- Graduate
School of Pharmaceutical Sciences, Ritsumeikan
University, 1-1-1, Nojihigashi, Kusatsu Shiga 525-8577, Japan
| | - Koji Morimoto
- Graduate
School of Pharmaceutical Sciences, Ritsumeikan
University, 1-1-1, Nojihigashi, Kusatsu Shiga 525-8577, Japan
- Research
Organization of Science and Technology, Ritsumeikan University, 1-1-1, Nojihigashi, Kusatsu Shiga 525-8577, Japan
| | - Yasuyuki Kita
- Research
Organization of Science and Technology, Ritsumeikan University, 1-1-1, Nojihigashi, Kusatsu Shiga 525-8577, Japan
| |
Collapse
|
2
|
Li C, Bai L, Jiang X. Protocol for hydroxylating aryl chlorides catalyzed by photouranium with water under ambient conditions. STAR Protoc 2024; 5:103279. [PMID: 39340777 PMCID: PMC11467657 DOI: 10.1016/j.xpro.2024.103279] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2024] [Revised: 07/26/2024] [Accepted: 08/07/2024] [Indexed: 09/30/2024] Open
Abstract
Here, we present a protocol for the hydroxylation of aryl chlorides catalyzed by photouranium with water under ambient conditions. We describe steps for gram-scale hydroxylation of 2'-chloroacetophenone using our self-designed continuous-flow photoreactor. We then detail procedures for obtaining 2'-hydroxyacetophenone using our self-designed rapid separation and purification instrument. This protocol is not suitable for polycyclic and heterocyclic aryl chlorides. For complete details on the use and execution of this protocol, please refer to Sun et al.1.
Collapse
Affiliation(s)
- Chengliang Li
- Hainan Institute of East China Normal University, State Key Laboratory of Petroleum Molecular & Process Engineering, Shanghai Key Laboratory of Green Chemistry and Chemical Process, School of Chemistry and Molecular Engineering, East China Normal University, 3663 North Zhongshan Road, Shanghai 200062, P.R. China
| | - Leiyang Bai
- Hainan Institute of East China Normal University, State Key Laboratory of Petroleum Molecular & Process Engineering, Shanghai Key Laboratory of Green Chemistry and Chemical Process, School of Chemistry and Molecular Engineering, East China Normal University, 3663 North Zhongshan Road, Shanghai 200062, P.R. China
| | - Xuefeng Jiang
- Hainan Institute of East China Normal University, State Key Laboratory of Petroleum Molecular & Process Engineering, Shanghai Key Laboratory of Green Chemistry and Chemical Process, School of Chemistry and Molecular Engineering, East China Normal University, 3663 North Zhongshan Road, Shanghai 200062, P.R. China; School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, Henan 453007, P.R. China; State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, 345 Lingling Road, Shanghai 200032, P.R. China.
| |
Collapse
|
3
|
Sato K, Fujita T, Takeuchi T, Suzuki T, Ikeuchi K, Tanino K. Alcohol synthesis based on the S N2 reactions of alkyl halides with the squarate dianion. Org Biomol Chem 2024; 22:1369-1373. [PMID: 38232248 DOI: 10.1039/d3ob01507f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2024]
Abstract
A convenient method has been developed for transforming alkyl halides into the corresponding alcohols via an SN2 reaction. Treatment of an alkyl halide with the squarate dianion at high temperature produces mono-alkyl squarate, and a one-pot basic hydrolysis of the intermediate affords the alcohol in good yield.
Collapse
Affiliation(s)
- Kazuto Sato
- Graduate School of Chemical Sciences and Engineering, Hokkaido University, Sapporo 060-0810, Japan
| | - Tomoyuki Fujita
- Graduate School of Chemical Sciences and Engineering, Hokkaido University, Sapporo 060-0810, Japan
| | - Takashi Takeuchi
- Graduate School of Chemical Sciences and Engineering, Hokkaido University, Sapporo 060-0810, Japan
| | - Takahiro Suzuki
- Department of Chemistry, Faculty of Science, Hokkaido University, Sapporo 060-0810, Japan.
| | - Kazutada Ikeuchi
- Department of Chemistry, Faculty of Science, Hokkaido University, Sapporo 060-0810, Japan.
| | - Keiji Tanino
- Department of Chemistry, Faculty of Science, Hokkaido University, Sapporo 060-0810, Japan.
| |
Collapse
|
4
|
Hu XB, Fu QQ, Huang XY, Chu XQ, Shen ZL, Miao C, Chen W. Hydroxylation of Aryl Sulfonium Salts for Phenol Synthesis under Mild Reaction Conditions. Molecules 2024; 29:831. [PMID: 38398583 PMCID: PMC10891898 DOI: 10.3390/molecules29040831] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Revised: 02/04/2024] [Accepted: 02/10/2024] [Indexed: 02/25/2024] Open
Abstract
Hydroxylation of aryl sulfonium salts could be realized by utilizing acetohydroxamic acid and oxime as hydroxylative agents in the presence of cesium carbonate as a base, leading to a variety of structurally diverse hydroxylated arenes in 47-95% yields. In addition, the reaction exhibited broad functionality tolerance, and a range of important functional groups (e.g., cyano, nitro, sulfonyl, formyl, keto, and ester) could be well amenable to the mild reaction conditions.
Collapse
Affiliation(s)
- Xuan-Bo Hu
- Technical Institute of Fluorochemistry (TIF), School of Chemistry and Molecular Engineering, Nanjing Tech University, Nanjing 211816, China; (X.-B.H.); (Q.-Q.F.); (X.-Y.H.); (X.-Q.C.)
| | - Qian-Qian Fu
- Technical Institute of Fluorochemistry (TIF), School of Chemistry and Molecular Engineering, Nanjing Tech University, Nanjing 211816, China; (X.-B.H.); (Q.-Q.F.); (X.-Y.H.); (X.-Q.C.)
| | - Xue-Ying Huang
- Technical Institute of Fluorochemistry (TIF), School of Chemistry and Molecular Engineering, Nanjing Tech University, Nanjing 211816, China; (X.-B.H.); (Q.-Q.F.); (X.-Y.H.); (X.-Q.C.)
| | - Xue-Qiang Chu
- Technical Institute of Fluorochemistry (TIF), School of Chemistry and Molecular Engineering, Nanjing Tech University, Nanjing 211816, China; (X.-B.H.); (Q.-Q.F.); (X.-Y.H.); (X.-Q.C.)
| | - Zhi-Liang Shen
- Technical Institute of Fluorochemistry (TIF), School of Chemistry and Molecular Engineering, Nanjing Tech University, Nanjing 211816, China; (X.-B.H.); (Q.-Q.F.); (X.-Y.H.); (X.-Q.C.)
| | - Chengping Miao
- College of Biological, Chemical Science and Engineering, Jiaxing University, 118 Jiahang Road, Jiaxing 314001, China
| | - Weiyi Chen
- Soochow College, Soochow University, Suzhou 215006, China
| |
Collapse
|
5
|
Huiqin W, Wu M. Photocatalytic synthesis of phenols mediated by visible light using KI as catalyst. Tetrahedron Lett 2021. [DOI: 10.1016/j.tetlet.2021.153549] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
6
|
Greener AJ, Ubysz P, Owens-Ward W, Smith G, Ocaña I, Whitwood AC, Chechik V, James MJ. Radical-anion coupling through reagent design: hydroxylation of aryl halides. Chem Sci 2021; 12:14641-14646. [PMID: 34881017 PMCID: PMC8580057 DOI: 10.1039/d1sc04748e] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2021] [Accepted: 10/20/2021] [Indexed: 01/09/2023] Open
Abstract
The design and development of an oxime-based hydroxylation reagent, which can chemoselectively convert aryl halides (X = F, Cl, Br, I) into phenols under operationally simple, transition-metal-free conditions is described. Key to the success of this approach was the identification of a reducing oxime anion which can interact and couple with open-shell aryl radicals. Experimental and computational studies support the proposed radical-nucleophilic substitution chain mechanism.
Collapse
Affiliation(s)
- Andrew J Greener
- Department of Chemistry, University of York Heslington York YO10 5DD UK
| | - Patrycja Ubysz
- Department of Chemistry, University of York Heslington York YO10 5DD UK
| | - Will Owens-Ward
- Department of Chemistry, University of York Heslington York YO10 5DD UK
| | - George Smith
- Department of Chemistry, University of York Heslington York YO10 5DD UK
| | - Ivan Ocaña
- Department of Chemistry, University of York Heslington York YO10 5DD UK
| | - Adrian C Whitwood
- Department of Chemistry, University of York Heslington York YO10 5DD UK
| | - Victor Chechik
- Department of Chemistry, University of York Heslington York YO10 5DD UK
| | - Michael J James
- Department of Chemistry, University of York Heslington York YO10 5DD UK
| |
Collapse
|
7
|
Cao D, Pan P, Li CJ, Zeng H. Photo-induced transition-metal and photosensitizer free cross–coupling of aryl halides with disulfides. GREEN SYNTHESIS AND CATALYSIS 2021. [DOI: 10.1016/j.gresc.2021.04.006] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
|
8
|
Yang L, Zhuang Q, Wu M, Long H, Lin C, Lin M, Ke F. Electrochemical-induced hydroxylation of aryl halides in the presence of Et 3N in water. Org Biomol Chem 2021; 19:6417-6421. [PMID: 34236072 DOI: 10.1039/d1ob00931a] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A thorough study of mild and environmentally friendly electrochemical-induced hydroxylation of aryl halides without a catalyst is presented. The best protocol consists of hydroxylation of different aryl iodides and aryl bromides by water solution in the presence of Et3N under air, affording the target phenols in good isolated yields. Moreover, aryl chlorides were successfully employed as substrates. This methodology also provides a direct pathway for the formation of deoxyphomalone, which displayed a significant anti-proliferation effect.
Collapse
Affiliation(s)
- Li Yang
- Faculty of Material and Chemical Engineering, Yibin University, Yibin 644000, China
| | - Qinglong Zhuang
- School of Stomatology, Fujian Medical University, Fuzhou 350122, China
| | - Mei Wu
- Institute of Materia Medica, School of Pharmacy, Fujian Provincial Key Laboratory of Natural Medicine Pharmacology, Fujian Medical University, Fuzhou 350122, China.
| | - Hua Long
- Institute of Materia Medica, School of Pharmacy, Fujian Provincial Key Laboratory of Natural Medicine Pharmacology, Fujian Medical University, Fuzhou 350122, China.
| | - Chen Lin
- Institute of Materia Medica, School of Pharmacy, Fujian Provincial Key Laboratory of Natural Medicine Pharmacology, Fujian Medical University, Fuzhou 350122, China.
| | - Mei Lin
- Institute of Materia Medica, School of Pharmacy, Fujian Provincial Key Laboratory of Natural Medicine Pharmacology, Fujian Medical University, Fuzhou 350122, China.
| | - Fang Ke
- Faculty of Material and Chemical Engineering, Yibin University, Yibin 644000, China and Institute of Materia Medica, School of Pharmacy, Fujian Provincial Key Laboratory of Natural Medicine Pharmacology, Fujian Medical University, Fuzhou 350122, China.
| |
Collapse
|
9
|
Upadhyay R, Singh D, Maurya SK. Highly efficient heterogeneous V
2
O
5
@TiO
2
catalyzed the rapid transformation of boronic acids to phenols. European J Org Chem 2021. [DOI: 10.1002/ejoc.202100614] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Affiliation(s)
- Rahul Upadhyay
- Chemical Technology Division CSIR-Institute of Himalayan Bioresource Technology Palampur Himachal Pradesh 176 061 India
- Academy of Scientific and Innovative Research (AcSIR) Ghaziabad 201 002 India
| | - Deepak Singh
- Chemical Technology Division CSIR-Institute of Himalayan Bioresource Technology Palampur Himachal Pradesh 176 061 India
| | - Sushil K. Maurya
- Chemical Technology Division CSIR-Institute of Himalayan Bioresource Technology Palampur Himachal Pradesh 176 061 India
- Academy of Scientific and Innovative Research (AcSIR) Ghaziabad 201 002 India
| |
Collapse
|
10
|
Xiao L, Lang TT, Jiang Y, Zang ZL, Zhou CH, Cai GX. Aerobic Copper-Catalyzed Salicylaldehydic C formyl -H Arylations with Arylboronic Acids. Chemistry 2021; 27:3278-3283. [PMID: 33289166 DOI: 10.1002/chem.202004810] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2020] [Revised: 12/01/2020] [Indexed: 12/15/2022]
Abstract
We report a challenging copper-catalyzed Cformyl -H arylation of salicylaldehydes with arylboronic acids that involves unique salicylaldehydic copper species that differ from reported salicylaldehydic rhodacycles and palladacycles. This protocol has high chemoselectivity for the Cformyl -H bond compared to the phenolic O-H bond involving copper catalysis under high reaction temperatures. This approach is compatible with a wide range of salicylaldehyde and arylboronic acid substrates, including estrone and carbazole derivatives, which leads to the corresponding arylation products. Mechanistic studies show that the 2-hydroxy group of the salicylaldehyde substrate triggers the formation of salicylaldehydic copper complexes through a CuI /CuII /CuIII catalytic cycle.
Collapse
Affiliation(s)
- Lin Xiao
- Institute of Bioorganic & Medicinal Chemistry, Key Laboratory of Luminescence Analysis and Molecular Sensing, Ministry of Education, School of Chemistry and Chemical Engineering, Southwest University, Chongqing, 400715, P. R. China
| | - Tao-Tao Lang
- Institute of Bioorganic & Medicinal Chemistry, Key Laboratory of Luminescence Analysis and Molecular Sensing, Ministry of Education, School of Chemistry and Chemical Engineering, Southwest University, Chongqing, 400715, P. R. China
| | - Ying Jiang
- Institute of Bioorganic & Medicinal Chemistry, Key Laboratory of Luminescence Analysis and Molecular Sensing, Ministry of Education, School of Chemistry and Chemical Engineering, Southwest University, Chongqing, 400715, P. R. China
| | - Zhong-Lin Zang
- Institute of Bioorganic & Medicinal Chemistry, Key Laboratory of Luminescence Analysis and Molecular Sensing, Ministry of Education, School of Chemistry and Chemical Engineering, Southwest University, Chongqing, 400715, P. R. China
| | - Cheng-He Zhou
- Institute of Bioorganic & Medicinal Chemistry, Key Laboratory of Luminescence Analysis and Molecular Sensing, Ministry of Education, School of Chemistry and Chemical Engineering, Southwest University, Chongqing, 400715, P. R. China
| | - Gui-Xin Cai
- Institute of Bioorganic & Medicinal Chemistry, Key Laboratory of Luminescence Analysis and Molecular Sensing, Ministry of Education, School of Chemistry and Chemical Engineering, Southwest University, Chongqing, 400715, P. R. China
| |
Collapse
|
11
|
Bugaenko DI, Volkov AA, Karchava AV, Yurovskaya MA. Generation of aryl radicals by redox processes. Recent progress in the arylation methodology. RUSSIAN CHEMICAL REVIEWS 2021. [DOI: 10.1070/rcr4959] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Arylation methods based on the generation and use of aryl radicals have been a rapidly growing field of research in recent years and currently represent a powerful strategy for carbon – carbon and carbon – heteroatom bond formation. The progress in this field is related to advances in the methods for generation of aryl radicals. The currently used aryl radical precursors include aryl halides, aryldiazonium and diaryliodonium salts, arylcarboxylic acids and their derivatives, arylboronic acids, arylhydrazines, organosulfur(II, VI) compounds and some other compounds. Aryl radicals are generated under mild conditions by single electron reduction or oxidation of precursors induced by conventional reagents, visible light or electric current. A crucial role in the development of the radical arylation methodology belongs to photoredox processes either catalyzed by transition metal complexes or organic dyes or proceeding without catalysts. Unlike the conventional transition metal-catalyzed arylation methods, radical arylation reactions proceed very often at room temperature and have high functional group tolerance. Without claiming to be exhaustive, this review covers the most important advances of the current decade in the generation and synthetic applications of (het)aryl radicals. Examples of reactions are given and mechanistic insights are highlighted.
The bibliography includes 341 references.
Collapse
|
12
|
Barut B, Keleş T, Biyiklioglu Z, Yalçın CÖ. Peripheral or nonperipheral tetra‐[4‐(9
H
‐carbazol‐9‐yl)phenoxy] substituted cobalt(II), manganese(III) phthalocyanines: Synthesis, acetylcholinesterase, butyrylcholinesterase, and α‐glucosidase inhibitory effects and anticancer activities. Appl Organomet Chem 2021. [DOI: 10.1002/aoc.6021] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Affiliation(s)
- Burak Barut
- Faculty of Pharmacy, Department of Biochemistry Karadeniz Technical University Trabzon Turkey
| | - Turgut Keleş
- Central Research Laboratory Application and Research Center Recep Tayyip Erdogan University Rize Turkey
| | - Zekeriya Biyiklioglu
- Faculty of Science, Department of Chemistry Karadeniz Technical University Trabzon Turkey
| | - Can Özgür Yalçın
- Faculty of Pharmacy, Department of Pharmaceutical Toxicology Karadeniz Technical University Trabzon Turkey
- Drug and Pharmaceutical Technology Application and Research Center Karadeniz Technical University Trabzon Turkey
| |
Collapse
|