1
|
Pan ZZ, Li JH, Tian H, Yin L. Copper(I)-Catalyzed Asymmetric Allylation of Ketones with 2-Aza-1,4-Dienes. Angew Chem Int Ed Engl 2024; 63:e202315293. [PMID: 37955332 DOI: 10.1002/anie.202315293] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Revised: 11/13/2023] [Accepted: 11/13/2023] [Indexed: 11/14/2023]
Abstract
Catalytic asymmetric allylation of ketones under proton-transfer conditions is a challenging issue due to the limited pronucleophiles and the electrophilic inertness of ketones. Herein, a copper(I)-catalyzed asymmetric allylation of ketones with 2-aza-1,4-dienes (N-allyl-1,1-diphenylmethanimines) is disclosed, which affords a series of functionalized homoallyl tertiary alcohols in high to excellent enantioselectivity. Interestingly, N-allyl-1,1-diphenylmethanimines work as synthetic equivalents of propanals. Upon the acidic workup, a formal asymmetric β-addition of propanals to ketones is achieved. An investigation on KIE effect indicates that the deprotonation of N-allyl-1,1-diphenylmethanimines is the rate-determining step, which generates nucleophilic allyl copper(I) species. Finally, the synthetic utility of the present method is demonstrated by the asymmetric synthesis of (R)-boivinianin A and (R)-gossonorol.
Collapse
Affiliation(s)
- Zhi-Zhou Pan
- Key Laboratory of Fluorine and Nitrogen Chemistry and Advanced Materials, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Lingling Road, Shanghai, 200032, China
| | - Jia-Heng Li
- Key Laboratory of Fluorine and Nitrogen Chemistry and Advanced Materials, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Lingling Road, Shanghai, 200032, China
| | - Hu Tian
- Key Laboratory of Fluorine and Nitrogen Chemistry and Advanced Materials, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Lingling Road, Shanghai, 200032, China
| | - Liang Yin
- Key Laboratory of Fluorine and Nitrogen Chemistry and Advanced Materials, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Lingling Road, Shanghai, 200032, China
| |
Collapse
|
2
|
Collins S, Sieber JD. Development of regiodivergent asymmetric reductive coupling reactions of allenamides to access heteroatom-rich organic compounds. Chem Commun (Camb) 2023; 59:10087-10100. [PMID: 37529849 DOI: 10.1039/d3cc03013j] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/03/2023]
Abstract
Organic compounds of biological importance often contain multiple stereogenic C-heteroatom functional groups (e.g. amines, alcohols, and ethers). As a result, synthetic methods to access such compounds in a reliable and stereoselective fashion are important. In this feature article, we present a strategy to enable the introduction of multiple C-heteroatom functional groups in a regiodivergent cross-coupling approach through the use of reductive coupling chemistry employing allenamides. Such processes allow for opportunities to access different heteroatom substitution patterns from the same starting materials.
Collapse
Affiliation(s)
- Stephen Collins
- Virginia Commonwealth University, Department of Chemistry 1001 West Main Street, Richmond, VA 23284, USA.
| | - Joshua D Sieber
- Virginia Commonwealth University, Department of Chemistry 1001 West Main Street, Richmond, VA 23284, USA.
| |
Collapse
|
3
|
Enantioselective 1,3-Dipolar Cycloaddition Using (Z)-α-Amidonitroalkenes as a Key Step to the Access to Chiral cis-3,4-Diaminopyrrolidines. Molecules 2022; 27:molecules27144579. [PMID: 35889453 PMCID: PMC9316397 DOI: 10.3390/molecules27144579] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Revised: 07/13/2022] [Accepted: 07/13/2022] [Indexed: 11/16/2022] Open
Abstract
The enantioselective 1,3-dipolar cycloaddition between imino esters and (Z)-nitroalkenes bearing a masked amino group in the β-position was studied using several chiral ligands and silver salts. The optimized reaction conditions were directly applied to the study of the scope of the reaction. The determination of the absolute configuration was evaluated using NMR experiments and electronic circular dichroism (ECD). The reduction and hydrolysis of both groups was performed to generate in an excellent enantiomeric ratio the corresponding cis-2,3-diaminoprolinate.
Collapse
|
4
|
Quintavalla A, Veronesi R, Zambardino D, Carboni D, Lombardo M. Diastereoselective Synthesis of Chiral Oxathiazine 2‐Oxide Scaffolds as Sulfinyl Transfer Agents. Adv Synth Catal 2022. [DOI: 10.1002/adsc.202200113] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Arianna Quintavalla
- Alma Mater Studiorum – University of Bologna Department of Chemistry “G. Ciamician” Center for Chemical Catalysis-C3 Via Selmi 2 40126 Bologna Italy
| | - Ruben Veronesi
- Alma Mater Studiorum – University of Bologna Department of Chemistry “G. Ciamician” Center for Chemical Catalysis-C3 Via Selmi 2 40126 Bologna Italy
| | - Demetra Zambardino
- Alma Mater Studiorum – University of Bologna Department of Chemistry “G. Ciamician” Center for Chemical Catalysis-C3 Via Selmi 2 40126 Bologna Italy
| | - Davide Carboni
- Alma Mater Studiorum – University of Bologna Department of Chemistry “G. Ciamician” Center for Chemical Catalysis-C3 Via Selmi 2 40126 Bologna Italy
| | - Marco Lombardo
- Alma Mater Studiorum – University of Bologna Department of Chemistry “G. Ciamician” Center for Chemical Catalysis-C3 Via Selmi 2 40126 Bologna Italy
| |
Collapse
|
5
|
You GY, Liu XF, Fang PW, Liang LF, Dai CH, Feng B. Simple chiral sulfinyl imine–thioether ligands for Pd-catalyzed allylic alkylation. CHEMICAL PAPERS 2022. [DOI: 10.1007/s11696-022-02176-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
6
|
Wang TC, Zhu L, Luo S, Nong ZS, Wang PS, Gong LZ. Palladium-Catalyzed Enantioselective C(sp 3)-H/C(sp 3)-H Umpolung Coupling of N-Allylimine and α-Aryl Ketones. J Am Chem Soc 2021; 143:20454-20461. [PMID: 34817997 DOI: 10.1021/jacs.1c10721] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Asymmetric functionalization of the C(sp3)-H bond is an attractive yet challenging strategy to achieve versatile bond-forming events, enabling the precise assembly of molecular complexity with minimal manipulation of functional groups. Here, we report an asymmetric C(sp3)-H/C(sp3)-H umpolung coupling of N-allylimine and coordinating α-aryl carbonyls by using chiral phosphoramidite-palladium catalysis. A wide variety of α-heteroaryl ketones and 2-acylimidazoles are nicely tolerated to open a convenient and tunable avenue for efficient synthesis of enantioenriched β-amino-γ,δ-unsaturated carbonyl derivatives with high levels of regio- and stereoselectivities, capable of providing a key intermediate for asymmetric synthesis of Focalin. This protocol showcases an umpolung reactivity of the N-allylimines through a concerted proton and two-electron transfer process to cleave the allylic C-H bond, effectively complementing established methodology for allylic C-H functionalization. An inner-sphere allylation pathway for both α-heteroaryl carbonyls and 2-acylimidazoles to attack the π-allylpalladium species is suggested by computational studies and experimental facts, wherein the nitrogen coordination to the palladium center enables the preference of branched regioselectivity.
Collapse
Affiliation(s)
- Tian-Ci Wang
- Hefei National Laboratory for Physical Sciences at the Microscale and Department of Chemistry, University of Science and Technology of China, Hefei 230026, China
| | - Ling Zhu
- Hefei National Laboratory for Physical Sciences at the Microscale and Department of Chemistry, University of Science and Technology of China, Hefei 230026, China
| | - Shiwei Luo
- Hefei National Laboratory for Physical Sciences at the Microscale and Department of Chemistry, University of Science and Technology of China, Hefei 230026, China
| | - Zhong-Sheng Nong
- Hefei National Laboratory for Physical Sciences at the Microscale and Department of Chemistry, University of Science and Technology of China, Hefei 230026, China
| | - Pu-Sheng Wang
- Hefei National Laboratory for Physical Sciences at the Microscale and Department of Chemistry, University of Science and Technology of China, Hefei 230026, China
| | - Liu-Zhu Gong
- Hefei National Laboratory for Physical Sciences at the Microscale and Department of Chemistry, University of Science and Technology of China, Hefei 230026, China.,Center for Excellence in Molecular Synthesis of CAS, University of Science and Technology of China, Hefei 230026, China
| |
Collapse
|
7
|
Li Z, Wang N, Liu J, Mei H, Soloshonok VA, Han J. Synthesis of Isothiazoles through N-Propargylsulfinylamide: TFA-Promoted Sulfinyl Group-Involved Intramolecular Cyclization. Org Lett 2021; 23:6941-6945. [PMID: 34423993 DOI: 10.1021/acs.orglett.1c02538] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
A new reactivity mode of tert-butanesulfinamide has been developed, which proceeds through C-S and O-S bond cleavage of N-propargyl tert-butanesulfinylamide allowing rapid assembly of poly functionalized isothiazoles. This intramolecular cyclization reaction could be conducted under mild and convenient conditions and tolerates several fluoroalkyl and substituted phenyl groups with good chemical yields. This reaction not only represents a new reactivity of tert-butanesulfinamide but also provides an easy strategy for the synthesis of isothiazoles.
Collapse
Affiliation(s)
- Ziyi Li
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, International Innovation Center for Forest Chemicals and Materials, College of Chemical Engineering, Nanjing Forestry University, Nanjing 210037, China
| | - Nana Wang
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, International Innovation Center for Forest Chemicals and Materials, College of Chemical Engineering, Nanjing Forestry University, Nanjing 210037, China
| | - Jiang Liu
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, International Innovation Center for Forest Chemicals and Materials, College of Chemical Engineering, Nanjing Forestry University, Nanjing 210037, China
| | - Haibo Mei
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, International Innovation Center for Forest Chemicals and Materials, College of Chemical Engineering, Nanjing Forestry University, Nanjing 210037, China
| | - Vadim A Soloshonok
- Department of Organic Chemistry I, Faculty of Chemistry, University of the Basque Country UPV/EHU, Paseo Manuel Lardizábal 3, 20018 San Sebastián, Spain.,IKERBASQUE, Basque Foundation for Science, María Díaz de Haro 3, Plaza Bizkaia, 48013 Bilbao, Spain
| | - Jianlin Han
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, International Innovation Center for Forest Chemicals and Materials, College of Chemical Engineering, Nanjing Forestry University, Nanjing 210037, China
| |
Collapse
|
8
|
Zhou P, Shao X, Malcolmson SJ. A Diastereodivergent and Enantioselective Approach to syn- and anti-Diamines: Development of 2-Azatrienes for Cu-Catalyzed Reductive Couplings with Imines That Furnish Allylic Amines. J Am Chem Soc 2021; 143:13999-14008. [PMID: 34424694 DOI: 10.1021/jacs.1c07707] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
We introduce a new reagent class, 2-azatrienes, as a platform for catalytic enantioselective synthesis of allylic amines. Herein, we demonstrate their promise by a diastereodivergent synthesis of syn- and anti-1,2-diamines through their Cu-bis(phosphine)-catalyzed reductive couplings with imines. With Ph-BPE as the supporting ligand, anti-diamines are obtained (up to 91% yield, >20:1 dr, and >99:1 er), and with the rarely utilized t-Bu-BDPP, syn-diamines are generated (up to 76% yield, 1:>20 dr, and 97:3 er).
Collapse
Affiliation(s)
- Pengfei Zhou
- Department of Chemistry, Duke University, Durham, North Carolina 27708, United States
| | - Xinxin Shao
- Key Laboratory of Organosilicon Chemistry and Material Technology of Ministry of Education, Hangzhou Normal University, Hangzhou, Zhejiang 310036, P. R. China
| | - Steven J Malcolmson
- Department of Chemistry, Duke University, Durham, North Carolina 27708, United States
| |
Collapse
|
9
|
Naidu BR, Lakshmidevi J, Naik BSS, Venkateswarlu K. Water extract of pomegranate ash as waste-originated biorenewable catalyst for the novel synthesis of chiral tert‑butanesulfinyl aldimines in water. MOLECULAR CATALYSIS 2021. [DOI: 10.1016/j.mcat.2021.111719] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
|
10
|
Mendes JA, Costa PRR, Yus M, Foubelo F, Buarque CD. N- tert-Butanesulfinyl imines in the asymmetric synthesis of nitrogen-containing heterocycles. Beilstein J Org Chem 2021; 17:1096-1140. [PMID: 34093879 PMCID: PMC8144919 DOI: 10.3762/bjoc.17.86] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2021] [Accepted: 04/22/2021] [Indexed: 02/05/2023] Open
Abstract
The synthesis of nitrogen-containing heterocycles, including natural alkaloids and other compounds presenting different types of biological activities have proved to be successful employing chiral sulfinyl imines derived from tert-butanesulfinamide. These imines are versatile chiral auxiliaries and have been extensively used as eletrophiles in a wide range of reactions. The electron-withdrawing sulfinyl group facilitates the nucleophilic addition of organometallic compounds to the iminic carbon with high diastereoisomeric excess and the free amines obtained after an easy removal of the tert-butanesulfinyl group can be transformed into enantioenriched nitrogen-containing heterocycles. The goal of this review is to the highlight enantioselective syntheses of heterocycles involving the use of chiral N-tert-butanesulfinyl imines as reaction intermediates, including the synthesis of several natural products. The synthesis of nitrogen-containing heterocycles in which the nitrogen atom is not provided by the chiral imine will not be considered in this review. The sections are organized according to the size of the heterocycles. The present work will comprehensively cover the most pertinent contributions to this research area from 2012 to 2020. We regret in advance that some contributions are excluded in order to maintain a concise format.
Collapse
Affiliation(s)
- Joseane A Mendes
- Department of Chemistry, Pontifical Catholic University of Rio de Janeiro Puc-Rio, CEP 22435-900, Brazil
| | - Paulo R R Costa
- Laboratory of Bioorganic Chemistry, Institute of Research of Natural Products, Health Science Center, Federal University of Rio de Janeiro UFRJ, CEP 21941-590, Brazil
| | - Miguel Yus
- Centro de Innovación en Química Avanzada (ORFEO-CINQA), Universidad de Alicante, Apdo.99, 03080 Alicante, Spain
- Departamento de Química Orgánica, Facultad de Ciencias, Universidad de Alicante, Apdo. 99,03080 Alicante, Spain
- Instituto de Síntesis Orgánica (ISO), Universidad de Alicante, Apdo. 99, 03080 Alicante, Spain
| | - Francisco Foubelo
- Centro de Innovación en Química Avanzada (ORFEO-CINQA), Universidad de Alicante, Apdo.99, 03080 Alicante, Spain
- Departamento de Química Orgánica, Facultad de Ciencias, Universidad de Alicante, Apdo. 99,03080 Alicante, Spain
- Instituto de Síntesis Orgánica (ISO), Universidad de Alicante, Apdo. 99, 03080 Alicante, Spain
| | - Camilla D Buarque
- Department of Chemistry, Pontifical Catholic University of Rio de Janeiro Puc-Rio, CEP 22435-900, Brazil
| |
Collapse
|
11
|
Agrawal T, Martin RT, Collins S, Wilhelm Z, Edwards MD, Gutierrez O, Sieber JD. Access to Chiral Diamine Derivatives through Stereoselective Cu-Catalyzed Reductive Coupling of Imines and Allenamides. J Org Chem 2021; 86:5026-5046. [PMID: 33724828 PMCID: PMC8025098 DOI: 10.1021/acs.joc.0c02971] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2020] [Indexed: 01/04/2023]
Abstract
Chiral 1,2-diamino compounds are important building blocks in organic chemistry for biological applications and as asymmetric inducers in stereoselective synthesis that are challenging to prepare in a straightforward and stereoselective manner. Herein, we disclose a cost-effective and readily available Cu-catalyzed system for the reductive coupling of a chiral allenamide with N-alkyl substituted aldimines to access chiral 1,2-diamino synthons as single stereoisomers in high yields. The method shows broad reaction scope and high diastereoselectivity and can be easily scaled using standard Schlenk techniques. Mechanistic investigations by density functional theory calculations identified the mechanism and origin of stereoselectivity. In particular, the addition to the imine was shown to be reversible, which has implications toward development of catalyst-controlled stereoselective variants of the identified reductive coupling of imines and allenamides.
Collapse
Affiliation(s)
- Toolika Agrawal
- Department
of Chemistry, Virginia Commonwealth University, 1001 West Main Street, Richmond, Virginia 23284-3208, United States
| | - Robert T. Martin
- Department
of Chemistry and Biochemistry, University
of Maryland, College
Park, Maryland 20742, United States
| | - Stephen Collins
- Department
of Chemistry, Virginia Commonwealth University, 1001 West Main Street, Richmond, Virginia 23284-3208, United States
| | - Zachary Wilhelm
- Department
of Chemistry and Biochemistry, University
of Maryland, College
Park, Maryland 20742, United States
| | - Mytia D. Edwards
- Department
of Chemistry, Virginia Commonwealth University, 1001 West Main Street, Richmond, Virginia 23284-3208, United States
| | - Osvaldo Gutierrez
- Department
of Chemistry and Biochemistry, University
of Maryland, College
Park, Maryland 20742, United States
| | - Joshua D. Sieber
- Department
of Chemistry, Virginia Commonwealth University, 1001 West Main Street, Richmond, Virginia 23284-3208, United States
| |
Collapse
|
12
|
Foubelo F, Yus M. Chiral N-tert-Butylsulfinyl Imines: New Discoveries. CHEM REC 2020; 21:1300-1341. [PMID: 33241905 DOI: 10.1002/tcr.202000122] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Revised: 10/27/2020] [Indexed: 12/21/2022]
Abstract
In this account the reactions of chiral N-tert-butylsulfinyl imines with organometallic reagents such as organoalkaline (lithium, sodium, potassium and cesium derivatives), organomagnesium, organozinc, organoboron, organoaluminium, organoindium and organosilicon compounds is comprehensively described. The reactivity in all cases is derived to synthetic applications in order to prepare interesting organic nitrogenated molecules, especially in the field of alkaloid compounds.
Collapse
Affiliation(s)
- Francisco Foubelo
- Departamento de Química Orgánica and Instituto de Síntesis Orgánica (ISO), Universidad de Alicante, Apdo. 99, 03080, Alicante, Spain.,Centro de Innovación en Química Avanzada (ORFEO-CINQA), Universidad de Alicante, Apdo. 99, 03080, Alicante, Spain
| | - Miguel Yus
- Centro de Innovación en Química Avanzada (ORFEO-CINQA), Universidad de Alicante, Apdo. 99, 03080, Alicante, Spain
| |
Collapse
|
13
|
Philip RM, Radhika S, Saranya PV, Anilkumar G. Applications of tert-butanesulfinamide in the synthesis of N-heterocycles via sulfinimines. RSC Adv 2020; 10:42441-42456. [PMID: 35516764 PMCID: PMC9058287 DOI: 10.1039/d0ra08819f] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2020] [Accepted: 11/16/2020] [Indexed: 01/26/2023] Open
Abstract
Chiral sulfinamides are among the best known chiral auxiliaries in the stereoselective synthesis of amines and their derivatives. The most extensively used enantiopure tert-butanesulfinamide emerged as the gold standard among many others over the last two decades. The present review attempts to provide an overview of tert-butanesulfinamide mediated asymmetric N-heterocycle synthesis via sulfinimines and covers literature from 2010-2020. This methodology offers general access to structurally diverse piperidines, pyrrolidines, azetidines, and their fused derivatives that represent the structural motif of many natural products and therapeutically applicable compounds.
Collapse
Affiliation(s)
- Rose Mary Philip
- School of Chemical Sciences, Mahatma Gandhi University Priyadarsini Hills P O Kottayam Kerala 686560 India +91-481-2731036
| | - Sankaran Radhika
- School of Chemical Sciences, Mahatma Gandhi University Priyadarsini Hills P O Kottayam Kerala 686560 India +91-481-2731036
| | - P V Saranya
- School of Chemical Sciences, Mahatma Gandhi University Priyadarsini Hills P O Kottayam Kerala 686560 India +91-481-2731036
| | - Gopinathan Anilkumar
- School of Chemical Sciences, Mahatma Gandhi University Priyadarsini Hills P O Kottayam Kerala 686560 India +91-481-2731036
- Advanced Molecular Materials Research Centre (AMMRC), Mahatma Gandhi University Priyadarsini Hills P O Kottayam Kerala 686560 India
- Institute for Integrated Programmes and Research in Basic Sciences (IIRBS), Mahatma Gandhi University Priyadarsini Hills P O Kottayam Kerala 686560 India
| |
Collapse
|