1
|
Arockiaraj M, Rajeshkumar V. Iodine-promoted sequential C(sp 3)-H oxidation and cyclization of aryl methyl ketones with 2-(2-aminophenyl)quinazolin-4(3 H)-ones. Org Biomol Chem 2024; 22:7052-7058. [PMID: 39145634 DOI: 10.1039/d4ob01146e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/16/2024]
Abstract
An I2-promoted, metal-free protocol has been developed for the one-pot synthesis of 6-aroyl-5,6-dihydro-8H-quinazolino[4,3-b]quinazolin-8-ones from readily accessible substrates. This reaction involves the in situ sp3 C-H oxidation of aryl methyl ketones to phenylglyoxal, followed by imine formation and intramolecular nucleophilic addition, resulting in the formation of two new C-N bonds. Furthermore, the method is applicable to a wide range of aryl methyl ketones, including heterocycles and drug-derived substrates, yielding the desired products with yields ranging from 62% to 93%. Additionally, the practical utility of this approach was demonstrated through gram-scale synthesis.
Collapse
Affiliation(s)
- Mariyaraj Arockiaraj
- Organic Synthesis & Catalysis Lab, Department of Chemistry, National Institute of Technology Warangal, Hanumakonda - 506004, Telangana, India.
| | - Venkatachalam Rajeshkumar
- Organic Synthesis & Catalysis Lab, Department of Chemistry, National Institute of Technology Warangal, Hanumakonda - 506004, Telangana, India.
| |
Collapse
|
2
|
Gao S, Cai M, Xu G, Jin Q, Wang X, Xu L, Wang L, Dai L. (NH 4) 2S 2O 8 promoted tandem radical cyclization of quinazolin-4(3 H)-ones with oxamic acids for the construction of fused quinazolinones under metal-free conditions. Org Biomol Chem 2024; 22:2241-2251. [PMID: 38372133 DOI: 10.1039/d3ob02081a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/20/2024]
Abstract
A novel cascade radical addition/cyclization reaction of non-activated olefins and oxamic acids has been proposed. Under transition metal-free conditions, 36 quinazolinone derivatives containing an amide moiety were successfully synthesized, with the highest yield being 81%. This method involves the preparation of aminoacyl fused quinazolinone derivatives under mild conditions, offering advantages such as a high yield, a broad substrate compatibility, and a high atom economy.
Collapse
Affiliation(s)
- Shenyuan Gao
- Zhejiang Provincial Key Laboratory of Advanced Chemical Engineering Manufacture Technology, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310027, PR China.
| | - Menglu Cai
- Zhejiang Provincial Key Laboratory of Advanced Chemical Engineering Manufacture Technology, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310027, PR China.
- Hangzhou Global Scientific and Technological Innovation Center, Zhejiang University, Hangzhou 310027, PR China.
| | - Gang Xu
- Zhejiang Provincial Key Laboratory of Advanced Chemical Engineering Manufacture Technology, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310027, PR China.
| | - Qiaolin Jin
- Zhejiang Provincial Key Laboratory of Advanced Chemical Engineering Manufacture Technology, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310027, PR China.
| | - Xiaozhong Wang
- Zhejiang Provincial Key Laboratory of Advanced Chemical Engineering Manufacture Technology, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310027, PR China.
| | - Linze Xu
- Zhejiang Provincial Key Laboratory of Advanced Chemical Engineering Manufacture Technology, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310027, PR China.
| | - Lixiang Wang
- Zhejiang Provincial Key Laboratory of Advanced Chemical Engineering Manufacture Technology, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310027, PR China.
| | - Liyan Dai
- Zhejiang Provincial Key Laboratory of Advanced Chemical Engineering Manufacture Technology, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310027, PR China.
| |
Collapse
|
3
|
Zou JY, Yang YY, Gu J, Liu F, Ye Z, Yi W, He Y. Asymmetric Allylic Substitution-Isomerization for the Modular Synthesis of Axially Chiral N-Vinylquinazolinones. Angew Chem Int Ed Engl 2023; 62:e202310320. [PMID: 37582683 DOI: 10.1002/anie.202310320] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Revised: 08/12/2023] [Accepted: 08/15/2023] [Indexed: 08/17/2023]
Abstract
Axially chiral N-substituted quinazolinones are important bioactive molecules, which are presented in many synthetic drugs. However, most strategies toward their atroposelective synthesis are mainly limited to the axially chiral arylquinazolinone frameworks. The development of modular synthetic methods to access diverse quinazolinone-based atropisomers remains scarce and challenging. Herein, we report the regio- and atroposelective synthesis of axially chiral N-vinylquinazolinones via the strategy of asymmetric allylic substitution-isomerization. The catalysis system utilized both asymmetric transition-metal catalysis and organocatalysis to efficiently afford trisubstituted and tetrasubstituted N-vinylquinazolinone atropisomers, respectively. With the meticulous design of β-substituted allylic substrates, both Z- and E-tetrasubstituted axially chiral N-vinylquinazolinones were obtained in good yields and high enantioselectivities.
Collapse
Affiliation(s)
- Jia-Yu Zou
- School of Chemistry and Chemical Engineering, Nanjing University of Science and Technology, Nanjing, 210094, China
| | - Yu-Ying Yang
- School of Chemistry and Chemical Engineering, Nanjing University of Science and Technology, Nanjing, 210094, China
| | - Jun Gu
- School of Chemistry and Chemical Engineering, Nanjing University of Science and Technology, Nanjing, 210094, China
| | - Fei Liu
- School of Chemistry and Chemical Engineering, Nanjing University of Science and Technology, Nanjing, 210094, China
| | - Zhiwen Ye
- School of Chemistry and Chemical Engineering, Nanjing University of Science and Technology, Nanjing, 210094, China
| | - Wenbin Yi
- School of Chemistry and Chemical Engineering, Nanjing University of Science and Technology, Nanjing, 210094, China
| | - Ying He
- School of Chemistry and Chemical Engineering, Nanjing University of Science and Technology, Nanjing, 210094, China
| |
Collapse
|
4
|
Guo YM, Wang H, Yang JR, Chen Q, Cao C, Chen JZ. Synthesis of 2,3-Fused Quinazolinones via the Radical Cascade Pathway and Reaction Mechanistic Studies by DFT Calculations. J Org Chem 2023; 88:10448-10459. [PMID: 37458429 DOI: 10.1021/acs.joc.2c03050] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/05/2023]
Abstract
An efficient radical cascade cyclization of unactivated alkenes toward the synthesis of a series of ring-fused quinazolinones has been developed in moderate to excellent yields using commercially available ethers, alkanes, and alcohols, respectively, under a base-free condition in a short time without a transition metal as catalyst. Notably, the transformations can be carried out with the advantages of a broad substrate scope and high atomic economy. Density functional theory calculations and wavefunction analyses were performed to elucidate the radical reaction mechanism.
Collapse
Affiliation(s)
- Ya-Min Guo
- College of Pharmaceutical Sciences, Zhejiang University, 866 Yuhangtang Rd., Hangzhou 310058, Zhejiang, China
| | - Hao Wang
- College of Pharmaceutical Sciences, Zhejiang University, 866 Yuhangtang Rd., Hangzhou 310058, Zhejiang, China
| | - Jin-Rong Yang
- Polytechnic Institute, Zhejiang University, 269 Shixiang Rd., Hangzhou 310015, Zhejiang, China
| | - Qiang Chen
- College of Pharmaceutical Sciences, Zhejiang University, 866 Yuhangtang Rd., Hangzhou 310058, Zhejiang, China
| | - Cheng Cao
- Polytechnic Institute, Zhejiang University, 269 Shixiang Rd., Hangzhou 310015, Zhejiang, China
| | - Jian-Zhong Chen
- College of Pharmaceutical Sciences, Zhejiang University, 866 Yuhangtang Rd., Hangzhou 310058, Zhejiang, China
| |
Collapse
|
5
|
Sahoo S, Rao MA, Pal S. An Aldehyde-Driven, Fe(0)-Mediated, One-Pot Reductive Cyclization: Direct Access to 5,6-Dihydro-quinazolino[4,3- b]quinazolin-8-ones and Photophysical Study. J Org Chem 2023. [PMID: 37471271 DOI: 10.1021/acs.joc.3c00766] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/22/2023]
Abstract
A short, proficient, and regioselective synthesis of biheterocyclic 5,6-dihydro-quinazolino[4,3-b]quinazolin-8-ones has been revealed via an Fe(0)-powder-mediated, one-pot reductive cyclization protocol. Mechanistic investigation proved that water acts as a source of hydrogen for the reduction of the nitro group and the reaction rate was accelerated by an aldehyde. The designed transformation works under aerobic conditions, providing a series of bio-inspired molecular scaffolds. In addition, the photophysical study showed blue fluorescence emission with a good fluorescence quantum yield.
Collapse
Affiliation(s)
- Subrata Sahoo
- Organic Chemistry Laboratory, School of Basic Sciences, Indian Institute of Technology Bhubaneswar, Argul, Odisha 752050, India
| | - Manthri Atchuta Rao
- Organic Chemistry Laboratory, School of Basic Sciences, Indian Institute of Technology Bhubaneswar, Argul, Odisha 752050, India
| | - Shantanu Pal
- Organic Chemistry Laboratory, School of Basic Sciences, Indian Institute of Technology Bhubaneswar, Argul, Odisha 752050, India
| |
Collapse
|
6
|
Pawar G, Ghouse SM, Joshi SV, Rana P, Kar S, Sarma PM, Dannarm SR, Sonti R, Nanduri S. Cu(I)‐Catalyzed Microwave‐Assisted Multicomponent Reaction Towards Synthesis of Diverse Fluorescent Quinazolino[4,3‐
b
]quinazolin‐8‐ones and Their Photophysical Study. ChemistrySelect 2022. [DOI: 10.1002/slct.202200500] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Gaurav Pawar
- Department of Chemical Sciences National Institute of Pharmaceutical Education and Research (NIPER) Hyderabad 500 037 Telangana India
| | - Shaikh Mohammad Ghouse
- Department of Chemical Sciences National Institute of Pharmaceutical Education and Research (NIPER) Hyderabad 500 037 Telangana India
| | - Swanand Vinayak Joshi
- Department of Chemical Sciences National Institute of Pharmaceutical Education and Research (NIPER) Hyderabad 500 037 Telangana India
| | - Preeti Rana
- Department of Chemical Sciences National Institute of Pharmaceutical Education and Research (NIPER) Hyderabad 500 037 Telangana India
| | - Swayamsiddha Kar
- Department of Chemistry Sri Sathya Sai Institute of Higher Learning Prasanthinilayam Andhra Pradesh 515 134 India
| | - P. Mahesh Sarma
- Department of Chemistry Sri Sathya Sai Institute of Higher Learning Prasanthinilayam Andhra Pradesh 515 134 India
| | - Srinivas Reddy Dannarm
- Department of Pharmaceutical Analysis National Institute of Pharmaceutical Education and Research (NIPER) Hyderabad 500 037 Telangana India
| | - Rajesh Sonti
- Department of Pharmaceutical Analysis National Institute of Pharmaceutical Education and Research (NIPER) Hyderabad 500 037 Telangana India
| | - Srinivas Nanduri
- Department of Chemical Sciences National Institute of Pharmaceutical Education and Research (NIPER) Hyderabad 500 037 Telangana India
| |
Collapse
|
7
|
WANG W, Zou PS, PANG L, Pan C, Mo DL, SU GF. Recent Advances on the Synthesis of 2,3-Fused Quinazolinones. Org Biomol Chem 2022; 20:6293-6313. [DOI: 10.1039/d2ob00778a] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
As one of the most important structural units in pharmaceuticals and medicinal chemistry, quinazolinone and its derivatives exhibit a wide range of biological and pharmacological activities, including anti-inflammatory, antitubercular, antiviral,...
Collapse
|
8
|
Zhang J, She M, Liu L, Feng X, Li Y, Liu H, Zheng T, Leng X, Liu P, Zhang S, Li J. Selective Thiocyanation and Aromatic Amination To Achieve Organized Annulation of Enaminone with Thiocyanate. Org Lett 2021; 23:8396-8401. [PMID: 34694822 DOI: 10.1021/acs.orglett.1c03129] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
A tandem insertion of thiocyanate to enamine was performed for the regioselective synthesis of multisubstituted benzoimidazo[2,1-b]thiazoles. This method was shown to be effective in addressing the issue of isomerization encountered in common strategies. With a change made to the leading group on the aniline fragment of enamine, the reaction achieved different transformations, thus enabling multisubstituted benzo[4,5]imidazo[2,1-b]thiazoles and thiazoles in satisfactory yields.
Collapse
Affiliation(s)
- Jun Zhang
- Ministry of Education Key Laboratory of Synthetic and Natural Functional Molecule Chemistry, College of Chemistry & Materials Science, Northwest University, Xi'an, Shaanxi 710127, People's Republic of China
| | - Mengyao She
- Ministry of Education Key Laboratory of Synthetic and Natural Functional Molecule Chemistry, College of Chemistry & Materials Science, Northwest University, Xi'an, Shaanxi 710127, People's Republic of China.,Laboratory of Tissue Engineering, Provincial Key Laboratory of Biotechnology of Shaanxi, Ministry of Education Key Laboratory of Resource Biology and Modern Biotechnology, The College of Life Sciences, Faculty of Life and Health Science, Northwest University, Xi'an, Shaanxi 710069, People's Republic of China
| | - Lang Liu
- Ministry of Education Key Laboratory of Synthetic and Natural Functional Molecule Chemistry, College of Chemistry & Materials Science, Northwest University, Xi'an, Shaanxi 710127, People's Republic of China
| | - Xukai Feng
- Ministry of Education Key Laboratory of Synthetic and Natural Functional Molecule Chemistry, College of Chemistry & Materials Science, Northwest University, Xi'an, Shaanxi 710127, People's Republic of China
| | - Yao Li
- Ministry of Education Key Laboratory of Synthetic and Natural Functional Molecule Chemistry, College of Chemistry & Materials Science, Northwest University, Xi'an, Shaanxi 710127, People's Republic of China
| | - Hua Liu
- Ministry of Education Key Laboratory of Synthetic and Natural Functional Molecule Chemistry, College of Chemistry & Materials Science, Northwest University, Xi'an, Shaanxi 710127, People's Republic of China
| | - Tingting Zheng
- Ministry of Education Key Laboratory of Synthetic and Natural Functional Molecule Chemistry, College of Chemistry & Materials Science, Northwest University, Xi'an, Shaanxi 710127, People's Republic of China
| | - Xin Leng
- Ministry of Education Key Laboratory of Synthetic and Natural Functional Molecule Chemistry, College of Chemistry & Materials Science, Northwest University, Xi'an, Shaanxi 710127, People's Republic of China
| | - Ping Liu
- Ministry of Education Key Laboratory of Synthetic and Natural Functional Molecule Chemistry, College of Chemistry & Materials Science, Northwest University, Xi'an, Shaanxi 710127, People's Republic of China
| | - Shengyong Zhang
- Ministry of Education Key Laboratory of Synthetic and Natural Functional Molecule Chemistry, College of Chemistry & Materials Science, Northwest University, Xi'an, Shaanxi 710127, People's Republic of China
| | - Jianli Li
- Ministry of Education Key Laboratory of Synthetic and Natural Functional Molecule Chemistry, College of Chemistry & Materials Science, Northwest University, Xi'an, Shaanxi 710127, People's Republic of China
| |
Collapse
|
9
|
Malasala S, Polomoni A, Chelli SM, Kar S, Madhavi YV, Nanduri S. A microwave-assisted copper-mediated tandem approach for fused quinazoline derivatives. Org Biomol Chem 2021; 19:1854-1859. [PMID: 33565553 DOI: 10.1039/d0ob02312d] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
A method for the microwave-assisted copper-mediated oxidative coupling reaction of different aldehydes and quinazolines/benzimidazoles has been developed for the synthesis of fused-polycyclic systems via new C-N bond formation. The current methodology involves the use of environmentally benign NH4OAc as the amine source in the presence of 2-propanol as the solvent. This novel tandem reaction approach offers a rapid and straightforward access to complex fused quinazoline derivatives in an efficient manner.
Collapse
Affiliation(s)
- Satyaveni Malasala
- Department of Medicinal Chemistry, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad 500 037, India.
| | - Anusha Polomoni
- Department of Process Chemistry, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad 500 037, India
| | - Sai Manohar Chelli
- Department of Chemistry, Sri Sathya Sai Institute of Higher Learning, Puttaparthi, Andhra Pradesh 515 134, India
| | - Swayamsidda Kar
- Department of Chemistry, Sri Sathya Sai Institute of Higher Learning, Puttaparthi, Andhra Pradesh 515 134, India
| | - Y V Madhavi
- Department of Medicinal Chemistry, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad 500 037, India.
| | - Srinivas Nanduri
- Department of Medicinal Chemistry, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad 500 037, India.
| |
Collapse
|
10
|
Meng X, Wu D, Zhang Y, Zhao Y. PPTS‐Catalyzed Bicyclization Reaction of 2‐Isocyanobenzaldehydes with Various Amines: Synthesis of Diverse Fused Quinazolines. Adv Synth Catal 2021. [DOI: 10.1002/adsc.202001512] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Xiang‐He Meng
- Jilin Province Key Laboratory of Organic Functional Molecular Design & Synthesis Faculty of Chemistry Northeast Normal University Changchun 130024 People's Republic of China
| | - Dan‐Ni Wu
- Jilin Province Key Laboratory of Organic Functional Molecular Design & Synthesis Faculty of Chemistry Northeast Normal University Changchun 130024 People's Republic of China
| | - Yu‐Jia Zhang
- Jilin Province Key Laboratory of Organic Functional Molecular Design & Synthesis Faculty of Chemistry Northeast Normal University Changchun 130024 People's Republic of China
| | - Yu‐Long Zhao
- Jilin Province Key Laboratory of Organic Functional Molecular Design & Synthesis Faculty of Chemistry Northeast Normal University Changchun 130024 People's Republic of China
| |
Collapse
|
11
|
Moshkina TN, Nosova EV, Lipunova GN, Zhilina EF, Slepukhin PA, Nikonov IL, Charushin VN. The Rh( iii)-catalysed C–H/N–H annulation of 2-thienyl- and 2-phenyl-quinazolin-4(3 H)-ones with diphenylacetylene. NEW J CHEM 2021. [DOI: 10.1039/d1nj00935d] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
2-Thienyl/phenyl substituted quinazolin-4(3H)-ones were converted into 4,5-diphenyl-7H-thieno[2′,3′:3,4]pyrido[2,1-b]quinazolin-7-ones or amide alcoholysis product via Rh(iii)-catalyzed reaction of with diphenylacetylene.
Collapse
Affiliation(s)
- Tatyana N. Moshkina
- Department of Organic and Biomolecular Chemistry
- Ural Federal University
- Yekaterinburg
- Russia
| | - Emiliya V. Nosova
- Department of Organic and Biomolecular Chemistry
- Ural Federal University
- Yekaterinburg
- Russia
- Postovsky Institute of Organic Synthesis
| | - Galina N. Lipunova
- Department of Organic and Biomolecular Chemistry
- Ural Federal University
- Yekaterinburg
- Russia
- Postovsky Institute of Organic Synthesis
| | - Ekaterina F. Zhilina
- Postovsky Institute of Organic Synthesis
- Ural Division of the Russian Academy of Sciences
- Yekaterinburg
- Russia
| | - Pavel A. Slepukhin
- Department of Organic and Biomolecular Chemistry
- Ural Federal University
- Yekaterinburg
- Russia
- Postovsky Institute of Organic Synthesis
| | - Igor L. Nikonov
- Department of Organic and Biomolecular Chemistry
- Ural Federal University
- Yekaterinburg
- Russia
- Postovsky Institute of Organic Synthesis
| | - Valery N. Charushin
- Department of Organic and Biomolecular Chemistry
- Ural Federal University
- Yekaterinburg
- Russia
- Postovsky Institute of Organic Synthesis
| |
Collapse
|
12
|
Xing Z, Wu W, Miao Y, Tang Y, Zhou Y, Zheng L, Fu Y, Song Z, Peng Y. Recent advances in quinazolinones as an emerging molecular platform for luminescent materials and bioimaging. Org Chem Front 2021. [DOI: 10.1039/d0qo01425g] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
This review summarized recent advances relating to the luminescence properties of quinazolinones and their applications in fluorescent probes, biological imaging and luminescent materials. Their future outlook is also included.
Collapse
Affiliation(s)
- Zhiming Xing
- Key Laboratory of Functional Small Organic Molecules
- Ministry of Education
- College of Chemistry and Chemical Engineering
- Jiangxi Normal University
- Nanchang 330022
| | - Wanhui Wu
- Key Laboratory of Functional Small Organic Molecules
- Ministry of Education
- College of Chemistry and Chemical Engineering
- Jiangxi Normal University
- Nanchang 330022
| | - Yongxiang Miao
- Key Laboratory of Functional Small Organic Molecules
- Ministry of Education
- College of Chemistry and Chemical Engineering
- Jiangxi Normal University
- Nanchang 330022
| | - Yingqun Tang
- Key Laboratory of Functional Small Organic Molecules
- Ministry of Education
- College of Chemistry and Chemical Engineering
- Jiangxi Normal University
- Nanchang 330022
| | - Youkang Zhou
- Key Laboratory of Functional Small Organic Molecules
- Ministry of Education
- College of Chemistry and Chemical Engineering
- Jiangxi Normal University
- Nanchang 330022
| | - Lifang Zheng
- Key Laboratory of Functional Small Organic Molecules
- Ministry of Education
- College of Chemistry and Chemical Engineering
- Jiangxi Normal University
- Nanchang 330022
| | - Yang Fu
- Key Laboratory of Functional Small Organic Molecules
- Ministry of Education
- College of Chemistry and Chemical Engineering
- Jiangxi Normal University
- Nanchang 330022
| | - Zhibin Song
- Key Laboratory of Functional Small Organic Molecules
- Ministry of Education
- College of Chemistry and Chemical Engineering
- Jiangxi Normal University
- Nanchang 330022
| | - Yiyuan Peng
- Key Laboratory of Functional Small Organic Molecules
- Ministry of Education
- College of Chemistry and Chemical Engineering
- Jiangxi Normal University
- Nanchang 330022
| |
Collapse
|
13
|
Chen L, Zhang SF, Chen Z, Zhen Q, Xiong W, Shao Y, Ge JY, Lv N, Chen J. Ni-catalyzed cascade coupling reactions: synthesis and thermally-activated delayed fluorescence characterization of quinazolinone derivatives. NEW J CHEM 2021. [DOI: 10.1039/d1nj02871e] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
A nickel-catalyzed cascade coupling of 2-(2-(arylcarbonyl)-4-oxoquinazolin-3(4H)-yl)acetonitrile and arylboronic acid for the synthesis of pyrazino-fused quinazolinones has been developed. The TADF effect of 3a in the solid-state was investigated.
Collapse
Affiliation(s)
- Lepeng Chen
- College of Chemistry & Materials Engineering, Wenzhou University, Wenzhou 325035, P. R. China
| | - Shou-Feng Zhang
- Department of Electronic Engineering, Guangxi University of Science and Technology, Liuzhou, 545616, P. R. China
| | - Zhongyan Chen
- College of Chemistry & Materials Engineering, Wenzhou University, Wenzhou 325035, P. R. China
| | - Qianqian Zhen
- College of Chemistry & Materials Engineering, Wenzhou University, Wenzhou 325035, P. R. China
| | - Wenzhang Xiong
- College of Chemistry & Materials Engineering, Wenzhou University, Wenzhou 325035, P. R. China
| | - Yinlin Shao
- College of Chemistry & Materials Engineering, Wenzhou University, Wenzhou 325035, P. R. China
| | - Jing-Yuan Ge
- College of Chemistry & Materials Engineering, Wenzhou University, Wenzhou 325035, P. R. China
| | - Ningning Lv
- College of Chemistry & Materials Engineering, Wenzhou University, Wenzhou 325035, P. R. China
| | - Jiuxi Chen
- College of Chemistry & Materials Engineering, Wenzhou University, Wenzhou 325035, P. R. China
| |
Collapse
|
14
|
Zhang Y, Xiong W, Chen L, Shao Y, Li R, Chen Z, Ge J, Lv N, Chen J. Palladium-catalyzed cascade reactions in aqueous media: synthesis and photophysical properties of pyrazino-fused quinazolinones. Org Chem Front 2021. [DOI: 10.1039/d0qo01244k] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
A convenient, efficient, and direct approach toward the synthesis of pyrazino-fused quinazolinone frames has been developed. The photophysical properties of 3e with the AIE effect were investigated.
Collapse
Affiliation(s)
- Yetong Zhang
- College of Chemistry & Materials Engineering
- Wenzhou University
- Wenzhou 325035
- P. R. China
| | - Wenzhang Xiong
- College of Chemistry & Materials Engineering
- Wenzhou University
- Wenzhou 325035
- P. R. China
| | - Lepeng Chen
- College of Chemistry & Materials Engineering
- Wenzhou University
- Wenzhou 325035
- P. R. China
| | - Yinlin Shao
- College of Chemistry & Materials Engineering
- Wenzhou University
- Wenzhou 325035
- P. R. China
| | - Renhao Li
- School of Pharmaceutical Sciences
- Wenzhou Medical University
- Wenzhou 325035
- P. R. China
| | - Zhongyan Chen
- College of Chemistry & Materials Engineering
- Wenzhou University
- Wenzhou 325035
- P. R. China
| | - Jingyuan Ge
- College of Chemistry & Materials Engineering
- Wenzhou University
- Wenzhou 325035
- P. R. China
| | - Ningning Lv
- College of Chemistry & Materials Engineering
- Wenzhou University
- Wenzhou 325035
- P. R. China
| | - Jiuxi Chen
- College of Chemistry & Materials Engineering
- Wenzhou University
- Wenzhou 325035
- P. R. China
| |
Collapse
|
15
|
Moreira NM, Martelli LSR, de Julio KIR, Zukerman-Schpector J, Opatz T, Corrêa AG. Copper-Catalyzed One-Pot Synthesis of 3-( N
-Heteroarenyl)acrylonitriles through Radical Conjugated Addition of β-Nitrostyrene to Methylazaarenes. European J Org Chem 2020. [DOI: 10.1002/ejoc.202000673] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Affiliation(s)
- Natália M. Moreira
- Centre of Excellence for Research in Sustainable Chemistry; Federal University of São Carlos; 13565-905 São Carlos SP Brazil
| | - Lorena S. R. Martelli
- Centre of Excellence for Research in Sustainable Chemistry; Federal University of São Carlos; 13565-905 São Carlos SP Brazil
| | - Kiyara I. R. de Julio
- Centre of Excellence for Research in Sustainable Chemistry; Federal University of São Carlos; 13565-905 São Carlos SP Brazil
| | | | - Till Opatz
- Department of Chemistry; Johannes Gutenberg-University; 55128 Mainz Germany
| | - Arlene G. Corrêa
- Centre of Excellence for Research in Sustainable Chemistry; Federal University of São Carlos; 13565-905 São Carlos SP Brazil
| |
Collapse
|
16
|
Ghosh P, Ganguly B, Das S. C–H functionalization of quinazolinones by transition metal catalysis. Org Biomol Chem 2020; 18:4497-4518. [DOI: 10.1039/d0ob00742k] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Quinazolinone and its derivatives are an important class of heterocyclic scaffolds in pharmaceuticals and natural products. This review provides the recent research advances in the transition metal catalyzed selective C–H bond functionalization of quinazolinone.
Collapse
Affiliation(s)
- Prasanjit Ghosh
- Department of Chemistry
- University of North Bengal
- Darjeeling – 734013
- India
| | - Bhaskar Ganguly
- Department of Chemistry
- University of North Bengal
- Darjeeling – 734013
- India
| | - Sajal Das
- Department of Chemistry
- University of North Bengal
- Darjeeling – 734013
- India
| |
Collapse
|
17
|
Bera A, Ali SA, Manna SK, Ikbal M, Misra S, Saha A, Samanta S. A solvent- and catalyst-free tandem reaction: synthesis, and photophysical and biological applications of isoindoloquinazolinones. NEW J CHEM 2020. [DOI: 10.1039/c9nj05808g] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
An easy green synthetic approach for fused isoindoloquinazolinones has been developed under neat reaction (yields up to 91%) conditions.
Collapse
Affiliation(s)
- Anirban Bera
- Department of Chemistry
- Bidhannagar College
- Kolkata 700064
- India
- Department of Chemistry
| | - Sk Asraf Ali
- Department of Chemistry
- Bidhannagar College
- Kolkata 700064
- India
| | | | - Mohammed Ikbal
- Department of Chemistry Berhampore Girls' College
- Berhampore 742101
- India
| | - Sandip Misra
- Department of Microbiology
- Bidhannagar College
- Kolkata 700064
- India
| | - Amit Saha
- Department of Chemistry
- Kolkata 700032
- India
| | | |
Collapse
|