1
|
Shimoyama D, Sekiya R, Inoue S, Hisano N, Tate SI, Haino T. Conformation Regulation of Trisresorcinarene Directed by Cavity Solvation. Chemistry 2024; 30:e202402922. [PMID: 39215609 DOI: 10.1002/chem.202402922] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2024] [Revised: 08/30/2024] [Accepted: 08/31/2024] [Indexed: 09/04/2024]
Abstract
This compound is a synthetic macrocycle comprising three pivaloyl-protected resorcinarene units connected by six pentylene chains. We conducted a conformational study using 1H-NMR, X-ray diffraction (XRD), and computational analyses. The macrocycle adopts two conformers, one open, the other closed. The ratio of the open to closed forms depended on the solvent used. Only the open form existed in [D8]toluene, both forms coexisted in [D6]benzene, and the closed form was the major conformer in [D1]chloroform. The benzene-solvated open form observed in the solid state suggests that cavity solvation by solvent molecules directs the open form. The open form was the major or only conformer in [D10]o- and [D10]m-xylene and [D12]mesitylene, whereas the closed form was the major conformer in [D6]acetone. The open and closed forms were equally populated in [D10]p-xylene, suggesting that the size, shape, and dimensions of the solvent molecules most likely influenced the conformation of the protected trisresocinarene.
Collapse
Affiliation(s)
- Daisuke Shimoyama
- Department of Chemistry, Graduate School of Advanced Science and Engineering, Hiroshima University, 1-3-1 Kagamiyama, Higashi-Hiroshima, Hiroshima, 739-8526, Japan
| | - Ryo Sekiya
- Department of Frontier Materials Chemistry, Graduate School of Science and Technology, Hirosaki University, 3 Bunkyo-cho, Hirosaki, Aomori, 036-8561, Japan
| | - Shoichiro Inoue
- Department of Chemistry, Graduate School of Advanced Science and Engineering, Hiroshima University, 1-3-1 Kagamiyama, Higashi-Hiroshima, Hiroshima, 739-8526, Japan
| | - Naoyuki Hisano
- Department of Chemistry, Graduate School of Advanced Science and Engineering, Hiroshima University, 1-3-1 Kagamiyama, Higashi-Hiroshima, Hiroshima, 739-8526, Japan
| | - Shin-Ichi Tate
- Department of Mathematical and Life Sciences, Graduate School of Integrated Sciences for Life, Hiroshima University, 1-3-1 Kagamiyama, Higashi-Hiroshima, Hiroshima, 739-8526, Japan
- International Institute for Sustainability with Knotted Chiral Meta Matter (WPI-SKCM2), Hiroshima University, 1-3-1 Kagamiyama, Higashi-Hiroshima, Hiroshima, 739-8526, Japan
| | - Takeharu Haino
- Department of Chemistry, Graduate School of Advanced Science and Engineering, Hiroshima University, 1-3-1 Kagamiyama, Higashi-Hiroshima, Hiroshima, 739-8526, Japan
- International Institute for Sustainability with Knotted Chiral Meta Matter (WPI-SKCM2), Hiroshima University, 1-3-1 Kagamiyama, Higashi-Hiroshima, Hiroshima, 739-8526, Japan
| |
Collapse
|
2
|
Cox CJT, Hale J, Molinska P, Lewis JEM. Supramolecular and molecular capsules, cages and containers. Chem Soc Rev 2024; 53:10380-10408. [PMID: 39351690 DOI: 10.1039/d4cs00761a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/29/2024]
Abstract
Stemming from early seminal notions of molecular recognition and encapsulation, three-dimensional, cavity-containing capsular compounds and assemblies have attracted intense interest due to the ability to modulate chemical and physical properties of species encapsulated within these confined spaces compared to bulk environments. With such a diverse range of covalent motifs and non-covalent (supramolecular) interactions available to assemble building blocks, an incredibly wide-range of capsular-type architectures have been developed. Furthermore, synthetic tunability of the internal environments gives chemists the opportunity to engineer systems for uses in sensing, sequestration, catalysis and transport of molecules, just to name a few. In this tutorial review, an overview is provided into the design principles, synthesis, characterisation, structural facets and properties of coordination cages, porous organic cages, supramolecular capsules, foldamers and mechanically interlocked molecules. Using seminal and recent examples, the advantages and limitations of each system are explored, highlighting their application in various tasks and functions.
Collapse
Affiliation(s)
- Cameron J T Cox
- School of Chemistry, Molecular Sciences Building, University of Birmingham, Edgbaston, Birmingham B15 2TT, UK.
| | - Jessica Hale
- School of Chemistry, Molecular Sciences Building, University of Birmingham, Edgbaston, Birmingham B15 2TT, UK.
| | - Paulina Molinska
- School of Chemistry, Molecular Sciences Building, University of Birmingham, Edgbaston, Birmingham B15 2TT, UK.
| | - James E M Lewis
- School of Chemistry, Molecular Sciences Building, University of Birmingham, Edgbaston, Birmingham B15 2TT, UK.
| |
Collapse
|
3
|
Gao ZQ, Liu CH, Zhang SL, Li SH, Gao LW, Chai RL, Zhou TY, Ma XJ, Li X, Li S, Zhao J, Zhao Q. Lanternarene-Based Self-Sorting Double-Network Hydrogels for Flexible Strain Sensors. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2404231. [PMID: 38943438 DOI: 10.1002/smll.202404231] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/27/2024] [Revised: 06/21/2024] [Indexed: 07/01/2024]
Abstract
Conductive flexible hydrogels have attracted immense attentions recently due to their wide applications in wearable sensors. However, the poor mechanical properties of most conductive polymer limit their utilizations. Herein, a double network hydrogel is fabricated via a self-sorting process with cationic polyacrylamide as the first flexible network and the lantern[33]arene-based hydrogen organic framework nanofibers as the second rigid network. This hydrogel is endowed with good conductivity (0.25 S m-1) and mechanical properties, such as large Young's modulus (31.9 MPa), fracture elongation (487%) and toughness (6.97 MJ m-3). The stretchability of this hydrogel is greatly improved after the kirigami cutting, which makes it can be used as flexible strain sensor for monitoring human motions, such as bending of fingers, wrist and elbows. This study not only provides a valuable strategy for the construction of double network hydrogels by lanternarene, but also expands the application of the macrocycle hydrogels to flexible electronics.
Collapse
Affiliation(s)
- Zi-Qi Gao
- College of Sciences, College of Chemical Engineering and Materials Science, Tianjin University of Science & Technology, Tianjin, 300457, P. R. China
| | - Chuan-Hong Liu
- College of Sciences, College of Chemical Engineering and Materials Science, Tianjin University of Science & Technology, Tianjin, 300457, P. R. China
| | - Shuang-Long Zhang
- College of Sciences, College of Chemical Engineering and Materials Science, Tianjin University of Science & Technology, Tianjin, 300457, P. R. China
| | - Sheng-Hua Li
- Tianjin R&D Biotechnology Co., Ltd., Tianjin, 300456, P. R. China
| | - Li-Wei Gao
- College of Sciences, College of Chemical Engineering and Materials Science, Tianjin University of Science & Technology, Tianjin, 300457, P. R. China
| | - Rui-Lin Chai
- College of Sciences, College of Chemical Engineering and Materials Science, Tianjin University of Science & Technology, Tianjin, 300457, P. R. China
| | - Tuo-Yu Zhou
- College of Sciences, College of Chemical Engineering and Materials Science, Tianjin University of Science & Technology, Tianjin, 300457, P. R. China
| | - Xu-Juan Ma
- College of Sciences, College of Chemical Engineering and Materials Science, Tianjin University of Science & Technology, Tianjin, 300457, P. R. China
| | - Xin Li
- Haihe Laboratory of Sustainable Chemical Transformations, Tianjin, 300192, P. R. China
| | - Shibo Li
- Tianjin Key Laboratory of Animal and Plant Resistance, College of Life Sciences, Tianjin Normal University, Tianjin, 300382, P. R. China
| | - Jin Zhao
- College of Sciences, College of Chemical Engineering and Materials Science, Tianjin University of Science & Technology, Tianjin, 300457, P. R. China
| | - Qian Zhao
- College of Sciences, College of Chemical Engineering and Materials Science, Tianjin University of Science & Technology, Tianjin, 300457, P. R. China
| |
Collapse
|
4
|
Li SH, Li BB, Zhao XL, Wu H, Chai RL, Li GY, Zhu D, He G, Zhang HF, Xie KK, Cheng B, Zhao Q. Macrocycle Self-Assembly Hydrogel for High-Efficient Oil-Water Separation. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023; 19:e2301934. [PMID: 37271893 DOI: 10.1002/smll.202301934] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Revised: 05/16/2023] [Indexed: 06/06/2023]
Abstract
Supramolecular hydrogels involved macrocycles have been explored widely in recent years, but it remains challenging to develop hydrogel based on solitary macrocycle with super gelation capability. Here, the construction of lantern[33 ]arene-based hydrogel with low critical gelation concentration (0.05 wt%), which can be used for efficient oil-water separation, is reported. The lantern[33 ]arenes self-assemble into hydrogen-bonded organic nanoribbons, which intertwine into entangled fibers to form hydrogel. This hydrogel which exhibits reversible pH-responsiveness characteristics can be coated on stainless-steel mesh by in situ sol-gel transformation. The resultant mesh exhibits excellent oil-water separation efficiency (>99%) and flux (>6 × 104 L m-2 h-1 ). This lantern[33 ]arene-based hydrogel not only sheds additional light on the gelation mechanisms for supramolecular hydrogels, but also extends the application of macrocycle-based hydrogels as functional interfacial materials.
Collapse
Affiliation(s)
- Sheng-Hua Li
- Department of Materials, College of Chemical Engineering and Materials Science, Department of Chemistry, College of Sciences, Tianjin University of Science & Technology, Tianjin, 300457, China
| | - Bin-Bin Li
- Department of Materials, College of Chemical Engineering and Materials Science, Department of Chemistry, College of Sciences, Tianjin University of Science & Technology, Tianjin, 300457, China
| | - Xue-Lin Zhao
- Department of Materials, College of Chemical Engineering and Materials Science, Department of Chemistry, College of Sciences, Tianjin University of Science & Technology, Tianjin, 300457, China
| | - Huang Wu
- Department of Chemistry, Northwestern University, Evanston, IL, 60208, USA
| | - Rui-Lin Chai
- Department of Materials, College of Chemical Engineering and Materials Science, Department of Chemistry, College of Sciences, Tianjin University of Science & Technology, Tianjin, 300457, China
| | - Guang-Yue Li
- Department of Applied Chemistry, College of Chemical Engineering, North China University of Science and Technology, Tangshan, 063210, China
| | - Di Zhu
- Tianjin Changlu Advanced Materials Research Institute Co., Ltd., Tianjin, 300350, China
| | - Guangrui He
- Tianjin Changlu Advanced Materials Research Institute Co., Ltd., Tianjin, 300350, China
| | - Hai-Fu Zhang
- Department of Materials, College of Chemical Engineering and Materials Science, Department of Chemistry, College of Sciences, Tianjin University of Science & Technology, Tianjin, 300457, China
| | - Ke-Ke Xie
- Department of Materials, College of Chemical Engineering and Materials Science, Department of Chemistry, College of Sciences, Tianjin University of Science & Technology, Tianjin, 300457, China
| | - Bowen Cheng
- Department of Materials, College of Chemical Engineering and Materials Science, Department of Chemistry, College of Sciences, Tianjin University of Science & Technology, Tianjin, 300457, China
- State Key Laboratory of Biobased Fiber Manufacturing Technology, Tianjin University of Science and Technology, Tianjin, 300457, P. R. China
| | - Qian Zhao
- Department of Materials, College of Chemical Engineering and Materials Science, Department of Chemistry, College of Sciences, Tianjin University of Science & Technology, Tianjin, 300457, China
| |
Collapse
|
5
|
Alexander FM, Fonrouge SF, Borioni JL, Del Pópolo MG, Horton PN, Coles SJ, Hutchings BP, Crawford DE, James SL. Noria and its derivatives as hosts for chemically and thermally robust Type II porous liquids. Chem Sci 2021; 12:14230-14240. [PMID: 34760209 PMCID: PMC8565397 DOI: 10.1039/d1sc03367k] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2021] [Accepted: 10/10/2021] [Indexed: 11/21/2022] Open
Abstract
Porous Liquids (PLs) are a new class of material that possess both fluidity and permanent porosity. As such they can act as enhanced, selective solvents and may ultimately find applications which are not possible for porous solids, such as continuous flow separation processes. Type II PLs consist of empty molecular hosts dissolved in size-excluded solvents and to date have mainly been based on hosts that have limited chemical and thermal stability. Here we identify Noria, a rigid cyclic oligomer as a new host for the synthesis of more robust Type II PLs. Although the structure of Noria is well-documented, we find that literature has overlooked the true composition of bulk Noria samples. We find that bulk samples typically consist of Noria (ca. 40%), a Noria isomer, specifically a resorcinarene trimer, “R3” (ca. 30%) and other unidentified oligomers (ca. 30%). Noria has been characterised crystallographically as a diethyl ether solvate and its 1H NMR spectrum fully assigned for the first time. The previously postulated but unreported R3 has also been characterised crystallographically as a dimethyl sulfoxide solvate, which confirms its alternative connectivity to Noria. Noria and R3 have low solubility which precludes their use in Type II PLs, however, the partially ethylated derivative Noria-OEt dissolves in the size-excluded solvent 15-crown-5 to give a new Type II PL. This PL exhibits enhanced uptake of methane (CH4) gas supporting the presence of empty pores in the liquid. Detailed molecular dynamics simulations support the existence of pores in the liquid and show that occupation of the pores by CH4 is favoured. Overall, this work revises the general accepted composition of bulk Noria samples and shows that Noria derivatives are appropriate for the synthesis of more robust Type II PLs. Porous Liquids (PLs) are a new class of material that possess both fluidity and permanent porosity. Here we identify Noria, a rigid cyclic oligomer as a new host for the synthesis of more robust Type II PLs.![]()
Collapse
Affiliation(s)
- Francesca M Alexander
- School of Chemistry and Chemical Engineering, Queen's University Belfast David Keir Building, Stranmillis Road Belfast BT7 1NN UK
| | - Sergio F Fonrouge
- ICB-CONICET, Facultad de Ciencias Exactas y Naturales, Universidad Nacional de Cuyo Padre Jorge Contreras 1300 Mendoza M5502 JMA Argentina
| | - José L Borioni
- ICB-CONICET, Facultad de Ciencias Exactas y Naturales, Universidad Nacional de Cuyo Padre Jorge Contreras 1300 Mendoza M5502 JMA Argentina
| | - Mario G Del Pópolo
- ICB-CONICET, Facultad de Ciencias Exactas y Naturales, Universidad Nacional de Cuyo Padre Jorge Contreras 1300 Mendoza M5502 JMA Argentina
| | - Peter N Horton
- EPSRC National Crystallography Service, School of Chemistry, Faculty of Engineering and Physical Sciences, University of Southampton Southampton SO17 1BJ UK
| | - Simon J Coles
- EPSRC National Crystallography Service, School of Chemistry, Faculty of Engineering and Physical Sciences, University of Southampton Southampton SO17 1BJ UK
| | - Benjamin P Hutchings
- School of Chemistry and Chemical Engineering, Queen's University Belfast David Keir Building, Stranmillis Road Belfast BT7 1NN UK
| | - Deborah E Crawford
- School of Chemistry and Bioscience, University of Bradford Richmond Road Bradford BD7 1DP UK
| | - Stuart L James
- School of Chemistry and Chemical Engineering, Queen's University Belfast David Keir Building, Stranmillis Road Belfast BT7 1NN UK
| |
Collapse
|
6
|
Kudo H, Shimoyama D, Sekiya R, Haino T. Programmed Dynamic Covalent Chemistry System of Addition-condensation Reaction of Phenols and Aldehydes. CHEM LETT 2021. [DOI: 10.1246/cl.200773] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Affiliation(s)
- Hiroto Kudo
- Department of Chemistry and Materials Engineering, Faculty of Chemistry, Materials and Bioengineering, Kansai University, 3-3-35 Yamate-cho, Suita, Osaka 564-8680, Japan
| | - Daisuke Shimoyama
- Department of Chemistry, Graduate School of Advanced Science and Engineering, Hiroshima University, Higashi-Hiroshima, Hiroshima 739-8526, Japan
| | - Ryo Sekiya
- Department of Chemistry, Graduate School of Advanced Science and Engineering, Hiroshima University, Higashi-Hiroshima, Hiroshima 739-8526, Japan
| | - Takeharu Haino
- Department of Chemistry, Graduate School of Advanced Science and Engineering, Hiroshima University, Higashi-Hiroshima, Hiroshima 739-8526, Japan
| |
Collapse
|
7
|
Affiliation(s)
- Daisuke Shimoyama
- Department of Chemistry Graduate School of Advanced Science and Engineering Hiroshima University 1-3-1 Kagamiyama Higashi Hiroshima 739-8526 Japan
| | - Takeharu Haino
- Department of Chemistry Graduate School of Advanced Science and Engineering Hiroshima University 1-3-1 Kagamiyama Higashi Hiroshima 739-8526 Japan
| |
Collapse
|
8
|
Shimoyama D, Sekiya R, Maekawa H, Kudo H, Haino T. One-dimensional arrangement of NORIA in the solid-state. CrystEngComm 2020. [DOI: 10.1039/d0ce00650e] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
NORIA is a synthetic macrocycle consisting of twelve resorcinol rings. By cocrystallization of NORIA with benzene, NORIA organized one-dimensional array.
Collapse
Affiliation(s)
- Daisuke Shimoyama
- Department of Chemistry
- Graduate School of Science
- Hiroshima University
- Higashi-Hiroshima
- Japan
| | - Ryo Sekiya
- Department of Chemistry
- Graduate School of Science
- Hiroshima University
- Higashi-Hiroshima
- Japan
| | - Hiroyuki Maekawa
- Department of Chemistry and Materials Engineering
- Faculty of Chemistry
- Materials and Bioengineering
- Kansai University
- Suita-shi
| | - Hiroto Kudo
- Department of Chemistry and Materials Engineering
- Faculty of Chemistry
- Materials and Bioengineering
- Kansai University
- Suita-shi
| | - Takeharu Haino
- Department of Chemistry
- Graduate School of Science
- Hiroshima University
- Higashi-Hiroshima
- Japan
| |
Collapse
|
9
|
Shimoyama D, Sekiya R, Haino T. Upper-rim functionalization and supramolecular polymerization of a feet-to-feet-connected biscavitand. Chem Commun (Camb) 2020; 56:3733-3736. [DOI: 10.1039/d0cc00933d] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Abstract
An octaiodobiscavitand was synthesized via an aromatic Finkelstein iodination reaction in good yield. An octa-functionalized biscavitand self-assembled to form a supramolecular polymer in the solid state.
Collapse
Affiliation(s)
- Daisuke Shimoyama
- Department of Chemistry
- Graduate School of Science
- Hiroshima University
- Higashi-Hiroshima
- Japan
| | - Ryo Sekiya
- Department of Chemistry
- Graduate School of Science
- Hiroshima University
- Higashi-Hiroshima
- Japan
| | - Takeharu Haino
- Department of Chemistry
- Graduate School of Science
- Hiroshima University
- Higashi-Hiroshima
- Japan
| |
Collapse
|
10
|
Shimoyama D, Sekiya R, Haino T. Absorption of chemicals in amorphous trisresorcinarene. Chem Commun (Camb) 2020; 56:12582-12585. [DOI: 10.1039/d0cc05066k] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Trisresorcinarene is an interesting class of macrocyclic host. Its unique structure and insolubility allow to function as a amorphous solid absorbent capable of absorbing various aromatic and aliphatic hydrocarbons.
Collapse
Affiliation(s)
- Daisuke Shimoyama
- Department of Chemistry
- Graduate School of Advanced Science and Engineering
- Hiroshima University
- Higashi-Hiroshima
- Japan
| | - Ryo Sekiya
- Department of Chemistry
- Graduate School of Advanced Science and Engineering
- Hiroshima University
- Higashi-Hiroshima
- Japan
| | - Takeharu Haino
- Department of Chemistry
- Graduate School of Advanced Science and Engineering
- Hiroshima University
- Higashi-Hiroshima
- Japan
| |
Collapse
|