1
|
Pipaliya BV, Saha N, Chakraborti AK. "On Water" Cationic Ruthenium(II) Catalysed Direct Aryl C(sp 2)-H Amidation of Biorelevant Heterocyclic Scaffolds. Chem Asian J 2025; 20:e202401505. [PMID: 39714960 DOI: 10.1002/asia.202401505] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2024] [Accepted: 12/16/2024] [Indexed: 12/25/2024]
Abstract
Ru(II)-Catalyzed "On Water" direct aryl C(sp2)-H amidation of 2-arylbenzo[d]-thiazole/oxazole with acyl azide is reported under silver-free condition. Deuterium scrambling experiments suggested reversible C-H activation catalyzed by active cationic ruthenium species. The organic solvents such as DCE, DMF, DMSO, MeCN, dioxane, and PhMe were not conducive for the C-H amidation except for PhCl in which case, however, inferior yield (31 %) was obtained. Water plays critical roles (i) during the formation of active cationic Ru-species, (ii) as proton scavenger during ligand-assisted C-H activation through hydrogen bond formation as evidenced by solvent kinetic isotope effect, and (iii) in the final protodissociation step. The mechanistic proposal resembles secondary coordination sphere hydrogen bond controlled transition metal catalysis showcasing the aryl C-H amidation through outer sphere nitrene insertion. The "on water" aryl C-H amidation protocol showed wide substrate scope with respect to the 2-arylbenzo[d]-thiazole/oxazole scaffold as well as the aryl moiety of the aroyl azide. While the applicability of the Ru(II)-catalysed "on water" C-H amidation protocol to 2-arylbenzo[d]-thiazole and 2-arylbenzo[d]-oxazole demonstrates its scope with respect to the directing group the effectiveness for sulfonamidation and phosphoramidation further broaden the synthetic scope.
Collapse
Affiliation(s)
- Bhavin V Pipaliya
- Department of Medicinal Chemistry, National Institute of Pharmaceutical Education & Research (NIPER), Sector 67, S. A. S., Nagar, Punjab, 160 062, India
| | - Nirjhar Saha
- Department of Medicinal Chemistry, National Institute of Pharmaceutical Education & Research (NIPER), Sector 67, S. A. S., Nagar, Punjab, 160 062, India
- School of Chemical Sciences, Indian Association for the Cultivation of Science (IACS), Jadavpur, Kolkata, West Bengal, 700 032, India
| | - Asit K Chakraborti
- Department of Medicinal Chemistry, National Institute of Pharmaceutical Education & Research (NIPER), Sector 67, S. A. S., Nagar, Punjab, 160 062, India
- School of Chemical Sciences, Indian Association for the Cultivation of Science (IACS), Jadavpur, Kolkata, West Bengal, 700 032, India
| |
Collapse
|
2
|
Nagesh VV, Pawar AB. Harnessing Dual Reactivity of N-Chloroamides for Cascade C-H Amidation/Chlorination of Indoles under Cobalt-Catalysis: Overriding Hofmann Rearrangement Pathway Leading to Aminocarbonylation. Org Lett 2024; 26:10523-10528. [PMID: 39601445 DOI: 10.1021/acs.orglett.4c03925] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2024]
Abstract
Herein, we have developed a Cp*Co(III)-catalyzed cascade C-2 amidation/C-3 chlorination of indoles by leveraging the dual functionality of N-chloroamides at ambient temperature. This protocol avoids the aminocarbonylation pathway that may result from the C-H functionalization of isocyanates formed via a potential Hofmann rearrangement of N-chloroamides. In fact, this represents the first example of directed C-H amidation using N-chloroamides as amidating agent. The control experiment indicated that the C-2 C-H amidation occurs prior to C-3 chlorination. Additionally, chloro functionality has been effectively utilized for the construction of C-S and C-N bonds, thereby expanding the molecular diversity of the synthesized compounds.
Collapse
Affiliation(s)
- Vinod V Nagesh
- School of Chemical Sciences, Indian Institute of Technology Mandi, Mandi, Himachal Pradesh 175075, India
| | - Amit B Pawar
- School of Chemical Sciences, Indian Institute of Technology Mandi, Mandi, Himachal Pradesh 175075, India
| |
Collapse
|
3
|
Zuo Y, Liu M, Du J, Zhang T, Wang X, Wang C. Ir(iii)/Ag(i)-catalyzed directly C-H amidation of arenes with OH-free hydroxyamides as amidating agents. RSC Adv 2024; 14:5975-5980. [PMID: 38362076 PMCID: PMC10867557 DOI: 10.1039/d4ra00517a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2024] [Accepted: 02/09/2024] [Indexed: 02/17/2024] Open
Abstract
A versatile Ir(iii)-catalyzed C-H amidation of arenes by employing readily available and stable OH-free hydroxyamides as a novel amidation source. The reaction occurred with high efficiency and tolerance of a range of functional groups. A wide scope of aryl OH-free hydroxyzamides, including conjugated and challenging non-conjugated OH-free hydroxyzamides, were capable of this transformation and no addition of an external oxidant is required. This protocol provided a simple, straightforward and economic method to a variety N-(2-(1H-pyrazol-1-yl)alkyl)amide derivates with good to excellent yield. Mechanistic study demonstrated that reversible C-H bond functionalisation might be involved in this reaction.
Collapse
Affiliation(s)
- Youpeng Zuo
- School of Chemistry and Chemical Engineering, Suzhou University Suzhou 234000 P. R. China
| | - Meijun Liu
- School of Chemistry and Chemical Engineering, Suzhou University Suzhou 234000 P. R. China
| | - Jun Du
- School of Chemistry and Chemical Engineering, Suzhou University Suzhou 234000 P. R. China
| | - Tianren Zhang
- School of Chemistry and Chemical Engineering, Suzhou University Suzhou 234000 P. R. China
| | - Xiaoqing Wang
- School of Chemistry and Chemical Engineering, Suzhou University Suzhou 234000 P. R. China
| | - Cong Wang
- School of Chemistry and Chemical Engineering, Suzhou University Suzhou 234000 P. R. China
| |
Collapse
|
4
|
Pan C, He C, Wang J, Tang J, Zhang X. Ruthenium-catalysed direct C-H amidation of 4-aryl-pyrrolo[2,3- d]pyrimidines with acyl/phosphoryl azides. Org Biomol Chem 2024; 22:1181-1185. [PMID: 38214147 DOI: 10.1039/d3ob01946b] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2024]
Abstract
A ruthenium-catalysed arene ortho C-H amidation of 4-aryl-pyrrolo[2,3-d]pyrimidine derivatives with acyl azides or phosphoryl azides as the nitrogen sources toward C-N bond formation was developed. This protocol could offer a novel and direct approach to access a series of amidated and phosphoramidated pyrrolo[2,3-d]pyrimidine derivatives in moderate to good yields, thereby evading the general Curtius rearrangement. The protocol features significant functional group tolerance and a single-step process, with the release of only innocuous molecular nitrogen as the byproduct.
Collapse
Affiliation(s)
- Chenhong Pan
- College of Pharmaceutical Science, Zhejiang University of Technology, Hangzhou 310014, P. R. China.
| | - Chun He
- Zhejiang Apeloa Pharmaceutical Co., Ltd, Dongyang 322118, P. R. China
| | - Jiangrong Wang
- College of Pharmaceutical Science, Zhejiang University of Technology, Hangzhou 310014, P. R. China.
| | - Junyang Tang
- College of Pharmaceutical Science, Zhejiang University of Technology, Hangzhou 310014, P. R. China.
| | - Xingxian Zhang
- College of Pharmaceutical Science, Zhejiang University of Technology, Hangzhou 310014, P. R. China.
| |
Collapse
|
5
|
Aher YN, Bhaduri N, Pawar AB. Advances in transition metal-catalyzed C-H amination strategies using anthranils. Org Biomol Chem 2023; 21:8794-8812. [PMID: 37901918 DOI: 10.1039/d3ob01421e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2023]
Abstract
Modern times have witnessed an uprise in the synthesis and derivatization of nitrogen-containing fused heterocycles. Amination reactions involving nitrene chemistry have always been the most convenient choice for the incorporation of a nitrogen atom in a molecule. The utilization of an open nitrene species harnesses harsh conditions. Hence, transition metal-catalyzed C-H amination reactions using aminating agents have been an attractive choice. Electrophilic aminating agents for C-H amination reactions are well exploited due to their desirable reaction conditions. Out of all, anthranils have paved the way forward due to their utility in simultaneously forming two new functional groups (amine and carbonyl). Amination using anthranils follows a metal-nitrenoid pathway. Often, the amination has been followed by a Lewis acid or transition metal-mediated intramolecular cyclization to directly produce fused heterocycles. This review broadly demonstrates the utilization of anthranils as an aminating agent for transition metal-catalyzed C-H amination reactions. The focus has been given to the scope, limitations, and mechanistic understanding of using such an electrophilic aminating agent, anthranil, with transition metals.
Collapse
Affiliation(s)
- Yogesh N Aher
- School of Chemical Sciences, Indian Institute of Technology Mandi, Himachal Pradesh, 175075, India.
| | - Nilanjan Bhaduri
- School of Chemical Sciences, Indian Institute of Technology Mandi, Himachal Pradesh, 175075, India.
| | - Amit B Pawar
- School of Chemical Sciences, Indian Institute of Technology Mandi, Himachal Pradesh, 175075, India.
| |
Collapse
|
6
|
Li W, Wang R, Li Z, Chen J, Zhang Y, Lv N. Convergent synthesis of triarylamines via Ni-catalyzed dual C(sp 2)-H amination from benzamides with benzohydroxamic acids. Chem Commun (Camb) 2023; 59:4360-4363. [PMID: 36946231 DOI: 10.1039/d3cc00165b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/17/2023]
Abstract
An unprecedented method of nickel-catalyzed dual C(sp2)-H amination of N-quinolylbenzamides with benzohydroxamic acids is developed to access triarylamines in one pot. For the first time, broad-spectrum hydroxylamine is employed as an amino source for C-H amination, featuring good chemo-selectivity and functional group tolerance. Furthermore, the catalytic system could be further extended to N-(pivaloyloxy)benzamide, dioxazolone, isocyanate and aniline for C-H amination.
Collapse
Affiliation(s)
- Wenwei Li
- College of Chemistry & Materials Engineering, Wenzhou University, Wenzhou 325035, China.
| | - Ruxue Wang
- College of Chemistry & Materials Engineering, Wenzhou University, Wenzhou 325035, China.
| | - Zhefeng Li
- College of Chemistry & Materials Engineering, Wenzhou University, Wenzhou 325035, China.
| | - Jiuxi Chen
- College of Chemistry & Materials Engineering, Wenzhou University, Wenzhou 325035, China.
| | - Yuhong Zhang
- Department of Chemistry, Zhejiang University, Hangzhou 310027, China.
| | - Ningning Lv
- College of Chemistry & Materials Engineering, Wenzhou University, Wenzhou 325035, China.
| |
Collapse
|
7
|
Liu H, Chi W, Dong L. Ruthenium(II)-Catalyzed Sterically Hindered C-H Acyloxylation to Synthesize Biaryl Isoquinoline Derivatives via Peresters. J Org Chem 2023. [PMID: 36812452 DOI: 10.1021/acs.joc.2c02938] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/24/2023]
Abstract
A novel C-H acyloxylation method of 1-(1-naphthalen-1-yl)isoquinoline derivatives with peresters in the presence of [Ru(p-cymene)Cl2]2 has been developed. The combination of ruthenium(II), AgBF4, CoI2, and 2,2,6,6-tetramethyl-1-piperidinyloxy is found to be an effective catalytic system to provide various biaryl compounds in satisfactory yields within minutes. Notably, steric hindrance is a very important determinant of the reaction.
Collapse
Affiliation(s)
- Hao Liu
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu 610041, China
| | - Wei Chi
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu 610041, China
| | - Lin Dong
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu 610041, China
| |
Collapse
|
8
|
Ban T, Vu HM, Zhang J, Yong JY, Liu Q, Li XQ. Rhodium-Catalyzed Azine-Directed C-H Amidation with N-Methoxyamides. J Org Chem 2022; 87:5543-5555. [PMID: 35417153 DOI: 10.1021/acs.joc.1c02868] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Using N-methoxyamide reagents as an amide source, C-H amidation was realized at the ortho position of azine under the action of rhodium and boric acid. The method has mild reaction conditions, high atomic utilization, excellent yield, and wide adaptability to amidation reagents (both aromatic amides and fatty amides are applicable). Amide-substituted ketones can be obtained by a simple treatment and can be further transformed into bioactive substances. This provides a good supplement for the C-H bond amidation of aromatic rings.
Collapse
Affiliation(s)
- Tao Ban
- School of Chemical and Biological Engineering, University of Science and Technology Beijing, Beijing 100083, P. R. China
| | - Huu-Manh Vu
- School of Chemical and Biological Engineering, University of Science and Technology Beijing, Beijing 100083, P. R. China
| | - Jing Zhang
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, P. R. China
| | - Jia-Yuan Yong
- School of Chemical and Biological Engineering, University of Science and Technology Beijing, Beijing 100083, P. R. China
| | - Qiong Liu
- School of Chemical and Biological Engineering, University of Science and Technology Beijing, Beijing 100083, P. R. China
| | - Xu-Qin Li
- School of Chemical and Biological Engineering, University of Science and Technology Beijing, Beijing 100083, P. R. China
| |
Collapse
|
9
|
Li B, Zhao Y, Zhou G, Huang Z, Xu X, Fang Z, Huang P, Deng Z. Rhodium(III)-Catalyzed Synthesis of Quinazolin-4(3H)-ones with N-Methoxyamides as Synthesis Reagents. SYNTHESIS-STUTTGART 2022. [DOI: 10.1055/a-1792-9930] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
AbstractA practical method to synthesize quinoxalinones via intra/intermolecular amination using rhodium as the catalyst was developed. A wide variety of quinoxalinones were prepared from N-methoxybenzamides in moderate to excellent yields. Gram-scale reactions were also achieved, highlighting the synthetic importance of this new transformation.
Collapse
Affiliation(s)
- Bao Li
- School of Chemistry and Chemical Engineering, Henan Normal University
| | - Yingsheng Zhao
- Key Laboratory of Organic Synthesis of Jiangsu Province, College of Chemistry, Chemical, Engineering and Materials Science, Soochow University
- School of Chemistry and Chemical Engineering, Henan Normal University
| | - Guanyu Zhou
- Key Laboratory of Organic Synthesis of Jiangsu Province, College of Chemistry, Chemical, Engineering and Materials Science, Soochow University
| | - Zhibin Huang
- Key Laboratory of Organic Synthesis of Jiangsu Province, College of Chemistry, Chemical, Engineering and Materials Science, Soochow University
| | - Xu Xu
- Key Laboratory of Organic Synthesis of Jiangsu Province, College of Chemistry, Chemical, Engineering and Materials Science, Soochow University
| | - Zhang Fang
- Key Laboratory of Organic Synthesis of Jiangsu Province, College of Chemistry, Chemical, Engineering and Materials Science, Soochow University
| | - Pengcheng Huang
- Key Laboratory of Organic Synthesis of Jiangsu Province, College of Chemistry, Chemical, Engineering and Materials Science, Soochow University
| | - Zefeng Deng
- Key Laboratory of Organic Synthesis of Jiangsu Province, College of Chemistry, Chemical, Engineering and Materials Science, Soochow University
| |
Collapse
|
10
|
Van Emelen L, Henrion M, Lemmens R, De Vos D. C–N coupling reactions with arenes through C–H activation: the state-of-the-art versus the principles of green chemistry. Catal Sci Technol 2022. [DOI: 10.1039/d1cy01827b] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Herein, we discuss the state-of-the-art in arene C–N coupling through C–H activation and to what extent it complies with the principles of green chemistry, with a focus on heterogeneously catalysed systems.
Collapse
Affiliation(s)
- Lisa Van Emelen
- Centre for Membrane Separations, Adsorption, Catalysis and Spectroscopy for Sustainable Solutions (cMACS), Department of Microbial and Molecular Systems, KU Leuven – University of Leuven, Leuven Chem & Tech, Celestijnenlaan 200F Postbox 2454, Heverlee, Belgium
| | - Mickaël Henrion
- Centre for Membrane Separations, Adsorption, Catalysis and Spectroscopy for Sustainable Solutions (cMACS), Department of Microbial and Molecular Systems, KU Leuven – University of Leuven, Leuven Chem & Tech, Celestijnenlaan 200F Postbox 2454, Heverlee, Belgium
| | - Robin Lemmens
- Centre for Membrane Separations, Adsorption, Catalysis and Spectroscopy for Sustainable Solutions (cMACS), Department of Microbial and Molecular Systems, KU Leuven – University of Leuven, Leuven Chem & Tech, Celestijnenlaan 200F Postbox 2454, Heverlee, Belgium
| | - Dirk De Vos
- Centre for Membrane Separations, Adsorption, Catalysis and Spectroscopy for Sustainable Solutions (cMACS), Department of Microbial and Molecular Systems, KU Leuven – University of Leuven, Leuven Chem & Tech, Celestijnenlaan 200F Postbox 2454, Heverlee, Belgium
| |
Collapse
|
11
|
Ma J, Zhou X, Chen JL, Shi J, Cheng HC, Guo P, Ji H. Directing Group Strategies in Rhodium-Catalyzed C-H Amination. Org Biomol Chem 2022; 20:7554-7576. [DOI: 10.1039/d2ob01157c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Construction of a carbon-nitrogen bond is one of the most prevalent operations in nature and organic synthesis. The resulting amino compounds are privileged structural fragments in natural products, pharmaceutical drugs,...
Collapse
|
12
|
Hong D, Liu Y, Wu L, Lo VK, Toy PH, Law S, Huang J, Che C. Ru
V
‐Acylimido Intermediate in [Ru
IV
(Por)Cl
2
]‐Catalyzed C–N Bond Formation: Spectroscopic Characterization, Reactivity, and Catalytic Reactions. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202100668] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Affiliation(s)
- Dan‐Yan Hong
- State Key Laboratory of Synthetic Chemistry and Department of Chemistry The University of Hong Kong Pokfulam Road Hong Kong SAR China
| | - Yungen Liu
- Department of Chemistry Southern University of Science and Technology Shenzhen Guangdong 518055 China
| | - Liangliang Wu
- State Key Laboratory of Synthetic Chemistry and Department of Chemistry The University of Hong Kong Pokfulam Road Hong Kong SAR China
| | - Vanessa Kar‐Yan Lo
- State Key Laboratory of Synthetic Chemistry and Department of Chemistry The University of Hong Kong Pokfulam Road Hong Kong SAR China
| | - Patrick H. Toy
- Department of Chemistry The University of Hong Kong Pokfulam Road Hong Kong SAR China
| | - Siu‐Man Law
- State Key Laboratory of Synthetic Chemistry and Department of Chemistry The University of Hong Kong Pokfulam Road Hong Kong SAR China
| | - Jie‐Sheng Huang
- State Key Laboratory of Synthetic Chemistry and Department of Chemistry The University of Hong Kong Pokfulam Road Hong Kong SAR China
| | - Chi‐Ming Che
- State Key Laboratory of Synthetic Chemistry and Department of Chemistry The University of Hong Kong Pokfulam Road Hong Kong SAR China
- Department of Chemistry Southern University of Science and Technology Shenzhen Guangdong 518055 China
- HKU Shenzhen Institute of Research and Innovation Shenzhen 518053 China
- Laboratory for Synthetic Chemistry and Chemical Biology Limited Units 1503–1511, 15/F., Building 17W, Hong Kong Science and Technology Parks, New Territories Hong Kong SAR China
| |
Collapse
|
13
|
He Y, Zheng T, Huang YH, Dong L. Rh(III)-Catalyzed olefination to build diverse oxazole derivatives from functional alkynes. Org Biomol Chem 2021; 19:4937-4942. [PMID: 33983356 DOI: 10.1039/d1ob00507c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A novel Rh(iii)-catalyzed olefination reaction of oxazoles to generate diverse oxazole skeleton derivatives has been realized by directly using oxazole as the directing group. The reaction could tolerate many functional groups, affording complex oxazole derivatives with long chain alkenyls in moderate to good yields, which might find applications in the construction of diverse compounds.
Collapse
Affiliation(s)
- Yuan He
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry, Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu 610041, China.
| | - Ting Zheng
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry, Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu 610041, China.
| | - Yin-Hui Huang
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry, Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu 610041, China.
| | - Lin Dong
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry, Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu 610041, China.
| |
Collapse
|
14
|
Hong DY, Liu Y, Wu L, Lo VKY, Toy PH, Law SM, Huang JS, Che CM. Ru V -Acylimido Intermediate in [Ru IV (Por)Cl 2 ]-Catalyzed C-N Bond Formation: Spectroscopic Characterization, Reactivity, and Catalytic Reactions. Angew Chem Int Ed Engl 2021; 60:18619-18629. [PMID: 33847064 DOI: 10.1002/anie.202100668] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2021] [Revised: 03/16/2021] [Indexed: 01/12/2023]
Abstract
Metal-catalyzed C-N bond formation reactions via acylnitrene transfer have recently attracted much attention, but direct detection of the proposed acylnitrenoid/acylimido M(NCOR) (R=aryl or alkyl) species in these reactions poses a formidable challenge. Herein, we report on Ru(NCOR) intermediates in C-N bond formation catalyzed by [RuIV (Por)Cl2 ]/N3 COR, a catalytic method applicable to aziridine/oxazoline formation from alkenes, amination of substituted indoles, α-amino ketone formation from silyl enol ethers, amination of C(sp3 )-H bonds, and functionalization of natural products and carbohydrate derivatives (up to 99 % yield). Experimental studies, including HR-ESI-MS and EPR measurements, coupled with DFT calculations, lend evidence for the formulation of the Ru(NCOR) acylnitrenoids as a RuV -imido species.
Collapse
Affiliation(s)
- Dan-Yan Hong
- State Key Laboratory of Synthetic Chemistry and Department of Chemistry, The University of Hong Kong, Pokfulam Road, Hong Kong SAR, China
| | - Yungen Liu
- Department of Chemistry, Southern University of Science and Technology, Shenzhen, Guangdong, 518055, China
| | - Liangliang Wu
- State Key Laboratory of Synthetic Chemistry and Department of Chemistry, The University of Hong Kong, Pokfulam Road, Hong Kong SAR, China
| | - Vanessa Kar-Yan Lo
- State Key Laboratory of Synthetic Chemistry and Department of Chemistry, The University of Hong Kong, Pokfulam Road, Hong Kong SAR, China
| | - Patrick H Toy
- Department of Chemistry, The University of Hong Kong, Pokfulam Road, Hong Kong SAR, China
| | - Siu-Man Law
- State Key Laboratory of Synthetic Chemistry and Department of Chemistry, The University of Hong Kong, Pokfulam Road, Hong Kong SAR, China
| | - Jie-Sheng Huang
- State Key Laboratory of Synthetic Chemistry and Department of Chemistry, The University of Hong Kong, Pokfulam Road, Hong Kong SAR, China
| | - Chi-Ming Che
- State Key Laboratory of Synthetic Chemistry and Department of Chemistry, The University of Hong Kong, Pokfulam Road, Hong Kong SAR, China.,Department of Chemistry, Southern University of Science and Technology, Shenzhen, Guangdong, 518055, China.,HKU Shenzhen Institute of Research and Innovation, Shenzhen, 518053, China.,Laboratory for Synthetic Chemistry and Chemical Biology Limited, Units 1503-1511, 15/F., Building 17W, Hong Kong Science and Technology Parks, New Territories, Hong Kong SAR, China
| |
Collapse
|
15
|
Liu JB, Ren M, Lai X, Qiu G. Iron-catalyzed stereoselective haloamidation of amide-tethered alkynes. Chem Commun (Camb) 2021; 57:4259-4262. [PMID: 33913970 DOI: 10.1039/d1cc00870f] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
In this work, by using N-methoxybenzamides as efficient acyl nitrene precursors, an iron-catalyzed formal cis-haloamidation of alkyne is reported. Without assistance of additives, the reaction worked well in the presence of 50 mol% FeCl3 or FeBr3, leading to a series of chloro/bromo-containing isoindolin-5-ones with high efficiency and wide reaction scope. In the reaction, the iron-facilitated haloamidation proceeds through a halo anion-participating concerted [3+2] cyclization to release the final products. The key intermediate ferric acyl nitrene A is generated in situ from a formal removal of MeOH.
Collapse
Affiliation(s)
- Jin-Biao Liu
- School of Metallurgical and Chemical Engineering, Jiangxi University of Science and Technology, Ganzhou 341000, China
| | - Miaofeng Ren
- College of Biological, Chemical Sciences and Engineering, Jiaxing University, Jiaxing 314001, Zhejiang, China.
| | - Xiaojing Lai
- College of Biological, Chemical Sciences and Engineering, Jiaxing University, Jiaxing 314001, Zhejiang, China.
| | - Guanyinsheng Qiu
- College of Biological, Chemical Sciences and Engineering, Jiaxing University, Jiaxing 314001, Zhejiang, China.
| |
Collapse
|
16
|
Huang X, Xu Y, Li J, Lai R, Luo Y, Wang Q, Yang Z, Wu Y. Synthesis of aminoisoquinolines via Rh-catalyzed [4 + 2] annulation of benzamidamides with vinylene carbonate. CHINESE CHEM LETT 2021. [DOI: 10.1016/j.cclet.2021.04.058] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
|
17
|
Singh H, Sen C, Suresh E, Panda AB, Ghosh SC. C-H Amidation and Amination of Arenes and Heteroarenes with Amide and Amine using Cu-MnO as a Reusable Catalyst under Mild Conditions. J Org Chem 2021; 86:3261-3275. [PMID: 33522804 DOI: 10.1021/acs.joc.0c02603] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
An atom-economical and efficient route for the direct amidation and amination of aryl C-H bonds using our synthesized recyclable heterogeneous Cu-MnO catalyst is reported here. The direct C-H amidation was carried out using a simple amide without any preactivated coupling partner, and simple air was used as the sole oxidant. The reaction proceeds very smoothly with a broad range of substrates containing numerous functional groups in very good to excellent yields. Direct C-H aminations with a secondary amine were carried out under base-, ligand-, and external oxidant-free conditions in very good to excellent yields in very mild conditions. Both the amidation and amination can be scaled up on a gram scale with similar yields. The major advantage is that our catalyst is recyclable and reused several times without any significant loss of reactivity.
Collapse
Affiliation(s)
- Harshvardhan Singh
- Central Salt and Marine Chemicals Research Institute (CSIR-CSMCRI), Bhavnagar, Gujarat 364002, India.,Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, Uttar Pradesh 201002, India
| | - Chiranjit Sen
- Central Salt and Marine Chemicals Research Institute (CSIR-CSMCRI), Bhavnagar, Gujarat 364002, India.,Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, Uttar Pradesh 201002, India
| | - Eringathodi Suresh
- Central Salt and Marine Chemicals Research Institute (CSIR-CSMCRI), Bhavnagar, Gujarat 364002, India.,Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, Uttar Pradesh 201002, India
| | - Asit B Panda
- Central Salt and Marine Chemicals Research Institute (CSIR-CSMCRI), Bhavnagar, Gujarat 364002, India.,Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, Uttar Pradesh 201002, India
| | - Subhash C Ghosh
- Central Salt and Marine Chemicals Research Institute (CSIR-CSMCRI), Bhavnagar, Gujarat 364002, India.,Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, Uttar Pradesh 201002, India
| |
Collapse
|
18
|
Lai X, Liu JB, Wang YC, Qiu G. Iron-catalyzed intramolecular acyl nitrene/alkyne metalation for the synthesis of pyrrolo[2,1-a]isoindol-5-ones. Chem Commun (Camb) 2021; 57:2077-2080. [DOI: 10.1039/d0cc08039j] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
In this work, by using N-methoxybenzamides as efficient acyl nitrene precursors, an iron-catalyzed acyl nitrene/alkyne metalation is reported for the synthesis of pyrrolo[2,1-a]isoindol-5-ones.
Collapse
Affiliation(s)
- Xiaojing Lai
- College of Biological
- Chemical Sciences and Engineering
- Jiaxing University
- Jiaxing 314001
- China
| | - Jin-Biao Liu
- School of Metallurgical and Chemical Engineering
- Jiangxi University of Science and Technology
- Ganzhou 341000
- China
| | - Yu-Chao Wang
- College of Biological
- Chemical Sciences and Engineering
- Jiaxing University
- Jiaxing 314001
- China
| | - Guanyinsheng Qiu
- College of Biological
- Chemical Sciences and Engineering
- Jiaxing University
- Jiaxing 314001
- China
| |
Collapse
|
19
|
Ning Z, Peng X, Bai R, Liu S, Li Z, Jiao L. Iridium Catalyzed C—H Amidation of Benzamides with Phosphoryl Azides in Ionic Liquids. CHINESE J ORG CHEM 2021. [DOI: 10.6023/cjoc202104039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
20
|
Kim S, Jeoung D, Kim K, Lee SB, Lee SH, Park MS, Ghosh P, Mishra NK, Hong S, Kim IS. Site‐Selective C–H Amidation of 2‐Aryl Quinazolinones Using Nitrene Surrogates. European J Org Chem 2020. [DOI: 10.1002/ejoc.202001128] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Affiliation(s)
- Saegun Kim
- School of Pharmacy Sungkyunkwan University 16419 Suwon Republic of Korea
| | - Daeun Jeoung
- School of Pharmacy Sungkyunkwan University 16419 Suwon Republic of Korea
| | - Kunyoung Kim
- School of Pharmacy Sungkyunkwan University 16419 Suwon Republic of Korea
| | - Seok Beom Lee
- College of Pharmacy Seoul National University 08826 Seoul Republic of Korea
| | - Suk Hun Lee
- School of Pharmacy Sungkyunkwan University 16419 Suwon Republic of Korea
| | - Min Seo Park
- School of Pharmacy Sungkyunkwan University 16419 Suwon Republic of Korea
| | - Prithwish Ghosh
- School of Pharmacy Sungkyunkwan University 16419 Suwon Republic of Korea
| | | | - Suckchang Hong
- College of Pharmacy Seoul National University 08826 Seoul Republic of Korea
| | - In Su Kim
- School of Pharmacy Sungkyunkwan University 16419 Suwon Republic of Korea
| |
Collapse
|
21
|
Tang SB, Fu XP, Wu GR, Zhang LL, Deng KZ, Yang JY, Xia CC, Ji YF. Rhodium(III)-catalyzed C4-amidation of indole-oximes with dioxazolones via C-H activation. Org Biomol Chem 2020; 18:7922-7931. [PMID: 33001107 DOI: 10.1039/d0ob01655a] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
A novel method for the Rh(iii)-catalyzed oxime-directed C-H amidation of indoles with dioxazolones has been developed. This strategy provides an exclusive site selectivity and the directing group can be easily removed. This transformation features a wide substrate scope, good functional group tolerance and excellent yields, and may serve as a significant tool to construct structurally diverse indole derivatives for the screening of potential pharmaceuticals in the future.
Collapse
Affiliation(s)
- Shi-Biao Tang
- Engineering Research Centre of Pharmaceutical Process Chemistry, Ministry of Education; School of Pharmacy, East China University of Science & Technology, 130 Meilong Road, Shanghai 200237, P. R. China.
| | | | | | | | | | | | | | | |
Collapse
|
22
|
Sk MR, Bera SS, Basuli S, Metya A, Maji MS. Recent Progress in the C−N Bond Formation via High‐Valent Group 9 Cp*M(III)‐Catalyzed Directed sp
2
C−H Activation. ASIAN J ORG CHEM 2020. [DOI: 10.1002/ajoc.202000367] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Affiliation(s)
- Md Raja Sk
- Department of Chemistry Indian Institute of Technology Kharagpur Kharagpur 721302 West Bengal India
| | - Sourav Sekhar Bera
- Department of Chemistry Indian Institute of Technology Kharagpur Kharagpur 721302 West Bengal India
| | - Suchand Basuli
- Department of Chemistry Indian Institute of Technology Kharagpur Kharagpur 721302 West Bengal India
| | - Abhisek Metya
- Department of Chemistry Indian Institute of Technology Kharagpur Kharagpur 721302 West Bengal India
| | - Modhu Sudan Maji
- Department of Chemistry Indian Institute of Technology Kharagpur Kharagpur 721302 West Bengal India
| |
Collapse
|
23
|
Xu HB, Yang JH, Chai XY, Zhu YY, Dong L. Iridium(III)-Catalyzed C–H Amidation/Cyclization of NH-Sulfoximines with N-Alkoxyamides: Formation of Thiadiazine 1-Oxides. Org Lett 2020; 22:2060-2063. [PMID: 32101014 DOI: 10.1021/acs.orglett.0c00520] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Affiliation(s)
- Hui-Bei Xu
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry, Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu 610041, China
| | - Jia-Hui Yang
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry, Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu 610041, China
| | - Xin-Yue Chai
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry, Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu 610041, China
| | - Yan-Ying Zhu
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry, Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu 610041, China
| | - Lin Dong
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry, Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu 610041, China
| |
Collapse
|
24
|
Xu HB, Zhu YY, Yang JH, Chai XY, Dong L. RhIII-Catalyzed one-pot cascade synthesis of quinazolines with N-alkoxyamide as an amidating reagent. Org Chem Front 2020. [DOI: 10.1039/d0qo00084a] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Novel and efficient rhodium(iii)-catalyzed C–H bond activation and tandem annulation for the synthesis of structurally complex quinazolines have been successfully developed.
Collapse
Affiliation(s)
- Hui-Bei Xu
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry
- Sichuan Research Center for Drug Precision Industrial Technology
- West China School of Pharmacy
- Sichuan University
- Chengdu 610041
| | - Yan-Ying Zhu
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry
- Sichuan Research Center for Drug Precision Industrial Technology
- West China School of Pharmacy
- Sichuan University
- Chengdu 610041
| | - Jia-Hui Yang
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry
- Sichuan Research Center for Drug Precision Industrial Technology
- West China School of Pharmacy
- Sichuan University
- Chengdu 610041
| | - Xin-Yue Chai
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry
- Sichuan Research Center for Drug Precision Industrial Technology
- West China School of Pharmacy
- Sichuan University
- Chengdu 610041
| | - Lin Dong
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry
- Sichuan Research Center for Drug Precision Industrial Technology
- West China School of Pharmacy
- Sichuan University
- Chengdu 610041
| |
Collapse
|