1
|
Wang W, Peng Y, Liu Y, Lin Y, Zhao F, Chen Q, Xuan L, Yan Q, Chen FE, Zhou H. Nucleophilic addition of bulk chemicals with imines using N-functionalized hydroxylamine reagents as precursors. Nat Commun 2025; 16:168. [PMID: 39747867 PMCID: PMC11696734 DOI: 10.1038/s41467-024-55488-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2024] [Accepted: 12/13/2024] [Indexed: 01/04/2025] Open
Abstract
C-C and C-X bond forming reactions are essential tools in organic synthesis, constantly revolutionizing human life. Among the key methods for constructing new chemical bonds are nucleophilic addition reactions involving imines. However, the inherent challenges in synthesizing and storing imines have stimulated interest in designing stable precursors, which generates imines in situ during the reaction. This approach offers a promising alternative to traditional strategies and holds significant potential for future applications. Here we report a direct and general nucleophilic addition of imines with cost-effective feedstocks and easily accessible nucleophiles, specifically utilizing N‑functionalized hydroxylamine reagents as bench-stable precursors. This methodology streamlines the synthesis of various products, such as amino acid derivatives, through a wide range of reaction types, including C-C, C-N, C-O, and C-S bond constructions. Mechanistic studies and DFT calculations provide insights into a plausible reaction mechanism that supports the in-situ imine formation.
Collapse
Affiliation(s)
- Wei Wang
- College of Chemistry, Central China Normal University (CCNU), Wuhan, Hubei, PR China
- Pharmaceutical Research Institute, School of Chemical Engineering & Pharmacy, Wuhan Institute of Technology, Wuhan, Hubei, PR China
| | - Yuanyuan Peng
- Pharmaceutical Research Institute, School of Chemical Engineering & Pharmacy, Wuhan Institute of Technology, Wuhan, Hubei, PR China
| | - Yang Liu
- College of Chemistry, Central China Normal University (CCNU), Wuhan, Hubei, PR China
- Pharmaceutical Research Institute, School of Chemical Engineering & Pharmacy, Wuhan Institute of Technology, Wuhan, Hubei, PR China
| | - Yanchun Lin
- Pharmaceutical Research Institute, School of Chemical Engineering & Pharmacy, Wuhan Institute of Technology, Wuhan, Hubei, PR China
| | - Fei Zhao
- Pharmaceutical Research Institute, School of Chemical Engineering & Pharmacy, Wuhan Institute of Technology, Wuhan, Hubei, PR China
| | - Qinlin Chen
- College of Chemistry, Central China Normal University (CCNU), Wuhan, Hubei, PR China
- Pharmaceutical Research Institute, School of Chemical Engineering & Pharmacy, Wuhan Institute of Technology, Wuhan, Hubei, PR China
| | - Liangming Xuan
- Pharmaceutical Research Institute, School of Chemical Engineering & Pharmacy, Wuhan Institute of Technology, Wuhan, Hubei, PR China
| | - Qiongjiao Yan
- Pharmaceutical Research Institute, School of Chemical Engineering & Pharmacy, Wuhan Institute of Technology, Wuhan, Hubei, PR China
| | - Fen-Er Chen
- Engineering Center of Catalysis and Synthesis for Chiral Molecules, Department of Chemistry, Fudan University, Shanghai, PR China.
| | - Hui Zhou
- College of Chemistry, Central China Normal University (CCNU), Wuhan, Hubei, PR China.
- Chemical Synthesis and Pollution Control Key Laboratory of Sichuan Province, College of Chemistry and Chemical Engineering, China West Normal University, Nanchong, Sichuan, PR China.
| |
Collapse
|
2
|
Wang Y, Yang M, Lao C, Wang H, Jiang Z. Oxidative Cross-Coupling of α-Amino Ketones with Alcohols Enabled by I 2-Catalyzed C-H Hydroxylation. J Org Chem 2023; 88:14470-14486. [PMID: 37807762 PMCID: PMC10594655 DOI: 10.1021/acs.joc.3c01469] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2023] [Indexed: 10/10/2023]
Abstract
An I2-catalyzed oxidative cross-coupling of α-amino ketones with a wide range of alcohols is described. Using a combination of air and dimethyl sulfoxide (DMSO) as oxidants, the protocol allows an efficient synthesis of α-carbonyl N,O-acetals with high functional group tolerance and enables the late-stage introduction of α-amino ketones into biorelevant alcohols. Moreover, the present method can be used in the coupling of α-amino ketones with other kinds of nucleophiles, which demonstrates great generality for the functionalization of α-amino ketones. A preliminary mechanistic investigation suggests that C-H hydroxylation of α-amino ketones has been recognized as the key step followed by subsequent dehydration coupling.
Collapse
Affiliation(s)
- Yingwei Wang
- State
Key Laboratory of Quality Research in Chinese Medicines, Macau University of Science and Technology, Macau 999078, China
- School
of Chemical Engineering, Sichuan University
of Science & Engineering, Zigong 643000, China
| | - Mingrong Yang
- State
Key Laboratory of Quality Research in Chinese Medicines, Macau University of Science and Technology, Macau 999078, China
| | - Chichou Lao
- State
Key Laboratory of Quality Research in Chinese Medicines, Macau University of Science and Technology, Macau 999078, China
| | - Hanxuan Wang
- State
Key Laboratory of Quality Research in Chinese Medicines, Macau University of Science and Technology, Macau 999078, China
| | - Zhihong Jiang
- State
Key Laboratory of Quality Research in Chinese Medicines, Macau University of Science and Technology, Macau 999078, China
| |
Collapse
|
3
|
Wen W, Ai ZP, Yang CL, Li CX, Wu ZL, Cai T, Guo QX. Enantioselective synthesis of α-amino ketones through palladium-catalyzed asymmetric arylation of α-keto imines. Chem Sci 2022; 13:3796-3802. [PMID: 35432891 PMCID: PMC8966749 DOI: 10.1039/d2sc00386d] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2022] [Accepted: 03/06/2022] [Indexed: 11/23/2022] Open
Abstract
Chiral α-amino ketones are common structural motifs in natural products and pharmaceuticals, as well as important synthons in organic synthesis. Thus, establishing efficient methods for preparing compounds with these privileged scaffolds is an important endeavor in synthetic chemistry. Herein we disclose a new catalytic asymmetric approach for the synthesis of chiral α-amino ketones through a chiral palladium-catalyzed arylation reaction of in situ generated challenging α-keto imines from previously unreported C-acyl N-sulfonyl-N,O-aminals, with arylboronic acids. The current reaction offers a straightforward approach to the asymmetric synthesis of acyclic α-amino ketones in a practical and highly stereocontrolled manner. Meanwhile, the multiple roles of the chiral Pd(ii) complex catalyst in the reaction were also reported. Chiral α-amino ketones are common structural motifs in natural products and pharmaceuticals, as well as important synthons in organic synthesis.![]()
Collapse
Affiliation(s)
- Wei Wen
- Chongqing Key Laboratory of Soft-Matter Material Chemistry and Function Manufacturing, School of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, China
| | - Zhao-Pin Ai
- Chongqing Key Laboratory of Soft-Matter Material Chemistry and Function Manufacturing, School of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, China
| | - Chang-Lin Yang
- Chongqing Key Laboratory of Soft-Matter Material Chemistry and Function Manufacturing, School of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, China
| | - Chao-Xing Li
- Chongqing Key Laboratory of Soft-Matter Material Chemistry and Function Manufacturing, School of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, China
| | - Zhu-Lian Wu
- Chongqing Key Laboratory of Soft-Matter Material Chemistry and Function Manufacturing, School of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, China
| | - Tian Cai
- Chongqing Key Laboratory of Soft-Matter Material Chemistry and Function Manufacturing, School of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, China
| | - Qi-Xiang Guo
- Chongqing Key Laboratory of Soft-Matter Material Chemistry and Function Manufacturing, School of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, China
| |
Collapse
|
4
|
Wang Y, Yang M, Lao C, Jiang Z. C-H bond cleavage-enabled aerobic ring-opening reaction of in situ formed 2-aminobenzofuran-3(2 H)-ones. Org Biomol Chem 2021; 19:9448-9459. [PMID: 34693412 DOI: 10.1039/d1ob01755a] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A C-H bond cleavage-enabled aerobic ring-opening reaction of 2-aminobenzofuran-3(2H)-ones formed in situ by hemiacetals with a variety of amines is reported. This simple one-pot reaction provides an alternative approach to obtain o-hydroxyaryl glyoxylamides in excellent yields of up to 97%. Alkylamines react with hemiacetals via a catalyst-free dehydration condensation to generate 2-aminobenzofuran-3(2H)-ones. The in situ formed semicyclic N,O-acetals undergo the same amine-initiated C-H bond hydroxylation in air under mild conditions to afford ring-opening products. Similarly, arylamines were investigated as substrates for a two-step tandem process involving a DPP-catalyzed condensation followed by a Et2NH-mediated C-H hydroxylation. Unlike the previously reported functionalization of N,O-acetals via a C-O or C-N cleavage, the aerobic oxidative C-H hydroxylation in this reaction, which is promoted by using stoichiometric amounts of alkylamines as both a Lewis base and a reductant at room temperature under atmospheric air, proceeds via α-carbonyl-stabilized carbanion intermediates from the C-H cleavage of N,O-acetals.
Collapse
Affiliation(s)
- Yingwei Wang
- State Key Laboratory of Quality Research in Chinese Medicines, Macau University of Science and Technology, Macau 999078, China.
| | - Mingrong Yang
- State Key Laboratory of Quality Research in Chinese Medicines, Macau University of Science and Technology, Macau 999078, China.
| | - Chichou Lao
- State Key Laboratory of Quality Research in Chinese Medicines, Macau University of Science and Technology, Macau 999078, China. .,Faculty of Chinese Medicine, Macau University of Science and Technology, Macau 999078, China
| | - Zhihong Jiang
- State Key Laboratory of Quality Research in Chinese Medicines, Macau University of Science and Technology, Macau 999078, China.
| |
Collapse
|
5
|
Kumar R, Nguyen QH, Um TW, Shin S. Recent Progress in Enolonium Chemistry under Metal-Free Conditions. CHEM REC 2021; 22:e202100172. [PMID: 34418282 DOI: 10.1002/tcr.202100172] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2021] [Revised: 08/08/2021] [Accepted: 08/11/2021] [Indexed: 11/09/2022]
Abstract
Umpolung approach through inversion of the polarity of conventional enolates, has opened up an unprecedented opportunity in the cross-coupling via alkylation. The enolonium equivalents can be accessed either by hypervalent iodine reagents, activation/oxidation of amides, or the oxidation of alkynes. Under umpolung conditions, highly basic conditions required for classical enolate chemistry can be avoided, and they can couple with unmodified nucleophiles such as heteroatom donors and electron-rich arenes.
Collapse
Affiliation(s)
- Ravi Kumar
- Department of Chemistry, Center for New Directions in Organic Chemistry (CNOS), and Institute for Natural Sciences, Hanyang University, 222 Wangsimni-ro, Seongdong-gu, Seoul, 04763, Korea
| | - Quynh H Nguyen
- Department of Chemistry, Center for New Directions in Organic Chemistry (CNOS), and Institute for Natural Sciences, Hanyang University, 222 Wangsimni-ro, Seongdong-gu, Seoul, 04763, Korea
| | - Tae-Woong Um
- Department of Chemistry, Center for New Directions in Organic Chemistry (CNOS), and Institute for Natural Sciences, Hanyang University, 222 Wangsimni-ro, Seongdong-gu, Seoul, 04763, Korea
| | - Seunghoon Shin
- Department of Chemistry, Center for New Directions in Organic Chemistry (CNOS), and Institute for Natural Sciences, Hanyang University, 222 Wangsimni-ro, Seongdong-gu, Seoul, 04763, Korea
| |
Collapse
|
6
|
Shcherbakov NV, Dar’in DV, Kukushkin VY, Dubovtsev AY. Hetero-Tetradehydro-Diels–Alder Cycloaddition of Enynamides and Cyanamides: Gold-Catalyzed Generation of Diversely Substituted 2,6-Diaminopyridines. J Org Chem 2021; 86:7218-7228. [DOI: 10.1021/acs.joc.1c00558] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Affiliation(s)
- Nikolay V. Shcherbakov
- Saint Petersburg State University, Universitetskaya Nab. 7/9, 199034 Saint Petersburg, Russian Federation
| | - Dmitry V. Dar’in
- Saint Petersburg State University, Universitetskaya Nab. 7/9, 199034 Saint Petersburg, Russian Federation
| | - Vadim Yu. Kukushkin
- Saint Petersburg State University, Universitetskaya Nab. 7/9, 199034 Saint Petersburg, Russian Federation
- South Ural State University, 454080 Chelyabinsk, Russian Federation
| | - Alexey Yu. Dubovtsev
- Saint Petersburg State University, Universitetskaya Nab. 7/9, 199034 Saint Petersburg, Russian Federation
| |
Collapse
|
7
|
Pradhan TR, Paudel M, Harper JL, Cheong PHY, Park JK. Characterization and Utilization of the Elusive α,β-Unsaturated N-Tosyliminium: the Synthesis of Highly Functionalizable Skipped Halo Enynes. Org Lett 2021; 23:1427-1433. [PMID: 33538600 DOI: 10.1021/acs.orglett.1c00103] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
A formal haloalkynylation of allenamides has been described for the synthesis of highly stereo- and regioselective skipped halo enynes. Exclusive γ-regioselectivity is achieved through the intermediacy of a conjugated N-tosyliminium intermediate-direct evidence for the formation of which was validated by NMR and HRMS. Quantum mechanical computations reveal that the reactive intermediate geometry is key to controlling the 1,2- or 1,4-regioselectivity of alkyne interception. Divergent access to elusive unsaturated systems has also been reported.
Collapse
Affiliation(s)
- Tapas R Pradhan
- Department of Chemistry and Institution for Functional Materials, Pusan National University, Busan 46241, Republic of Korea
| | - Mukti Paudel
- Department of Chemistry and Institution for Functional Materials, Pusan National University, Busan 46241, Republic of Korea
| | - Jordan L Harper
- Department of Chemistry, Oregon State University, Corvallis, Oregon 97331, United States
| | - Paul Ha-Yeon Cheong
- Department of Chemistry, Oregon State University, Corvallis, Oregon 97331, United States
| | - Jin Kyoon Park
- Department of Chemistry and Institution for Functional Materials, Pusan National University, Busan 46241, Republic of Korea
| |
Collapse
|
8
|
Lynch CC, Sripada A, Wolf C. Asymmetric synthesis with ynamides: unique reaction control, chemical diversity and applications. Chem Soc Rev 2020; 49:8543-8583. [PMID: 33073285 PMCID: PMC8383824 DOI: 10.1039/d0cs00769b] [Citation(s) in RCA: 120] [Impact Index Per Article: 24.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Ynamides are among the most powerful building blocks in organic synthesis and have become invaluable starting materials for the construction of multifunctional compounds and challenging architectures that would be difficult to prepare otherwise. The rapidly growing popularity originates from the unique reactivity and ease of manipulation of the polarized ynamide triple bond, the advance of practical methods for making them, and the simplicity of storage and handling. These attractive features and the demonstration of numerous synthetic applications have spurred the development of intriguing asymmetric reaction strategies during the last decade. An impressive variety of chemo-, regio- and stereoselective carbon-carbon and carbon-heteroatom bond forming reactions with ynamides have been developed and now significantly enrich the toolbox of synthetic chemists. This review provides a comprehensive overview of asymmetric ynamide chemistry since 2010 with a focus on the general scope, current limitations, stereochemical reaction control and mechanistic aspects.
Collapse
Affiliation(s)
- Ciarán C Lynch
- Department of Chemistry, Georgetown University, 37th and O Streets, Washington, DC 20057, USA.
| | | | | |
Collapse
|