1
|
Cui WH, Liu Q, Ye Z, He Y. Design and Synthesis of Bistetrazole-Based Energetic Salts Bearing the Nitrogen-Rich Fused Ring. Org Lett 2023. [PMID: 37471513 DOI: 10.1021/acs.orglett.3c02131] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/22/2023]
Abstract
A series of bistetrazole-based energetic salts bearing a nitrogen-rich fused ring were designed and synthesized. Among them, compounds 4-10 showed good detonation properties and excellent thermostability. By treating nitrogen-rich fused ring 3 with concentrated hydrochloric acid, a new type of Dimroth rearrangement was observed that afforded compound 12 efficiently. This new transformation herein constitutes a valuable addition to the Dimroth rearrangement.
Collapse
Affiliation(s)
- Wen-Hao Cui
- School of Chemistry and Chemical Engineering, Nanjing University of Science and Technology, Nanjing, Jiangsu 210094, People's Republic of China
| | - Qi Liu
- School of Chemistry and Chemical Engineering, Nanjing University of Science and Technology, Nanjing, Jiangsu 210094, People's Republic of China
| | - Zhiwen Ye
- School of Chemistry and Chemical Engineering, Nanjing University of Science and Technology, Nanjing, Jiangsu 210094, People's Republic of China
| | - Ying He
- School of Chemistry and Chemical Engineering, Nanjing University of Science and Technology, Nanjing, Jiangsu 210094, People's Republic of China
| |
Collapse
|
2
|
Chen J, Suleman M, Lu P, Wang Y. Rh(III)-catalyzed cascade annulation of 4-diazoisoquinolin-3-ones with benzoic acids to access spiro[isobenzofuran-1,4′-isoquinoline]-3,3′-diones. Tetrahedron 2023. [DOI: 10.1016/j.tet.2023.133392] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/05/2023]
|
3
|
Serusi L, Di Mola A, Massa A. A facile access to 1-substituted and unsubstituted 3-isoquinolinones via Mannich or Sn2 initiated cascade reactions under catalyst-free conditions. RSC Adv 2023; 13:6557-6563. [PMID: 36845590 PMCID: PMC9951188 DOI: 10.1039/d3ra00378g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2023] [Accepted: 02/17/2023] [Indexed: 02/28/2023] Open
Abstract
Herein we report new cascade processes for the easy access to 1-substituted and C-unsubstituted 3-isoquinolinones. The Mannich initiated cascade reaction led to the synthesis of novel 1-substituted 3-isoquinolinones under catalyst-free conditions in the presence of nitromethane and dimethylmalonate as nucleophiles without the use of any solvent. The optimization of the synthesis of the starting material in a more environmentally benign manner, allowed the identification of a common intermediate useful for the synthesis of C-unsubstituted 3-isoquinolinones as well. The synthetic utility of 1-substituted 3-isoquinolinones was also demonstrated.
Collapse
Affiliation(s)
- Lorenzo Serusi
- Dipartimento di Chimica e Biologia "A. Zambelli", Università degli Studi di Salerno Via Giovanni Paolo II, 84084 Fisciano Italy
| | - Antonia Di Mola
- Dipartimento di Chimica e Biologia "A. Zambelli", Università degli Studi di Salerno Via Giovanni Paolo II, 84084 Fisciano Italy
| | - Antonio Massa
- Dipartimento di Chimica e Biologia "A. Zambelli", Università degli Studi di Salerno Via Giovanni Paolo II, 84084 Fisciano Italy
| |
Collapse
|
4
|
Xie J, Suleman M, Zhang K, Lu P, Wang Y. Synthesis of Functionalized Indolobenzazepinones via Sc(OTf) 3-Induced Ring Expansion/Annulation Reactions of 4-Diazoisoquinolin-3-ones with Isatins. J Org Chem 2022; 87:15938-15946. [DOI: 10.1021/acs.joc.2c02076] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Affiliation(s)
- Jianwei Xie
- Department of Chemistry, Zhejiang University, Hangzhou 310027, P.R. China
| | - Muhammad Suleman
- Department of Chemistry, Zhejiang University, Hangzhou 310027, P.R. China
| | - Ke Zhang
- Department of Chemistry, Zhejiang University, Hangzhou 310027, P.R. China
| | - Ping Lu
- Department of Chemistry, Zhejiang University, Hangzhou 310027, P.R. China
| | - Yanguang Wang
- Department of Chemistry, Zhejiang University, Hangzhou 310027, P.R. China
| |
Collapse
|
5
|
Qi M, Suleman M, Fan J, Lu P, Wang Y. Cu(I)-catalyzed synthesis of spiro[isoquinoline-4,2'-[1,3]oxazin]-3-ones via ring expansion reactions of isoxazoles with 4-diazoisoquinolin-3-ones. Tetrahedron 2022. [DOI: 10.1016/j.tet.2022.133092] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
6
|
Dar’in D, Kantin G, Bunev A, Krasavin M. Facile and diastereoselective arylation of the privileged 1,4-dihydroisoquinolin-3(2 H)-one scaffold. Beilstein J Org Chem 2022; 18:1070-1078. [PMID: 36105725 PMCID: PMC9443417 DOI: 10.3762/bjoc.18.109] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Accepted: 07/19/2022] [Indexed: 11/23/2022] Open
Abstract
A practically convenient and streamlined protocol for the trans-diastereoselective introduction of an aryl substituent at position 4 of the 1,4-dihydroisoquinol-3-one (1,4-DHIQ) scaffold is presented. The protocol involves direct Regitz diazo transfer onto readily available 3(2H)-isoquinolones followed by TfOH-promoted hydroarylation by an arene molecule. Screening of the novel 1,2,4-trisubstituted 1,4-DHIQs against cancer cell lines confirmed high cytotoxicity of selected analogs, which validates this new chemotype for further investigations as anticancer cytotoxic agents.
Collapse
Affiliation(s)
- Dmitry Dar’in
- Saint Petersburg State University, Saint Petersburg 199034, Russian Federation
| | - Grigory Kantin
- Saint Petersburg State University, Saint Petersburg 199034, Russian Federation
| | - Alexander Bunev
- Medicinal Chemistry Center, Togliatti State University, 445020 Togliatti, Russian Federation,
| | - Mikhail Krasavin
- Saint Petersburg State University, Saint Petersburg 199034, Russian Federation
- Immanuel Kant Baltic Federal University, Kaliningrad 236016, Russian Federation
| |
Collapse
|
7
|
Voloshkin VA, Kotovshchikov YN, Latyshev GV, Lukashev NV, Beletskaya IP. Annulation-Triggered Denitrogenative Transformations of 2-(5-Iodo-1,2,3-triazolyl)benzoic Acids. J Org Chem 2022; 87:7064-7075. [PMID: 35583492 DOI: 10.1021/acs.joc.2c00235] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
The ability of [1,2,3]triazolobenzoxazinones to act as a source of "hidden" diazo group was discovered. These diazo precursors can be easily prepared by the intramolecular cyclization of 2-(5-iodo-1,2,3-triazolyl)benzoic acids. The Cu-catalyzed capture of the hidden diazo group allows for further functionalization through the denitrogenative pathway. The transformations proceed via the formation of either diazoimine or diazoamide intermediates. Novel routes to various anthranilamides as well as thiolated benzoxazinones were developed using the one-pot cyclization/diazo capture procedure.
Collapse
Affiliation(s)
- Vladislav A Voloshkin
- Chemistry Department, M. V. Lomonosov Moscow State University, 1/3 Leninskiye Gory, Moscow 119991, Russia
| | - Yury N Kotovshchikov
- Chemistry Department, M. V. Lomonosov Moscow State University, 1/3 Leninskiye Gory, Moscow 119991, Russia
| | - Gennadij V Latyshev
- Chemistry Department, M. V. Lomonosov Moscow State University, 1/3 Leninskiye Gory, Moscow 119991, Russia
| | - Nikolay V Lukashev
- Chemistry Department, M. V. Lomonosov Moscow State University, 1/3 Leninskiye Gory, Moscow 119991, Russia
| | - Irina P Beletskaya
- Chemistry Department, M. V. Lomonosov Moscow State University, 1/3 Leninskiye Gory, Moscow 119991, Russia
| |
Collapse
|
8
|
Qi M, Suleman M, Xie J, Lu P, Wang Y. Cu(II)-Catalyzed Synthesis of 4-(1,4,5,6-Tetrahydropyridin-3-yl)-1,4-dihydroisoquinolin-3-ones from 4-Diazoisoquinolin-3-ones. J Org Chem 2022; 87:4088-4096. [PMID: 35213165 DOI: 10.1021/acs.joc.1c02905] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
We report a simple, efficient, and highly selective C-H bond insertion of copper carbenes generated in situ from 4-diazo-1,4-dihydroisoquinolin-3-ones into β-C(sp2)-H bonds of N-sulfonyl enamides, which gave a series of 4-(1,4,5,6-tetrahydropyridin-3-yl)-1,4-dihydroisoquinolin-3(2H)-ones in good to excellent yields. Operationally simple and mild reaction conditions, a cheap catalyst, readily accessible starting materials, and a broad substrate scope are the merits of this reaction.
Collapse
Affiliation(s)
- Minghui Qi
- Department of Chemistry, Zhejiang University, Hangzhou 310027, P. R. China
| | - Muhammad Suleman
- Department of Chemistry, Zhejiang University, Hangzhou 310027, P. R. China
| | - Jianwei Xie
- Department of Chemistry, Zhejiang University, Hangzhou 310027, P. R. China
| | - Ping Lu
- Department of Chemistry, Zhejiang University, Hangzhou 310027, P. R. China
| | - Yanguang Wang
- Department of Chemistry, Zhejiang University, Hangzhou 310027, P. R. China
| |
Collapse
|
9
|
Jin L, Zhou X, Zhao Y, Guo J, Stephan DW. Catalyst-dependent chemoselective insertion of diazoalkanes into N-H\C-H\O-H\C-O bonds of 2-hydroxybenzothiazoles. Org Biomol Chem 2022; 20:7781-7786. [DOI: 10.1039/d2ob01048h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The control of chemoselective insertions of diazoalkanes with 2-hydroxybenzothiazoles is challenging. Herein, the chemoselective N-H, O-H, C-O or C-H bond insertions of diazoalkanes with 2-hydroxybenzothiazoles are achieved using B(C6F5)3, Rh2(OAc)4...
Collapse
|
10
|
Suleman M, Qi M, Xie J, Lu P, Wang Y. Rh(III)-catalyzed C-H bond activation/annulation reactions of arylacyl ammonium salts with 4-diazoisochroman-3-imines and 4-diazoisoquinolin-3-ones. Org Biomol Chem 2022; 20:1900-1906. [DOI: 10.1039/d1ob02405a] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
We report a C-H bond functionalization strategy for the construction of oxo- and aza-spirocyclic compounds from diazo compounds as coupling partners. Our method comprises ortho sp2 C-H bond activation of...
Collapse
|
11
|
Synthetic approaches to N- and 4-substituted 1,4-dihydro-3(2H)-isoquinolinone derivatives. Tetrahedron 2021. [DOI: 10.1016/j.tet.2021.132455] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
12
|
Xie J, Suleman M, Wang Z, Mao X, Mao B, Fan J, Lu P, Wang Y. Syntheses of 4-allyl-/4-allenyl-4-(arylthio)-1,4-dihydroisoquinolin-3-ones via the photochemical Doyle-Kirmse reaction. Org Biomol Chem 2021; 19:6341-6345. [PMID: 34231621 DOI: 10.1039/d1ob00859e] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Facile synthesis of 4-allyl-/4-allenyl-4-(arylthio)-1,4-dihydroisoquinolin-3-ones via the visible-light-induced Doyle-Kirmse reaction of 4-diazo-1,4-dihydroisoquinolin-3-ones with allyl-/propargyl sulfides is reported. The reaction proceeds via the generation of free carbenes from cyclic diazo compounds followed by in situ formation of sulfonium ylide intermediates, which subsequently undergo [2,3-sigmatropic rearrangement] to give highly functionalized dihydroisoquinolinones in moderate to good yields. Broad substrate scope, and catalyst-free and mild conditions are the merits of this reaction.
Collapse
Affiliation(s)
- Jianwei Xie
- Department of Chemistry, Zhejiang University, Hangzhou 310027, P. R. China.
| | - Muhammad Suleman
- Department of Chemistry, Zhejiang University, Hangzhou 310027, P. R. China.
| | - Zaibin Wang
- Department of Chemistry, Zhejiang University, Hangzhou 310027, P. R. China.
| | - Xinfei Mao
- Department of Chemistry, Zhejiang University, Hangzhou 310027, P. R. China.
| | - Beibei Mao
- Department of Chemistry, Zhejiang University, Hangzhou 310027, P. R. China.
| | - Jiale Fan
- Department of Chemistry, Zhejiang University, Hangzhou 310027, P. R. China.
| | - Ping Lu
- Department of Chemistry, Zhejiang University, Hangzhou 310027, P. R. China.
| | - Yanguang Wang
- Department of Chemistry, Zhejiang University, Hangzhou 310027, P. R. China.
| |
Collapse
|
13
|
Mamedov VА, Zhukova NА, Kadyrova MS. The Dimroth Rearrangement in the Synthesis of Condensed Pyrimidines - Structural Analogs of Antiviral Compounds. Chem Heterocycl Compd (N Y) 2021; 57:342-368. [PMID: 34024912 PMCID: PMC8121644 DOI: 10.1007/s10593-021-02913-7] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2020] [Accepted: 11/16/2020] [Indexed: 11/30/2022]
Abstract
The review discusses the use of the Dimroth rearrangement in the synthesis of condensed pyrimidines which are key structural fragments of antiviral agents. The main attention is given to publications over the past 10 years. The bibliography includes 107 references.
Collapse
Key Words
- Dimroth rearrangement
- [1,2,4]triazolo[1,5-a]pyrimidines
- [1,2,4]triazolo[1,5-c]pyrimidines
- antiviral activity
- furo[2,3-d]pyrimidines
- imidazo[1,2-a]pyrimidines
- purines
- pyrazolo[3,4-d]pyrimidines
- pyrrolo[2,3-d]pyrimidines
- quinazolin(on)es
- thieno[2,3-d]pyrimidines
Collapse
Affiliation(s)
- Vakhid А. Mamedov
- Arbuzov Institute of Organic and Physical Chemistry, Kazan Scientific Center, Russian Academy of Sciences, 8 Akademika Arbuzova St, Kazan, 420088 Russia
| | - Nataliya А. Zhukova
- Arbuzov Institute of Organic and Physical Chemistry, Kazan Scientific Center, Russian Academy of Sciences, 8 Akademika Arbuzova St, Kazan, 420088 Russia
| | - Milyausha S. Kadyrova
- Arbuzov Institute of Organic and Physical Chemistry, Kazan Scientific Center, Russian Academy of Sciences, 8 Akademika Arbuzova St, Kazan, 420088 Russia
| |
Collapse
|
14
|
Wu L, Chen J, Xie J, Lu P, Wang Y. Synthesis of 4-boraneyl-1,4-dihydroisoquinolin-3-ones via copper-catalyzed Boron–Hydrogen bond insertion of 4-diazo-1,4-dihydroisoquinolin-3-ones into amine-borane adduct. Tetrahedron 2021. [DOI: 10.1016/j.tet.2021.132019] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
15
|
Suleman M, Xie J, Wang Z, Lu P, Wang Y. Base Promoted Three-Component Annulation of 4-Diazoisochroman-3-imines with Dimethylsulfonium Ylides: Synthesis of Highly Functionalized Isochromeno[4,3- c]pyridazines. J Org Chem 2021; 86:455-465. [PMID: 33325697 DOI: 10.1021/acs.joc.0c02204] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
A novel method has been developed to synthesize a unique class of highly functionalized isochromeno[4,3-c]pyridazines. This reaction features an intermolecular functionalization of terminal nitrogen atom of diazo group of 4-diazoisochoman-3-imine with two dimethylsulfonium ylide components, followed by a base promoted 6-exo-trig cyclization step. Readily available starting materials, a broad substrate scope, and operationally simple, mild, and catalyst-free reaction conditions are the prominent features of this method.
Collapse
Affiliation(s)
- Muhammad Suleman
- Department of Chemistry, Zhejiang University, Hangzhou, 310027, P. R. China
| | - Jianwei Xie
- Department of Chemistry, Zhejiang University, Hangzhou, 310027, P. R. China
| | - Zaibin Wang
- Department of Chemistry, Zhejiang University, Hangzhou, 310027, P. R. China
| | - Ping Lu
- Department of Chemistry, Zhejiang University, Hangzhou, 310027, P. R. China
| | - Yanguang Wang
- Department of Chemistry, Zhejiang University, Hangzhou, 310027, P. R. China
| |
Collapse
|
16
|
Lee KR, Jung DJ, Ahn S, Kim JW, Lee SG. Catalyst-controlled divergent transformations of N-sulfonyl-1,2,3-triazoles into isoquinolin-3-ones and 2-aminoindanones. Org Biomol Chem 2021; 19:5093-5097. [PMID: 34037059 DOI: 10.1039/d1ob00708d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Novel catalyst-controlled divergent intramolecular reactions of N-sulfonyl-1,2,3-triazoles with tethered-allylic alcohol have been developed. In the presence of the Pd(0) catalyst alone, 1-vinylated 1,4-dihydroisoquinolin-3-ones were formed, whereas 3-vinylated 2-aminoindanones were accessed under tandem, one-pot, Rh(ii)/Pd(0) dual catalytic conditions. Based on deuterium-labelling experiments and isolation of the intermediate, a plausible reaction mechanism has been proposed.
Collapse
Affiliation(s)
- Kyu Ree Lee
- Department of Chemistry and Nanoscience, Ewha Womans University, Seoul 03760, Korea.
| | - Da Jung Jung
- Department of Chemistry and Nanoscience, Ewha Womans University, Seoul 03760, Korea.
| | - Subin Ahn
- Department of Chemistry and Nanoscience, Ewha Womans University, Seoul 03760, Korea.
| | - Ji Won Kim
- Department of Chemistry and Nanoscience, Ewha Womans University, Seoul 03760, Korea.
| | - Sang-Gi Lee
- Department of Chemistry and Nanoscience, Ewha Womans University, Seoul 03760, Korea.
| |
Collapse
|
17
|
Ferreira VF, de B. da Silva T, Pauli FP, Ferreira PG, da S. M. Forezi L, de S. Lima CG, de C. da Silva F. Dimroth´s Rearrangement as a Synthetic Strategy Towards New Heterocyclic Compounds. CURR ORG CHEM 2020. [DOI: 10.2174/1385272824999200805114837] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Molecular rearrangements are important tools to increase the molecular diversity
of new bioactive compounds, especially in the class of heterocycles. This review deals
specifically with a very famous and widely applicable rearrangement known as the Dimroth
Rearrangement. Although it has originally been observed for 1,2,3-triazoles, its amplitude
was greatly expanded to other heterocycles, as well as from laboratory to large
scale production of drugs and intermediates. The reactions that were discussed in this review
were selected with the aim of demonstrating the windows that may be open by the
Dimroth's rearrangement, especially in what regards the development of new synthetic approaches
toward biologically active compounds.
Collapse
Affiliation(s)
- Vitor F. Ferreira
- Universidade Federal Fluminense, Departamento de Tecnologia Farmaceutica, Faculdade de Farmacia, CEP 24241-002, Niteroi- RJ, Brazil
| | - Thais de B. da Silva
- Universidade Federal Fluminense, Departamento de Tecnologia Farmaceutica, Faculdade de Farmacia, CEP 24241-002, Niteroi- RJ, Brazil
| | - Fernanda P. Pauli
- Universidade Federal Fluminense, Instituto de Quimica, Departamento de Quimica Organica, CEP 24020-150, Niteroi- RJ, Brazil
| | - Patricia G. Ferreira
- Universidade Federal Fluminense, Departamento de Tecnologia Farmaceutica, Faculdade de Farmacia, CEP 24241-002, Niteroi- RJ, Brazil
| | - Luana da S. M. Forezi
- Universidade Federal Fluminense, Instituto de Quimica, Departamento de Quimica Organica, CEP 24020-150, Niteroi- RJ, Brazil
| | - Carolina G. de S. Lima
- Universidade Federal Fluminense, Instituto de Quimica, Departamento de Quimica Organica, CEP 24020-150, Niteroi- RJ, Brazil
| | - Fernando de C. da Silva
- Universidade Federal Fluminense, Instituto de Quimica, Departamento de Quimica Organica, CEP 24020-150, Niteroi- RJ, Brazil
| |
Collapse
|
18
|
Chen P, Nan J, Hu Y, Kang Y, Wang B, Ma Y, Szostak M. Metal-free tandem carbene N-H insertions and C-C bond cleavages. Chem Sci 2020; 12:803-811. [PMID: 34163814 PMCID: PMC8178978 DOI: 10.1039/d0sc05763k] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2020] [Accepted: 11/09/2020] [Indexed: 01/16/2023] Open
Abstract
A metal-free C-H [5 + 1] annulation reaction of 2-arylanilines with diazo compounds has been achieved, giving rise to two types of prevalent phenanthridines via highly selective C-C cleavage. Compared to the simple N-H insertion manipulation of diazo, this method elegantly accomplishes a tandem N-H insertion/SEAr/C-C cleavage/aromatization reaction, and the synthetic utility of this new transformation is exemplified by the succinct syntheses of trisphaeridine and bicolorine alkaloids.
Collapse
Affiliation(s)
- Pu Chen
- Shaanxi Key Laboratory of Chemical Additives for Industry, College of Chemistry and Chemical Engineering, Shaanxi University of Science and Technology Xi'an 710021 China
| | - Jiang Nan
- Shaanxi Key Laboratory of Chemical Additives for Industry, College of Chemistry and Chemical Engineering, Shaanxi University of Science and Technology Xi'an 710021 China
| | - Yan Hu
- Shaanxi Key Laboratory of Chemical Additives for Industry, College of Chemistry and Chemical Engineering, Shaanxi University of Science and Technology Xi'an 710021 China
| | - Yifan Kang
- Shaanxi Key Laboratory of Chemical Additives for Industry, College of Chemistry and Chemical Engineering, Shaanxi University of Science and Technology Xi'an 710021 China
| | - Bo Wang
- Shaanxi Key Laboratory of Chemical Additives for Industry, College of Chemistry and Chemical Engineering, Shaanxi University of Science and Technology Xi'an 710021 China
| | - Yangmin Ma
- Shaanxi Key Laboratory of Chemical Additives for Industry, College of Chemistry and Chemical Engineering, Shaanxi University of Science and Technology Xi'an 710021 China
| | - Michal Szostak
- Shaanxi Key Laboratory of Chemical Additives for Industry, College of Chemistry and Chemical Engineering, Shaanxi University of Science and Technology Xi'an 710021 China
- Department of Chemistry, Rutgers University 73 Warren Street Newark New Jersey 07102 USA
| |
Collapse
|
19
|
Gujjarappa R, Vodnala N, Malakar CC. Comprehensive Strategies for the Synthesis of Isoquinolines: Progress Since 2008. Adv Synth Catal 2020. [DOI: 10.1002/adsc.202000658] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Raghuram Gujjarappa
- Department of Chemistry National Institute of Technology Manipur Imphal 795004 Manipur India
| | - Nagaraju Vodnala
- Department of Chemistry National Institute of Technology Manipur Imphal 795004 Manipur India
| | - Chandi C. Malakar
- Department of Chemistry National Institute of Technology Manipur Imphal 795004 Manipur India
| |
Collapse
|
20
|
Xu Z, Wang W, Cen M, Feng Z, Duan S, Li C. Synthesis of α‐(2‐Hydroxyphenyl)‐α‐Aminoketones by Rhodium‐Catalyzed Tandem Reaction of 1‐Sulfonyl‐1,2,3‐Triazoles and Benzoquinone‐Derived Alcohols. Adv Synth Catal 2020. [DOI: 10.1002/adsc.202000487] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Ze‐Feng Xu
- Department of ChemistryZhejiang Sci-Tech University, Xiasha West Higher Education District Hangzhou 310018 China
- Key Laboratory of Organofluorine ChemistryShanghai Institute of Organic ChemistryChinese Academy of Sciences 345 Lingling Road Shanghai 200032 China
| | - Weipeng Wang
- Department of ChemistryZhejiang Sci-Tech University, Xiasha West Higher Education District Hangzhou 310018 China
| | - Mengjie Cen
- Department of ChemistryZhejiang Sci-Tech University, Xiasha West Higher Education District Hangzhou 310018 China
| | - Zijuan Feng
- Department of ChemistryZhejiang Sci-Tech University, Xiasha West Higher Education District Hangzhou 310018 China
| | - Shengguo Duan
- Department of ChemistryZhejiang Sci-Tech University, Xiasha West Higher Education District Hangzhou 310018 China
| | - Chuan‐Ying Li
- Department of ChemistryZhejiang Sci-Tech University, Xiasha West Higher Education District Hangzhou 310018 China
| |
Collapse
|
21
|
Li Z, Xie J, Lu P, Wang Y. Synthesis of 8-Alkoxy-5 H-isochromeno[3,4- c]isoquinolines and 1-Alkoxy-4-arylisoquinolin-3-ols through Rh(III)-Catalyzed C-H Functionalization of Benzimidates with 4-Diazoisochroman-3-imines and 4-Diazoisoquinolin-3-ones. J Org Chem 2020; 85:5525-5535. [PMID: 32200640 DOI: 10.1021/acs.joc.0c00283] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Rh(III)-catalyzed C-H activation/annulation of benzimidates with 4-diazoisochroman-3-imines furnished 8-alkoxy-5H-isochromeno[3,4-c]isoquinolines in moderate to excellent yields with a broad range of substrate scope. The reaction was carried out under mild reaction conditions and could be scaled up with practical usage. Similar reaction between benzimidates and 4-diazoisoquinolin-3-ones provided 1-alkoxy-4-arylisoquinolin-3-ols in excellent yields. Moreover, the synthesized products could be conveniently transformed to the corresponding heterocycles with a 1,8-naphthyridinone or isochromenopyridinone core, which are privileged structures in medicinal chemistry.
Collapse
Affiliation(s)
- Zhenmin Li
- Department of Chemistry, Zhejiang University, Hangzhou 310027, P. R. China
| | - Jianwei Xie
- Department of Chemistry, Zhejiang University, Hangzhou 310027, P. R. China
| | - Ping Lu
- Department of Chemistry, Zhejiang University, Hangzhou 310027, P. R. China
| | - Yanguang Wang
- Department of Chemistry, Zhejiang University, Hangzhou 310027, P. R. China
| |
Collapse
|