1
|
Mannuthodikayil J, Malik V, Kar A, Singh S, Mandal K. Chemical Protein Engineering: Backbone Cyclization Rescues Folding of a 183-Residue Truncated Domain of Malaria Parasite Protein PfAMA1. Chemistry 2025; 31:e202500894. [PMID: 40198064 PMCID: PMC12089923 DOI: 10.1002/chem.202500894] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2025] [Revised: 03/24/2025] [Accepted: 04/03/2025] [Indexed: 04/10/2025]
Abstract
The interaction between apical membrane antigen 1 (PfAMA1) and rhoptry neck protein 2 (PfRON2) is crucial for Plasmodium falciparum red blood cell invasion, making it a key target for anti-malarial drug development strategies. Here, we report the chemical synthesis of PfAMA1 domain I (PfAMA1-DI) in both linear and backbone-circularized forms, employing a six-segment convergent synthesis approach exploiting one-pot chemistries and solubilizing tags. The chemically synthesized linear PfAMA1-DI construct exhibited incomplete disulfide bond formation during folding, likely due to increased terminal flexibility in the absence of domain II. To address this, we employed backbone cyclization of the large 180-residue polypeptide chain, with 3-residue linker sequence, as a unique strategy to conformationally restrict its termini and facilitate correct disulfide bond formation. Introducing a multipurpose affinity and solubility tag to the cyclicPfAMA1-DI construct further improved the folding yield by mitigating aggregation. The predicted structure using ColabFold-Alphafold2 indicated that PfRON2 ligand binds within the hydrophobic groove of the cyclicPfAMA1-DI construct similar to the native interactions. These findings underscore the potential of large protein backbone cyclization to stabilize protein structure, offering a compelling strategy for the chemical synthesis of otherwise unstable protein domains with broad applications in miniature protein engineering.
Collapse
Affiliation(s)
- Jamsad Mannuthodikayil
- Tata Institute of Fundamental Research Hyderabad36/p GopanpallyHyderabadTelangana500046India
| | - Vishal Malik
- Tata Institute of Fundamental Research Hyderabad36/p GopanpallyHyderabadTelangana500046India
| | - Abhisek Kar
- Tata Institute of Fundamental Research Hyderabad36/p GopanpallyHyderabadTelangana500046India
| | - Sameer Singh
- Tata Institute of Fundamental Research Hyderabad36/p GopanpallyHyderabadTelangana500046India
| | - Kalyaneswar Mandal
- Tata Institute of Fundamental Research Hyderabad36/p GopanpallyHyderabadTelangana500046India
| |
Collapse
|
2
|
Hong ZZ. Review on the o-Aminoaniline Moiety in Peptide and Protein Chemistry. Chembiochem 2025; 26:e202401011. [PMID: 39854053 PMCID: PMC12067861 DOI: 10.1002/cbic.202401011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2024] [Revised: 01/23/2025] [Accepted: 01/23/2025] [Indexed: 01/26/2025]
Abstract
Peptides and proteins are important functional biomolecules both inside and outside of living organisms. The ability to prepare various types of functionalized peptides and proteins is essential for understanding fundamental biological processes, such as protein folding and post-translational modifications (PTMs), and for developing new therapeutics for many diseases, such as cancers and neurodegenerative diseases. The o-aminoaniline moiety was first proposed for activation to a thioester precursor and used for native chemical ligation to prepare large peptides and proteins. In the past decade, the function of o-aminoaniline has been greatly expanded to facilitate the preparation of homogeneously modified peptide and protein samples, where the modifications can include cyclization, C-terminus diversification, etc. Many o-aminoaniline derivatives have also been developed to overcome the inherent limitations of previous versions. In this review, we attempt to summarize the recent developments of different o-aminoaniline derivatives, focusing on their application to the preparation of functional peptide and protein molecules.
Collapse
Affiliation(s)
- Ziyong Z. Hong
- School of PharmacyUniversity of Wisconsin – Madison777 Highland AveWisconsinUSA
| |
Collapse
|
3
|
Yang Z, Xiao Y, Shi Y, Liu L. Advances in the chemical synthesis of human proteoforms. SCIENCE CHINA. LIFE SCIENCES 2025:10.1007/s11427-024-2860-5. [PMID: 40210795 DOI: 10.1007/s11427-024-2860-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/26/2024] [Accepted: 02/03/2025] [Indexed: 04/12/2025]
Abstract
Access to structurally-defined human proteoforms is essential to the biochemical studies on human health and medicine. Chemical protein synthesis provides a bottom-up and atomic-resolution approach for the preparation of homogeneous proteoforms bearing any number of post-translational modifications of any structure, at any position, and in any combination. In this review, we summarize the development of chemical protein synthesis, focusing on the recent advances in synthetic methods, product characterizations, and biomedical applications. By analyzing the chemical protein synthesis studies on human proteoforms reported to date, this review demonstrates the significant methodological improvements that have taken place in the field of human proteoform synthesis, especially in the last decade. Our analysis shows that although further method development is needed, all the human proteoforms could be within reach in a cost-effective manner through a divide-and-conquer chemical protein synthesis strategy. The synthetic proteoforms have been increasingly used to support biomedical research, including spatial-temporal studies and interaction network analysis, activity quantification and mechanism elucidation, and the development and evaluation of diagnostics and therapeutics.
Collapse
Affiliation(s)
- Ziyi Yang
- New Cornerstone Science Laboratory, Tsinghua-Peking Joint Center for Life Sciences, Ministry of Education Key Laboratory of Bioorganic Phosphorus Chemistry and Chemical Biology, Center for Synthetic and Systems Biology, Department of Chemistry, Tsinghua University, Beijing, 100084, China
| | - Yudi Xiao
- New Cornerstone Science Laboratory, Tsinghua-Peking Joint Center for Life Sciences, Ministry of Education Key Laboratory of Bioorganic Phosphorus Chemistry and Chemical Biology, Center for Synthetic and Systems Biology, Department of Chemistry, Tsinghua University, Beijing, 100084, China
| | - Yang Shi
- New Cornerstone Science Laboratory, Tsinghua-Peking Joint Center for Life Sciences, Ministry of Education Key Laboratory of Bioorganic Phosphorus Chemistry and Chemical Biology, Center for Synthetic and Systems Biology, Department of Chemistry, Tsinghua University, Beijing, 100084, China
| | - Lei Liu
- New Cornerstone Science Laboratory, Tsinghua-Peking Joint Center for Life Sciences, Ministry of Education Key Laboratory of Bioorganic Phosphorus Chemistry and Chemical Biology, Center for Synthetic and Systems Biology, Department of Chemistry, Tsinghua University, Beijing, 100084, China.
| |
Collapse
|
4
|
Singh S, Gangopadhyay A, D S, Chakravarty M. Phenothiazine-linked glutamic acid dendrons: an easy access and a new class of SARS-CoV-2 main protease inhibitors. ROYAL SOCIETY OPEN SCIENCE 2025; 12:241628. [PMID: 40177100 PMCID: PMC11961260 DOI: 10.1098/rsos.241628] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/19/2024] [Revised: 01/05/2025] [Accepted: 01/29/2025] [Indexed: 04/05/2025]
Abstract
In this report, a structurally unique phenothiazine (PTZ) core is linked with glutamic acid-based dendrons through a solid-phase peptide synthesis approach to access a variety of PTZ-linked dendrons conveniently. Inferior cytotoxicity of anionic surface-linked second-generation glutamic acid-based dendrons would be more desirable for various applications than respective lysine-based dendrons. Solid-phase synthesis of PTZ-linked glutamic acid-based dendrons would be a novel approach to access this class of molecules. These newly synthesized dendrons were screened as an inhibitor against the main protease (Mpro) enzyme, proposed to be the best target against SARS-CoV-2. The preliminary assay studies designated a moderate response for the Mpro inhibition, specifically by tryptophan (Trp)-enriched dendron, among other analogues, which play a vital role in combating COVID-19. Further, the experimental studies realize the essential contribution of the PTZ core in interacting with the Mpro enzyme. Molecular dynamics (MD) simulations revealed that the active dendrons formed stable complexes with Mpro, and the binding affinity of the Trp-based PTZ-linked dendrons was higher than that of the decoy dendron analogue.
Collapse
Affiliation(s)
- Sameer Singh
- Department of Chemistry, Birla Institute of Technology & Science Pilani - Hyderabad Campus, Hyderabad, Telangana, India
| | - Aditi Gangopadhyay
- Department of Chemical Technology, University of Calcutta, Kolkata, West Bengal, India
| | - Sriram D
- Department of Pharmacy, Birla Institute of Technology & Science Pilani, Hyderabad, Telangana, India
| | - Manab Chakravarty
- Department of Chemistry, Birla Institute of Technology & Science Pilani - Hyderabad Campus, Hyderabad, Telangana, India
| |
Collapse
|
5
|
Kar A, Narayan A, Malik V, Mandal K. Rational engineering of an antimalarial peptide with enhanced proteolytic stability and preserved parasite invasion inhibitory activity. RSC Chem Biol 2025; 6:65-72. [PMID: 39574463 PMCID: PMC11576825 DOI: 10.1039/d4cb00229f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2024] [Accepted: 11/07/2024] [Indexed: 11/24/2024] Open
Abstract
We describe rational chemical engineering to enhance the proteolytic stability of a chimeric peptide using a combination of unique strategies that involve the incorporation of a series of d-amino acids into the parent l-peptide sequence and restricting the conformational freedom of the peptide by covalent stitching. We hypothesize that replacing a stretch of sequence of an unstructured peptide motif with d-amino acids would increase its proteolytic stability without significantly affecting its affinity to the target protein. Also, considering the Cβ-Cβ distances, replacing an appropriate pair of residues with cysteine to form an additional disulfide bond in the molecule would provide additional stability to the engineered peptide. To verify this hypothesis, we have implemented these strategies to a previously reported peptidic inhibitor RR, against P. falciparum invasion into red blood cells (RBCs) and designed two novel heterochiral chimeric peptides, RR-I and RR-II. We have demonstrated that these peptides exhibit remarkable inhibitory activity with dramatically enhanced proteolytic stability. Finally, we have designed a cyclic analog, RR-III, to enhance the stability of the peptide against endopeptidases. The RR-III peptide exhibits the same inhibitory activity as RR-II while demonstrating impressive resistance to enzymatic degradation and prolonged stability in human plasma. These developments hold promise for a new generation of peptide-based therapeutics, showcasing the potential of residue selection for tailored modifications, as demonstrated in this work.
Collapse
Affiliation(s)
- Abhisek Kar
- Tata Institute of Fundamental Research Hyderabad 36/p Gopanpally Hyderabad Telangana - 500046 India
| | - Akash Narayan
- Tata Institute of Fundamental Research Hyderabad 36/p Gopanpally Hyderabad Telangana - 500046 India
| | - Vishal Malik
- Tata Institute of Fundamental Research Hyderabad 36/p Gopanpally Hyderabad Telangana - 500046 India
| | - Kalyaneswar Mandal
- Tata Institute of Fundamental Research Hyderabad 36/p Gopanpally Hyderabad Telangana - 500046 India
| |
Collapse
|
6
|
Singh S, Mandal K, Chakravarty M. Access to Diverse Glutamic Acid Dendrons and a Janus Peptide Dendrimer Using an Atypical Solid Phase Synthesis. J Org Chem 2024; 89:11261-11271. [PMID: 39104055 DOI: 10.1021/acs.joc.4c00909] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/07/2024]
Abstract
The negligible cytotoxicity of anion surface-linked dendrons makes glutamic acid-based dendrons a potential candidate for materials and biological applications. Despite the inherent drawbacks of the conventional solution phase synthesis of glutamic acid-based dendrons, there have been no advancements in these protocols. Herein, we demonstrate the first-ever convergent solid phase synthesis of dendrons, up to fourth generation, having glutamic acid branching points produced by preactivation of dicarboxylic acid groups with N-hydroxysuccinimide and simultaneous coupling with amine groups of two growing peptide chains, with excellent yields (30-70%). In addition to the general advantages, such as the easy workup, a final single purification step, and an overall short synthesis duration, the convergent solid phase synthesis allowed us to chemically synthesize glutamic acid branching-based dendrons that cannot be accessed by standard divergent solid phase synthesis. This method has also been validated for its application in synthesizing hard-to-achieve Janus peptide dendrimers in a single stretch on a solid support. Our work corroborates the efficacy of controlled -COOH activation to accomplish an atypical solid phase synthesis of diverse glutamic acid dendrons in a convergent fashion. This is the first example of a Janus peptide dendrimer being synthesized on a solid support, utilizing both convergent and divergent approaches simultaneously.
Collapse
Affiliation(s)
- Sameer Singh
- Department of Chemistry, Birla Institute of Technology and Sciences, Pilani-Hyderabad Campus Jawahar Nagar, Shamirpet, Hyderabad 500078, India
| | - Kalyaneswar Mandal
- Tata Institute of Fundamental Research Hyderabad, 36/p Gopanpally, Hyderabad, Telangana 500046, India
| | - Manab Chakravarty
- Department of Chemistry, Birla Institute of Technology and Sciences, Pilani-Hyderabad Campus Jawahar Nagar, Shamirpet, Hyderabad 500078, India
| |
Collapse
|
7
|
Noki S, de la Torre BG, Albericio F. Safety-Catch Linkers for Solid-Phase Peptide Synthesis. Molecules 2024; 29:1429. [PMID: 38611709 PMCID: PMC11012524 DOI: 10.3390/molecules29071429] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Revised: 03/18/2024] [Accepted: 03/20/2024] [Indexed: 04/14/2024] Open
Abstract
Solid-phase peptide synthesis (SPPS) is the preferred strategy for synthesizing most peptides for research purposes and on a multi-kilogram scale. One key to the success of SPPS is the continual evolution and improvement of the original method proposed by Merrifield. Over the years, this approach has been enhanced with the introduction of new solid supports, protecting groups for amino acids, coupling reagents, and other tools. One of these improvements is the use of the so-called "safety-catch" linkers/resins. The linker is understood as the moiety that links the peptide to the solid support and protects the C-terminal carboxylic group. The "safety-catch" concept relies on linkers that are totally stable under the conditions needed for both α-amino and side-chain deprotection that, at the end of synthesis, can be made labile to one of those conditions by a simple chemical reaction (e.g., an alkylation). This unique characteristic enables the simultaneous use of two primary protecting strategies: tert-butoxycarbonyl (Boc) and fluorenylmethoxycarbonyl (Fmoc). Ultimately, at the end of synthesis, either acids (which are incompatible with Boc) or bases (which are incompatible with Fmoc) can be employed to cleave the peptide from the resin. This review focuses on the most significant "safety-catch" linkers.
Collapse
Affiliation(s)
- Sikabwe Noki
- Peptide Science Laboratory, School of Chemistry and Physics, University of KwaZulu-Natal, Westville, Durban 4000, South Africa;
- KwaZulu-Natal Research Innovation and Sequencing Platform (KRISP), School of Laboratory Medicine and Medical Sciences, College of Health Sciences, University of KwaZulu-Natal, Durban 4041, South Africa
| | - Beatriz G. de la Torre
- KwaZulu-Natal Research Innovation and Sequencing Platform (KRISP), School of Laboratory Medicine and Medical Sciences, College of Health Sciences, University of KwaZulu-Natal, Durban 4041, South Africa
| | - Fernando Albericio
- Peptide Science Laboratory, School of Chemistry and Physics, University of KwaZulu-Natal, Westville, Durban 4000, South Africa;
- CIBER-BBN, Networking Centre on Bioengineering, Biomaterials, and Nanomedicine, Department of Organic Chemistry, University of Barcelona, 08028 Barcelona, Spain
| |
Collapse
|
8
|
Kar A, Jana M, Malik V, Sarkar A, Mandal K. Total Chemical Synthesis of the SARS-CoV-2 Spike Receptor-Binding Domain. Chemistry 2024; 30:e202302969. [PMID: 37815536 DOI: 10.1002/chem.202302969] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Revised: 10/10/2023] [Accepted: 10/10/2023] [Indexed: 10/11/2023]
Abstract
SARS-CoV-2 and its global spread have created an unprecedented public health crisis. The spike protein of SARS-CoV-2 has gained significant attention due to its crucial role in viral entry into host cells and its potential as both a prophylactic and a target for therapeutic interventions. Herein, we report the first successful total synthesis of the SARS-CoV-2 spike protein receptor binding domain (RBD), highlighting the key challenges and the strategies employed to overcome them. Appropriate utilization of advanced solid phase peptide synthesis and cutting-edge native chemical ligation methods have facilitated the synthesis of this moderately large protein molecule. We discuss the problems encountered during the chemical synthesis and approaches taken to optimize the yield and the purity of the synthetic protein molecule. Furthermore, we demonstrate that the chemically synthesized homogeneous spike RBD efficiently binds to the known mini-protein binder LCB1. The successful chemical synthesis of the spike RBD presented here can be utilized to gain valuable insights into SARS-CoV-2 spike RBD biology, advancing our understanding and aiding the development of intervention strategies to combat future coronavirus outbreaks. The modular synthetic approach described in this study can be effectively implemented in the synthesis of other mutated variants or enantiomer of the spike RBD for mirror-image drug discovery.
Collapse
Affiliation(s)
- Abhisek Kar
- Tata Institute of Fundamental Research Hyderabad, 36/p Gopanpally, Hyderabad, Telangana, 500046, India
| | - Mrinmoy Jana
- Tata Institute of Fundamental Research Hyderabad, 36/p Gopanpally, Hyderabad, Telangana, 500046, India
| | - Vishal Malik
- Tata Institute of Fundamental Research Hyderabad, 36/p Gopanpally, Hyderabad, Telangana, 500046, India
| | - Arighna Sarkar
- Tata Institute of Fundamental Research Hyderabad, 36/p Gopanpally, Hyderabad, Telangana, 500046, India
| | - Kalyaneswar Mandal
- Tata Institute of Fundamental Research Hyderabad, 36/p Gopanpally, Hyderabad, Telangana, 500046, India
| |
Collapse
|
9
|
Abstract
Deposits of the microtubule-associated protein Tau (MAPT) serve as a hallmark of neurodegenerative diseases known as tauopathies. Numerous studies have demonstrated that in diseases such as Alzheimer's disease (AD), Tau undergoes extensive remodeling. The attachment of post-translational modifications distributed throughout the entire sequence of the protein correlates with clinical presentation. A systematic examination of these protein alterations can shed light on their roles in both healthy and diseased states. However, the ability to access these modifications in the entire protein chain is limited as Tau can only be produced recombinantly or through semisynthesis. In this article, we describe the first chemical synthesis of the longest 2N4R isoform of Tau, consisting of 441 amino acids. The 2N4R Tau was divided into 3 major segments and a total of 11 fragments, all of which were prepared via solid-phase peptide synthesis. The successful chemical strategy has relied on the strategic use of two cysteine sites (C291 and C322) for the native chemical ligations (NCLs). This was combined with modern preparative protein chemistries, such as mercaptothreonine ligation (T205), diselenide-selenoester ligation (D358), and mutations of mercaptoamino acids into native residues via homogeneous radical desulfurization (A40, A77, A119, A157, A246, and A390). The successful completion of the synthesis has established a robust and scalable route to the native protein in multimilligram quantities and high purity. In broader terms, the presented strategy can be applied to the preparation of other shorter isoforms of Tau as well as to introduce all post-translational modifications that are characteristic of tauopathies such as AD.
Collapse
Affiliation(s)
- Wyatt C Powell
- Department of Chemistry, University of Colorado, Boulder, Colorado 80309, United States
| | - Ruiheng Jing
- Department of Chemistry, University of Colorado, Boulder, Colorado 80309, United States
| | - Maciej A Walczak
- Department of Chemistry, University of Colorado, Boulder, Colorado 80309, United States
| |
Collapse
|
10
|
Hong ZZ, Yu RR, Zhang X, Webb AM, Burge NL, Poirier MG, Ottesen JJ. Development of Convergent Hybrid Phase Ligation for Efficient and Convenient Total Synthesis of Proteins. Pept Sci (Hoboken) 2023; 115:e24323. [PMID: 37692919 PMCID: PMC10488053 DOI: 10.1002/pep2.24323] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Accepted: 05/16/2023] [Indexed: 09/12/2023]
Abstract
Simple and efficient total synthesis of homogeneous and chemically modified protein samples remains a significant challenge. Here, we report development of a convergent hybrid phase native chemical ligation (CHP-NCL) strategy for facile preparation of proteins. In this strategy, proteins are split into ~100-residue blocks, and each block is assembled on solid support from synthetically accessible peptide fragments before ligated together into full-length protein in solution. With the new method, we increase the yield of CENP-A synthesis by 2.5-fold compared to the previous hybrid phase ligation approach. We further extend the new strategy to the total chemical synthesis of 212-residue linker histone H1.2 in unmodified, phosphorylated, and citrullinated forms, each from eight peptide segments with only one single purification. We demonstrate that fully synthetic H1.2 replicates the binding interactions of linker histones to intact mononucleosomes, as a proxy for the essential function of linker histones in the formation and regulation of higher order chromatin structure.
Collapse
Affiliation(s)
- Ziyong Z. Hong
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus, Ohio, 43210
| | - Ruixuan R. Yu
- Ohio State Biochemistry Graduate Program, The Ohio State University, Columbus, Ohio, 43210
| | - Xiaoyu Zhang
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus, Ohio, 43210
| | - Allison M. Webb
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus, Ohio, 43210
| | - Nathaniel L. Burge
- Ohio State Biochemistry Graduate Program, The Ohio State University, Columbus, Ohio, 43210
| | - Michael G. Poirier
- Ohio State Biochemistry Graduate Program, The Ohio State University, Columbus, Ohio, 43210
- Department of Physics, Department of Chemistry & Biochemistry, The Ohio State University, Columbus, Ohio, 43210
| | - Jennifer J. Ottesen
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus, Ohio, 43210
- Ohio State Biochemistry Graduate Program, The Ohio State University, Columbus, Ohio, 43210
| |
Collapse
|
11
|
Mannuthodikayil J, Sinha S, Singh S, Biswas A, Ali I, Mashurabad PC, Tabassum W, Vydyam P, Bhattacharyya MK, Mandal K. A Chimeric Peptide Inhibits Red Blood Cell Invasion by Plasmodium falciparum with Hundredfold Increased Efficacy. Chembiochem 2022; 24:e202200533. [PMID: 36449557 DOI: 10.1002/cbic.202200533] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Revised: 11/29/2022] [Accepted: 11/30/2022] [Indexed: 12/05/2022]
Abstract
Inhibiting the formation of a tight junction between two malaria parasite proteins, apical membrane antigen 1 and rhoptry neck protein 2, crucial for red blood cell invasion, prevents progression of the disease. In this work, we have used a unique approach to design a chimeric peptide, prepared by fusion of the best features of two peptide inhibitors, that has displayed parasite growth inhibition ex vivo with nanomolar IC50 , which is 100 times better than any of its parent peptides. Furthermore, to gain structural insights, we computationally modelled the hybrid peptide on its receptor.
Collapse
Affiliation(s)
- Jamsad Mannuthodikayil
- Tata Institute of Fundamental Research Hyderabad, 36/p Gopanpally, Hyderabad, Telangana, 500046, India
| | - Suman Sinha
- Tata Institute of Fundamental Research Hyderabad, 36/p Gopanpally, Hyderabad, Telangana, 500046, India
| | - Sameer Singh
- Tata Institute of Fundamental Research Hyderabad, 36/p Gopanpally, Hyderabad, Telangana, 500046, India
| | - Anamika Biswas
- Tata Institute of Fundamental Research Hyderabad, 36/p Gopanpally, Hyderabad, Telangana, 500046, India
| | - Irshad Ali
- Tata Institute of Fundamental Research Hyderabad, 36/p Gopanpally, Hyderabad, Telangana, 500046, India
| | - Purna Chandra Mashurabad
- Department of Biochemistry, School of Life Sciences, University of Hyderabad, Gachibowli, Hyderabad, 500046, India
| | - Wahida Tabassum
- Department of Biochemistry, School of Life Sciences, University of Hyderabad, Gachibowli, Hyderabad, 500046, India
| | - Pratap Vydyam
- Department of Biochemistry, School of Life Sciences, University of Hyderabad, Gachibowli, Hyderabad, 500046, India
| | - Mrinal Kanti Bhattacharyya
- Department of Biochemistry, School of Life Sciences, University of Hyderabad, Gachibowli, Hyderabad, 500046, India
| | - Kalyaneswar Mandal
- Tata Institute of Fundamental Research Hyderabad, 36/p Gopanpally, Hyderabad, Telangana, 500046, India
| |
Collapse
|
12
|
Sánchez-Campillo I, Miguel-Gracia J, Karamanis P, Blanco-Canosa JB. A versatile o-aminoanilide linker for native chemical ligation. Chem Sci 2022; 13:10904-10913. [PMID: 36320694 PMCID: PMC9491214 DOI: 10.1039/d2sc04158h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Accepted: 08/25/2022] [Indexed: 12/04/2022] Open
Abstract
Chemical protein synthesis (CPS) is a consolidated field founded on the high chemospecificity of amide-forming reactions, most notably the native chemical ligation (NCL), but also on new technologies such as the Ser/Thr ligation of C-terminal salicylaldehyde esters and the α-ketoacid-hydroxylamine (KAHA) condensation. NCL was conceptually devised for the ligation of peptides having a C-terminal thioester and an N-terminal cysteine. The synthesis of C-terminal peptide thioesters has attracted a lot of interest, resulting in the invention of a wide diversity of different methods for their preparation. The N-acylurea (Nbz) approach relies on the use of the 3,4-diaminobenzoic (Dbz-COOH) and the 3-amino-(4-methylamino)benzoic (MeDbz-COOH) acids; the latter disclosed to eliminate the formation of branching peptides. Dbz-COOH has been also used for the development of the benzotriazole (Bt)-mediated NCL, in which the peptide-Dbz-CONH2 precursor is oxidized to a highly acylating peptide-Bt-CONH2 species. Here, we have brought together the Nbz and Bt approaches in a versatile linker, the 1,2-diaminobenzene (Dbz). The Dbz combines the robustness of MeDbz-COOH and the flexibility of Dbz-COOH: it can be converted into the Nbz or Bt C-terminal peptides. Both are ligated in high yields, and the reaction intermediates can be conveniently characterized. Our results show that the Bt precursors have faster NCL kinetics that is reflected by a rapid transthioesterification (<5 min). Taking advantage of this major acylating capacity, peptide-Bt can be transselenoesterified in the presence of selenols to afford peptide selenoesters which hold enormous potential in NCL.
Collapse
Affiliation(s)
- Iván Sánchez-Campillo
- Institute for Advanced Chemistry of Catalonia (IQAC-CSIC) Jordi Girona 18-26 08034 Barcelona Spain
| | - Judit Miguel-Gracia
- Institute for Advanced Chemistry of Catalonia (IQAC-CSIC) Jordi Girona 18-26 08034 Barcelona Spain
| | - Periklis Karamanis
- Dept. of Chemistry "G. Ciamician", University of Bologna Via Selmi 2 40126 Bologna Italy
| | - Juan B Blanco-Canosa
- Institute for Advanced Chemistry of Catalonia (IQAC-CSIC) Jordi Girona 18-26 08034 Barcelona Spain
| |
Collapse
|
13
|
Biswas A, Raran-Kurussi S, Narayan A, Kar A, Chandra Mashurabad P, Bhattacharyya MK, Mandal K. Efficient refolding and functional characterization of PfAMA1(DI+DII) expressed in E. coli. Biochem Biophys Rep 2021; 26:100950. [PMID: 33665380 PMCID: PMC7907217 DOI: 10.1016/j.bbrep.2021.100950] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2020] [Revised: 01/18/2021] [Accepted: 02/04/2021] [Indexed: 11/30/2022] Open
Abstract
Apical membrane antigen 1 (AMA1) is a surface protein of Plasmodium sp. that plays a crucial role in forming moving junction (MJ) during the invasion of human red blood cells. The obligatory presence of AMA1 in the parasite lifecycle designates this protein as a potential vaccine candidate and an essential target for the development of novel peptide or protein therapeutics. However, due to multiple cysteine residues in the protein sequence, attaining the native fold with correct disulfide linkages during the refolding process after expression in bacteria has remained challenging for years. Although several approaches to obtain the refolded protein from bacterial expression have been reported previously, achieving high yield during refolding and proper functional validation of the expressed protein was lacking. We report here an improved method of refolding to obtain higher quantity of refolded protein. We have also validated the refolded protein's functional activity by evaluating the expressed AMA1 protein binding with a known inhibitory peptide, rhoptry neck protein 2 (RON2), using surface plasmon resonance (SPR) and isothermal titration calorimetry (ITC). A simple yet effective protocol for P. falciparum AMA1 protein expression from E. coli. Highly reproducible and scalable refolding protocol. The modified refolding method uses a step-wise dialysis technique. Functional validation of the refolded protein shown by binding with PfRON2 ectodomain using SPR and ITC.
Collapse
Affiliation(s)
- Anamika Biswas
- TIFR Centre for Interdisciplinary Sciences, Tata Institute of Fundamental Research Hyderabad, 36/p Gopanpally, Hyderabad, Telangana 500046, India
| | - Sreejith Raran-Kurussi
- TIFR Centre for Interdisciplinary Sciences, Tata Institute of Fundamental Research Hyderabad, 36/p Gopanpally, Hyderabad, Telangana 500046, India
| | - Akash Narayan
- TIFR Centre for Interdisciplinary Sciences, Tata Institute of Fundamental Research Hyderabad, 36/p Gopanpally, Hyderabad, Telangana 500046, India
| | - Abhisek Kar
- TIFR Centre for Interdisciplinary Sciences, Tata Institute of Fundamental Research Hyderabad, 36/p Gopanpally, Hyderabad, Telangana 500046, India
| | - Purna Chandra Mashurabad
- Department of Biochemistry, School of Life Sciences, University of Hyderabad, Gachibowli, Hyderabad, Telangana 500046, India
| | - Mrinal Kanti Bhattacharyya
- Department of Biochemistry, School of Life Sciences, University of Hyderabad, Gachibowli, Hyderabad, Telangana 500046, India
| | - Kalyaneswar Mandal
- TIFR Centre for Interdisciplinary Sciences, Tata Institute of Fundamental Research Hyderabad, 36/p Gopanpally, Hyderabad, Telangana 500046, India
- Corresponding author.
| |
Collapse
|
14
|
Abboud SA, Aucagne V. An optimized protocol for the synthesis of N-2-hydroxybenzyl-cysteine peptide crypto-thioesters. Org Biomol Chem 2020; 18:8199-8208. [PMID: 33034311 DOI: 10.1039/d0ob01737j] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
We herein report a robust upgraded synthetic protocol for the synthesis of N-Hnb-Cys crypto-thioester peptides, useful building blocks for segment-based chemical protein synthesis through native chemical ligation. We recently observed the formation of an isomeric co-product when using a different solid support than the originally-reported one, thus hampering the general applicability of the methodology. We undertook a systematic study to characterize this compound and identify the parameters favouring its formation. We show here that epimerization from l- to d-cysteine occurred during the key solid-supported reductive amination step. We also observed the formation of imidazolidinones by-products arising from incomplete reduction of the imine. Structural characterization combined with the deciphering of underlying reaction mechanisms allowed us to optimize conditions that abolished the formation of all these side-products.
Collapse
Affiliation(s)
- Skander A Abboud
- Centre de Biophysique Moléculaire, CNRS UPR 4301, Rue Charles Sadron, 45071, Orléans cedex 2, France.
| | - Vincent Aucagne
- Centre de Biophysique Moléculaire, CNRS UPR 4301, Rue Charles Sadron, 45071, Orléans cedex 2, France.
| |
Collapse
|
15
|
Ferrer‐Gago FJ, Koh LQ. Synthesis of
C‐terminal
glycine‐rich
o
‐aminoanilide
peptides without overacylation for use in
benzotriazole‐mediated
native chemical ligation. Pept Sci (Hoboken) 2020. [DOI: 10.1002/pep2.24194] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Affiliation(s)
- Fernando J. Ferrer‐Gago
- p53 Laboratory Agency for Science Technology and Research (A*STAR), 8A Biomedical Grove #06‐04/05 Neuro/Immunos 138648 Singapore
| | - Li Quan Koh
- p53 Laboratory Agency for Science Technology and Research (A*STAR), 8A Biomedical Grove #06‐04/05 Neuro/Immunos 138648 Singapore
| |
Collapse
|
16
|
Kar A, Mannuthodikayil J, Singh S, Biswas A, Dubey P, Das A, Mandal K. Efficient Chemical Protein Synthesis using Fmoc-Masked N-Terminal Cysteine in Peptide Thioester Segments. Angew Chem Int Ed Engl 2020; 59:14796-14801. [PMID: 32333711 PMCID: PMC7891605 DOI: 10.1002/anie.202000491] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2020] [Revised: 03/27/2020] [Indexed: 01/23/2023]
Abstract
We report an operationally simple method to facilitate chemical protein synthesis by fully convergent and one-pot native chemical ligations utilizing the fluorenylmethyloxycarbonyl (Fmoc) moiety as an N-masking group of the N-terminal cysteine of the middle peptide thioester segment(s). The Fmoc group is stable to the harsh oxidative conditions frequently used to generate peptide thioesters from peptide hydrazide or o-aminoanilide. The ready availability of Fmoc-Cys(Trt)-OH, which is routinely used in Fmoc solid-phase peptide synthesis, where the Fmoc group is pre-installed on cysteine residue, minimizes additional steps required for the temporary protection of the N-terminal cysteinyl peptides. The Fmoc group is readily removed after ligation by short exposure (<7 min) to 20 % piperidine at pH 11 in aqueous conditions at room temperature. Subsequent native chemical ligation reactions can be performed in presence of piperidine in the same solution at pH 7.
Collapse
Affiliation(s)
- Abhisek Kar
- TIFR Centre for Interdisciplinary SciencesTata Institute of Fundamental Research Hyderabad36/p GopanpallyHyderabad500046TelanganaIndia
| | - Jamsad Mannuthodikayil
- TIFR Centre for Interdisciplinary SciencesTata Institute of Fundamental Research Hyderabad36/p GopanpallyHyderabad500046TelanganaIndia
| | - Sameer Singh
- TIFR Centre for Interdisciplinary SciencesTata Institute of Fundamental Research Hyderabad36/p GopanpallyHyderabad500046TelanganaIndia
| | - Anamika Biswas
- TIFR Centre for Interdisciplinary SciencesTata Institute of Fundamental Research Hyderabad36/p GopanpallyHyderabad500046TelanganaIndia
| | - Puneet Dubey
- TIFR Centre for Interdisciplinary SciencesTata Institute of Fundamental Research Hyderabad36/p GopanpallyHyderabad500046TelanganaIndia
| | - Amit Das
- Protein Crystallography Section, Radiation Biology and Health Sciences DivisionBhabha Atomic Research CentreTrombayMumbai400085India
- Homi Bhabha National InstituteAnushaktinagarMumbai400094India
| | - Kalyaneswar Mandal
- TIFR Centre for Interdisciplinary SciencesTata Institute of Fundamental Research Hyderabad36/p GopanpallyHyderabad500046TelanganaIndia
| |
Collapse
|
17
|
|
18
|
Kar A, Mannuthodikayil J, Singh S, Biswas A, Dubey P, Das A, Mandal K. Efficient Chemical Protein Synthesis using Fmoc‐Masked N‐Terminal Cysteine in Peptide Thioester Segments. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.202000491] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Abhisek Kar
- TIFR Centre for Interdisciplinary Sciences Tata Institute of Fundamental Research Hyderabad 36/p Gopanpally Hyderabad Telangana −500046 India
| | - Jamsad Mannuthodikayil
- TIFR Centre for Interdisciplinary Sciences Tata Institute of Fundamental Research Hyderabad 36/p Gopanpally Hyderabad Telangana −500046 India
| | - Sameer Singh
- TIFR Centre for Interdisciplinary Sciences Tata Institute of Fundamental Research Hyderabad 36/p Gopanpally Hyderabad Telangana −500046 India
| | - Anamika Biswas
- TIFR Centre for Interdisciplinary Sciences Tata Institute of Fundamental Research Hyderabad 36/p Gopanpally Hyderabad Telangana −500046 India
| | - Puneet Dubey
- TIFR Centre for Interdisciplinary Sciences Tata Institute of Fundamental Research Hyderabad 36/p Gopanpally Hyderabad Telangana −500046 India
| | - Amit Das
- Protein Crystallography Section, Radiation Biology and Health Sciences Division Bhabha Atomic Research Centre Trombay Mumbai 400085 India
- Homi Bhabha National Institute Anushaktinagar Mumbai 400094 India
| | - Kalyaneswar Mandal
- TIFR Centre for Interdisciplinary Sciences Tata Institute of Fundamental Research Hyderabad 36/p Gopanpally Hyderabad Telangana −500046 India
| |
Collapse
|