1
|
Zhang F, Chen W, Li W. Recent advances in the catalytic conversion of CO2 to chemicals and demonstration projects in China. MOLECULAR CATALYSIS 2023. [DOI: 10.1016/j.mcat.2023.113093] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/29/2023]
|
2
|
Engineering synergistic effects of immobilized cooperative catalysts. Coord Chem Rev 2023. [DOI: 10.1016/j.ccr.2022.214863] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
3
|
Yang J, Chen P, Pan Y, Liang Y. Fixation of Carbon Dioxide with Functionalized Ionic Liquids. ASIAN J ORG CHEM 2022. [DOI: 10.1002/ajoc.202200527] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Jiawen Yang
- School of Life and Environmental Sciences Guilin University of Electronic Technology Guilin 541004 Guangxi P. R. China
| | - Peibo Chen
- School of Life and Environmental Sciences Guilin University of Electronic Technology Guilin 541004 Guangxi P. R. China
| | - Yingming Pan
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources School of Chemistry and Pharmaceutical Sciences of Guangxi Normal University Guilin 541004 Guangxi P. R. China
| | - Ying Liang
- School of Life and Environmental Sciences Guilin University of Electronic Technology Guilin 541004 Guangxi P. R. China
| |
Collapse
|
4
|
Usui K, Manaka Y, Chun WJ, Motokura K. Rhodium-Iodide Complex on a Catalytically Active SiO 2 Surface for One-Pot Hydrosilylation-CO 2 Cycloaddition. Chemistry 2021; 28:e202104001. [PMID: 34878192 DOI: 10.1002/chem.202104001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2021] [Indexed: 11/09/2022]
Abstract
In this study, a novel Rh-iodide complex was synthesized through a surface reaction between an immobilized Rh cyclooctadiene complex and alkylammonium iodide (N+ I- ) on SiO2 . In the presence of ammonium cations, the SiO2 -supported Rh-iodide complex could be effectively used for the one-pot synthesis of various silylcarbonate derivatives starting from epoxy olefins, hydrosilanes, and CO2 . The maximum turnover numbers (TONs) for the hydrosilylation reaction and the CO2 cycloaddition were 7600 (Rh) and 130 (N+ I- ), respectively. The catalyst exhibited much higher performance for hydrosilylation than solely the Rh complex on SiO2 . The mechanism of the Rh-catalyzed hydrosilylation reaction and the local structure of Rh, which is affected by the co-immobilized N+ I- , were investigated by using Rh and I K-edge XAFS and XPS. Analysis of the XAFS profiles indicated the presence of a Rh-I bond. The Rh unit was in its electron-rich state. Curve-fitting analysis of the Rh K-edge EXAFS profiles suggests dissociation of the cycloocta-1,5-diene (COD) ligand from the Rh center. Results from spectroscopic and kinetic analyses revealed that the high activity of the catalyst (during hydrosilylation) could be attributed to a decrease in steric hindrance and the electron-rich state of the Rh. The decrease in the steric hindrance could be attributed to the absence of COD, and the electron-rich state promoted the oxidative addition of Si-H. To the best of our knowledge, this is the first example of a one-pot silylcarbonate synthesis as well as a determination of a novel surface Rh-iodide complex and its catalysis.
Collapse
Affiliation(s)
- Kei Usui
- Department of Chemical Science and Engineering, Tokyo Institute of Technology, Meguro City, 226-8502 Yokohama, Japan.,Department of Chemistry and Life Science, Yokohama National University, 240-8501, Yokohama, Japan
| | - Yuichi Manaka
- Department of Chemical Science and Engineering, Tokyo Institute of Technology, Meguro City, 226-8502 Yokohama, Japan.,Renewable Energy Research Center, National Institute of Advanced Industrial Science and Technology, 963-0298, Fukushima, Japan
| | - Wang-Jae Chun
- Graduate School of Arts and Sciences, International Christian University, 181-8585, Mitaka, Tokyo, Japan
| | - Ken Motokura
- Department of Chemical Science and Engineering, Tokyo Institute of Technology, Meguro City, 226-8502 Yokohama, Japan.,Department of Chemistry and Life Science, Yokohama National University, 240-8501, Yokohama, Japan
| |
Collapse
|
5
|
Penrose C, Steiner P, Gladden LF, Sederman AJ, York APE, Bentley M, Mantle MD. A simple liquid state 1H NMR measurement to directly determine the surface hydroxyl density of porous silica. Chem Commun (Camb) 2021; 57:12804-12807. [PMID: 34783334 DOI: 10.1039/d1cc03959h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Silica is widely used in industrial applications and its performance is partially decided by its surface hydroxyl density αOH. Here we report a quick, simple liquid 1H NMR method to determine αOH using a benchtop 1H NMR spectrometer. The results show excellent agreement with the literature with an αOH range from 4.16 to 6.56 OH per nm2.
Collapse
Affiliation(s)
- C Penrose
- Department of Chemical Engineering and Biotechnology, University of Cambridge, Philippa Fawcett Dr, Cambridge CB3 0AS, UK.
| | - P Steiner
- Department of Chemical Engineering and Biotechnology, University of Cambridge, Philippa Fawcett Dr, Cambridge CB3 0AS, UK. .,Gdanska 335/23, Praha 8, 181 00, Czech Republic
| | - L F Gladden
- Department of Chemical Engineering and Biotechnology, University of Cambridge, Philippa Fawcett Dr, Cambridge CB3 0AS, UK.
| | - A J Sederman
- Department of Chemical Engineering and Biotechnology, University of Cambridge, Philippa Fawcett Dr, Cambridge CB3 0AS, UK.
| | - A P E York
- Johnson Matthey Technology Centre, Blounts Court, Sonning Common, Reading, RG4 9NH, UK
| | - M Bentley
- Johnson Matthey Technology Centre, Blounts Court, Sonning Common, Reading, RG4 9NH, UK
| | - M D Mantle
- Department of Chemical Engineering and Biotechnology, University of Cambridge, Philippa Fawcett Dr, Cambridge CB3 0AS, UK.
| |
Collapse
|
6
|
Liu Z, Wang Y, Liu K, Wang S, Liao H, Zhu Y, Hou B, Tan C, Liu G. Integrated Cobaloxime and Mesoporous Silica-Supported Ruthenium/Diamine Co-Catalysis for One-Pot Hydration/Reduction Enantioselective Sequential Reaction of Alkynes. Front Chem 2021; 9:732542. [PMID: 34631659 PMCID: PMC8493125 DOI: 10.3389/fchem.2021.732542] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Accepted: 09/08/2021] [Indexed: 11/13/2022] Open
Abstract
This study developed a cost-efficient hydration/asymmetric transfer hydrogenation (ATH) process for the one-pot synthesis of valuable chiral alcohols from alkynes. During this process, the initial homogeneous cobaloxime-catalyzed hydration of alkynes was followed by heterogeneous Ru/diamine-catalyzed ATH transformation of the in-situ generated ketones, which provided varieties of chiral alcohols in good yields with up to 99% ee values. The immobilized Ru/diamine catalyst could be recycled at least three times before its deactivation in the sequential reaction system. This work shows a general method for developing one-pot asymmetric sequential catalysis towards sustainable organic synthesis.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Chunxia Tan
- Key Laboratory of Resource Chemistry of Ministry of Education, Shanghai Key Laboratory of Rare Earth Functional Materials, Shanghai Normal University, Shanghai, China
| | - Guohua Liu
- Key Laboratory of Resource Chemistry of Ministry of Education, Shanghai Key Laboratory of Rare Earth Functional Materials, Shanghai Normal University, Shanghai, China
| |
Collapse
|
7
|
Motokura K, Ding S, Usui K, Kong Y. Enhanced Catalysis Based on the Surface Environment of the Silica-Supported Metal Complex. ACS Catal 2021. [DOI: 10.1021/acscatal.1c03426] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Affiliation(s)
- Ken Motokura
- Department of Chemistry and Life Science, Yokohama National University, 79-5 Tokiwadai, Hodogaya-ku, Yokohama 240-8501, Japan
- Department of Chemical Science and Engineering, School of Materials and Chemical Technology, Tokyo Institute of Technology, 4259 Nagatsuta-cho, Midori-ku, Yokohama 226-8502, Japan
| | - Siming Ding
- Department of Chemistry and Life Science, Yokohama National University, 79-5 Tokiwadai, Hodogaya-ku, Yokohama 240-8501, Japan
- Department of Chemical Science and Engineering, School of Materials and Chemical Technology, Tokyo Institute of Technology, 4259 Nagatsuta-cho, Midori-ku, Yokohama 226-8502, Japan
| | - Kei Usui
- Department of Chemistry and Life Science, Yokohama National University, 79-5 Tokiwadai, Hodogaya-ku, Yokohama 240-8501, Japan
- Department of Chemical Science and Engineering, School of Materials and Chemical Technology, Tokyo Institute of Technology, 4259 Nagatsuta-cho, Midori-ku, Yokohama 226-8502, Japan
| | - Yuanyuan Kong
- Department of Chemistry and Life Science, Yokohama National University, 79-5 Tokiwadai, Hodogaya-ku, Yokohama 240-8501, Japan
- Department of Chemical Science and Engineering, School of Materials and Chemical Technology, Tokyo Institute of Technology, 4259 Nagatsuta-cho, Midori-ku, Yokohama 226-8502, Japan
| |
Collapse
|
8
|
Pramudita RA, Motokura K. Heterogeneous Organocatalysts for the Reduction of Carbon Dioxide with Silanes. CHEMSUSCHEM 2021; 14:281-292. [PMID: 33140568 DOI: 10.1002/cssc.202002300] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/28/2020] [Revised: 11/02/2020] [Indexed: 06/11/2023]
Abstract
The utilization of carbon dioxide (CO2 ) as feedstock for chemical industries is gaining interest as a sustainable alternative to nonrenewable fossil resources. However, CO2 reduction is necessary to increase its energy content. Hydrosilane is a potential reducing agent that exhibits excellent reactivity under ambient conditions. CO2 hydrosilylation yields versatile products such as silylformate and methoxysilane, whereas formamides and N-methylated products are obtained in the presence of amines. In these transformations, organocatalysts are considered as the more sustainable choice of catalyst. In particular, heterogeneous organocatalysts featuring precisely designed active sites offer higher efficiency due to their recyclability. Herein, an overview is presented of the current development of basic organocatalysts immobilized on various supports for application in the chemical reduction of CO2 with hydrosilanes, and the potential active species parameters that might affect the catalytic activity are identified.
Collapse
Affiliation(s)
- Ria Ayu Pramudita
- Department of Chemical Science and Engineering, School of Materials and Chemical Technology, Tokyo Institute of Technology, 4259 Nagatsuta-cho, Midori-ku, Yokohama, 2268502, Japan
| | - Ken Motokura
- Department of Chemical Science and Engineering, School of Materials and Chemical Technology, Tokyo Institute of Technology, 4259 Nagatsuta-cho, Midori-ku, Yokohama, 2268502, Japan
- PRESTO, Japan Science and Technology Agency (JST), Saitama, 3320012, Japan
| |
Collapse
|
9
|
Hatano M, Zhao X, Mochizuki T, Maeda K, Motokura K, Ishihara K. Reusable Silica‐Supported Ammonium BINSate Catalysts for Enantio‐ and Diastereoselective Friedel–Crafts‐Type Double Aminoalkylation of
N
‐Alkylpyrroles with Aldimines. ASIAN J ORG CHEM 2020. [DOI: 10.1002/ajoc.202000603] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Affiliation(s)
- Manabu Hatano
- Graduate School of Pharmaceutical Sciences Kobe Pharmaceutical University 4-19-1, Motoyamakitamachi Higashinada, Kobe 658-8558 Japan
| | - Xue Zhao
- Graduate School of Engineering Nagoya University Furo-cho Chikusa, Nagoya 464-8603 Japan
| | - Takuya Mochizuki
- Graduate School of Engineering Nagoya University Furo-cho Chikusa, Nagoya 464-8603 Japan
| | - Kyogo Maeda
- School of Materials and Chemical Technology Tokyo Institute of Technology 4259 Nagatsuta-cho, Midori-ku Yokohama 226-8502 Japan
| | - Ken Motokura
- School of Materials and Chemical Technology Tokyo Institute of Technology 4259 Nagatsuta-cho, Midori-ku Yokohama 226-8502 Japan
| | - Kazuaki Ishihara
- Graduate School of Engineering Nagoya University Furo-cho Chikusa, Nagoya 464-8603 Japan
| |
Collapse
|